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Abstract

In this paper, we tackle the problem of retrieving videos
using complex natural language queries. Towards this goal,
we first parse the sentential descriptions into a semantic
graph, which is then matched to visual concepts using a
generalized bipartite matching algorithm. Our approach
exploits object appearance, motion and spatial relations,
and learns the importance of each term using structure pre-
diction. We demonstrate the effectiveness of our approach
on a new dataset designed for semantic search in the context
of autonomous driving, which exhibits complex and highly
dynamic scenes with many objects. We show that our ap-
proach is able to locate a major portion of the objects de-
scribed in the query with high accuracy, and improve the
relevance in video retrieval.

1. Introduction
One of the fundamental challenges in video search is to

be able to perform retrieval given a semantic query. Con-
sider the following example, where a user wants to retrieve
a movie she has seen but she remembers neither the title nor
the authors. She has, however, a vivid memory of a partic-
ular scene. Thus she enters the following description in a
search engine: “A man is sitting on the staircase. Suddenly
a car from the twenties rushes by and picks him up. That is
the night he meets Ernest Hemingway.” The top queries re-
turned are pictures of Chiang Mai and Steve Jobs. But, what
she really wanted is a scene from “Midnight in Paris”.

Understanding images semantically is key in order to re-
trieve relevant candidates for these complex queries. How-
ever, semantic parsing of images is an extremely difficult
task. Despite decades of research, the performance of visual
recognition algorithms is still rather low. To improve recog-
nition systems, additional information in the form of depth
data [18], contextual models [14] or video can be used.

In this paper, we are interested in performing semantic
retrieval of videos in the context of autonomous driving.
Retrieval of relevant events is particularly beneficial in this
setting due to the abundance of available data, e.g. after a
day of capture. In particular, semantic retrieval in this con-
text has applications in improving driver safety, studying
traffic congestion as well as building autonomous systems.
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Figure 1. This figure shows a video frame and the associated de-
scription. Our approach constructs semantic graphs to capture the
semantic structure of the description, and infers the matching be-
tween the nouns and objects detected in the video. The action and
relative positions of the objects will also be taken into account and
matched with the verbs and adverbs in the sentence.

Towards this goal, we developed an approach that first
parses the videos semantically by means of object detec-
tion, tracking, and ego-motion estimation, all in 3D. As il-
lustrated in Fig. 1, given a complex query, we first parse the
description into a semantic graph, which is then matched to
the visual concepts using a generalized bipartite matching
algorithm. This enables exact inference via a linear pro-
gram. Our approach takes advantage of object appearance,
motion, and spatial relations, and learns the importance of
each energy term using structure prediction.

We demonstrate the effectiveness of our approach in
the context of videos captured from an autonomous driv-
ing platform. These are particularly interesting as seman-
tic queries can contain temporal as well as spatial informa-
tion about multiple objects and “stuff” (e.g., trees, build-
ings) present in the scene. Towards this goal, we asked
annotators to partition the videos from the KITTI tracking
benchmark [9] into possibly overlapping segments contain-
ing interesting activities, and provide natural sentential de-
scriptions of those activities. These serve as queries for our
semantic search. In a long video sequence, our approach is
able to locate a major portion of the objects described in the
query with remarkably high accuracy (60% vs below 20%
for the baseline). It also substantially improves the rele-
vance of the retrieved segments in our challenging setting.

The contributions of this work consists of three aspects.
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First, we consider a new problem that is fundamentally dif-
ferent from traditional video retrieval tasks. Most previous
work on video retrieval find relevant videos given a query,
while we focus on matching individual words in the query to
specific objects (i.e. a tracklet of 2D boxes) participating in
sub-events in highly dynamic and complex scenes. Second,
we collect a new dataset for semantic retrieval, which pro-
vides lingual descriptions for video segments and includes
detailed time-stamped associations between nouns and vi-
sual objects. This distinguishes it from those used in tradi-
tional video retrieval applications (e.g. TRECVID). Third,
we develop a new framework, where we construct seman-
tic graphs from textual descriptions, formulate the problem
as graph matching allowing efficient exact inference, and
explicitly exploit both spatial and semantic relations.

2. Related Work

Text that appears jointly with images usually contains
useful information for visual analysis. In the past decade,
utilizing textual description to help tasks such as im-
age/video retrieval, has become an active research area.
Relevant work generally falls into several categories, which
we roughly classify into video retrieval and joint modeling.

Video Retrieval: With the explosive growth of online
videos, video search and retrieval has become a hot topic in
computer vision. In their seminal work, Sivic and Zisser-
man described Video Google [19], a system that retrieves
videos from a database via bag-of-words matching. Lew et
al. [13] reviews earlier efforts in video retrieval, which, sim-
ilar to content-based image retrieval, mostly rely on feature-
based relevance feedback or similar methods.

Recently, concept-based methods have emerged as a
popular approach to video retrieval. Snoek et al. [20] pro-
posed a method based on a set of concept detectors, with
the aim to bridge the semantic gap between visual features
and high level concepts. The importance of concepts have
also been recognized by other researchers [25]. Since then,
a series of methods have been developed to improve video
concept detection [1, 21, 5]. It is important to note that most
current work on concept-based retrieval focuses on min-
ing characteristic concepts or improving the performance
of concept detectors. The spatial and semantic relations be-
tween concepts have rarely been explored in practice.

Joint modeling of Images and Text: Several genera-
tive models that couple modeling of text and images were
studied in [3], including a multi-modal extension of Latent
Dirichlet Allocation. Iyengar et al. [11] proposed a proba-
bilistic model that relates words and image parts through an
intermediate layer that captures common concepts. Mod-
els in this category usually rely on strong assumptions,
e.g. words in a document are exchangeable, and thus ne-
glect important relations between words.

Recently, Matuszek et al. [15] proposed a joint model of

language and perception that exploits semantic parsing of a
sentence to align objects to classifiers. The primary goal of
this work is to classify attributes of RGBD objects. Fidler
et al. [8] developed a CRF model that incorporates parsed
sentences for holistic scene understanding, and extended it
to aligning text-to-images [12]. In recent years, many ap-
proaches have been developed to generate image [6, 27, 17]
or video descriptions [2]. For instance, Rohrbach et al. [17]
presented a system, which uses a CRF to capture relations
between image components and generates the description
through statistical machine translation.

3. A New Video Dataset for Semantic Search
In this paper, we are interested in semantic search in the

domain of autonomous driving, where rich visual and con-
textual information (e.g., video, stereo, ego-motion, road
information, traffic patterns) can be exploited. Towards this
goal, we adopted the KITTI benchmark [9] and collected
natural lingual descriptions for the training subset of the
tracking benchmark, which comprises 21 videos of length
381 frames on average, for a total of 8008 frames.

We used in-house annotators to ensure quality. We asked
them to describe whatever (sub)events they felt were rele-
vant for someone driving a car. This could include pick-
ing single static frames, a video segment or the video as a
whole. Towards this goal, we created an annotation tool that
allowed the annotators to watch a video and select a partic-
ular time chunk by choosing a beginning and an end frame.
For each time chunk they wrote a description, and were
asked to link the objects/stuff they were talking about to the
image by either placing a bounding box around the object
or creating a segmentation mask. This link could be done
in any of the frames in the described time chunk. All ob-
jects that were annotated in this way and are part of KITTI
classes (cars, vans, trucks, pedestrians, cyclists) were then
matched to KITTI ground-truth, which provided us with 3D
GT trajectories across each video segment.

Six annotators were employed to label the videos, three
annotators per video in order to capture a wide variety of
events. Our new dataset comprises of 443 descriptions,
which contain 520 sentences and 3520 words in total. These
sentences talk about 1068 objects in the videos.

It is worth emphasizing this database is very challenging:
Video segments are visually similar and difficult to distin-
guish; descriptions provided by the annotators are generally
quite concise, and sometimes ambiguous. This may be seen
from the examples we provide in the supplemental material.
Small training set size and difficulties in tracking also limits
the performance improvement.

4. Visual Semantic Search
In order to be able to perform visual semantic search, we

need to establish correspondences between entities in the



DC HM MCF SSP HM+MCF HM+SSP MCF+SSP
recall (%) 22.4 32.3 30.0 27.4 35.0 36.1 34.2
# tracklets 3444 2678 1326 1084 3514 3503 2030

Table 1. Recall of tracking methods for our domain vs number of
tracklets (counted over all the video segments).

text and objects/stuff in the visual scene. Towards this goal,
we exploit a variety of cues including object appearance,
motion, and relations/interactions between objects and the
scene. Our approach proceeds as follows: we first detect
and track candidate objects in each input video fragment,
and characterize each object track with a variety of cues
(e.g. appearance, motion). We then construct a graph rep-
resentation to capture the semantic structure of the textual
description given as query. Finally, we develop a matching
algorithm, which takes into account both visual cues and
spatial/semantic relations, to infer correspondence between
the entities described in the query and the objects detected
in the video. It is important that, in this process, we allow
some entities to not match anything as we might have false
negatives and false positives in our visual set of candidates.

4.1. Extracting Candidates from Video Segments

To generate tracks in our videos we utilize the MCF [28]
and SSP [16] trackers (which were provided to us by [9]), as
they have relatively high recall. We say that a ground-truth
(GT) trajectory is recalled by a tracklet if they overlap more
than 50% in space and time. That is, overlap in a frame is
said to be correct if the two bounding boxes overlap more
than 50% IOU, and a tracklet is correct if the number of
correct frames divided by the number of frames spanned by
both the GT and the candidate is higher than 50%. Note that
this is a rather strict criteria, but reasonable in our setting
as our system depends on having longer and quality tracks
with enough discriminative information to classify actions.

Both MCF and SSP are tracking-by-detection ap-
proaches, which first run DPM [7] and then find an optimal
path through the detections. In the KITTI benchmark [9],
the detection performance (AP) for cars, pedestrians, and
cyclists are 56.5%, 39.4%, and 29.9%, respectively. Note
that the benchmark for cars measures performance at 70%
IOU. This low accuracy reflects the difficulty of the dataset,
and limits the success of the tracking methods. We took tra-
jectories from both methods, and performed non-maxima
suppression to remove redundant tracks.

4.2. Constructing Semantic Graph from Text

We use a graph representation to capture the semantic
structure of a descriptive sentence, which we refer to as the
semantic graph. As illustrated in Fig. 2, each node of a se-
mantic graph corresponds to a word with specific meaning
(e.g. car, pedestrian, and walk), which may be a noun, a
verb, an adjective, or an adverb. Nodes are connected by
different types of edges expressing the semantic relations
between them. The procedure for constructing a semantic

There is a orange van parked on the street on the right.
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Figure 2. This figure shows a parse tree of a sentence (on the left)
and the constructed semantic graph (on the right). We can see
that the semantic graph captures the key semantic structure of the
sentence: a van is parking, whose color is orange. The action of
parking is modified by two adverb phrases: on-street and on-right.

graph from a text description comprises three steps: pars-
ing, transforming and distilling, which we describe next.

Parsing: We use the Stanford parser [22] to obtain a parse
tree of the sentence, in which each word is attached with a
part-of-speech tag that specifies its syntactic role.

Transforming: The parse tree of a sentence in its original
form is difficult to manipulate. Many grammatical struc-
tures in the trees are not pertinent to visual analysis. For ex-
ample, in a sentence “there is a car in front of me”, the part
“there is” is not relevant to our purpose, while the phrase
“in front of” needs to be compressed into a single com-
pound preposition “in-front-of” to convey a certain spatial
relation. Specifically, we devise a series of transformation
rules by carefully examining the descriptions in the train-
ing set, and apply them to the parse trees in order to obtain
simplified syntactic graphs. We refer the reader to the sup-
plementary material for more details.

Distilling: This step generates a semantic graph by select-
ing relevant nodes and edges from the transformed syntac-
tic graph. More specifically, we classify relevant words into
four categories: entities, actions, cardinalities, colors, and
action modifiers. Each category has several classes: we use
five entity classes (cars, vans, trucks, pedestrians, and cy-
clists), fifteen action classes (such as move, turn, park, walk,
etc), as well as other classes for modifiers. We refer the
reader to the supplemental material for a full list. We use
synonyms obtained from WordNet to match the words to
our classes. Nodes that match our classes are selected for
insertion into the semantic graph, where they are associated
with a class tag. Edges that connect the selected nodes are
also preserved in the distilled graph.

Generally, the algorithm to construct semantic graphs,
which involves both transforming and distilling, is based on
a series of manually derived rules. Due to page limits, we
are unable to present all these rules in the paper. A detailed
documentation will be provided as we release the codes.



4.3. Matching Text and Video Segments

The primary task in this work is to match the entities in
a semantic graph to the object tracks extracted from a video
clip. We formulate this as a generalized bipartite matching
problem. In particular, our approach tries to match entities
in a textual description, which we refer to as sources, to the
object tracks, which we refer to as sinks. To account for plu-
ral forms, e.g. ”two cars” and ”several people”, we allow
each source to be matched to one or multiple sinks, depend-
ing on the associated cardinality modifier. It is also possible
that some entities mentioned in text have been missed by
our visual detection/tracking algorithm, and thus no match
exists. We thus introduce a no-obj sink, which allows se-
mantic entities to be matched to none of the visual objects.

Suppose we have m sources and n sinks, which are re-
spectively indexed using u and v. We use yuv ∈ {0, 1} to
denote whether the source u is matched to the sink v, and
huv to denote the score of matching u and v. We formulate
the matching problem as a LP as follows:

max
y

∑
uv

huvyuv (1)

s.t.
∑
v

yuv = su, ∀u = 1, . . . ,m∑
u

yuv ≤ tv, ∀v = 1, . . . , n

0 ≤ yuv ≤ 1, ∀u = 1, . . . ,m, v = 1, . . . , n− 1

where y = (y11, · · · , ymn) denotes the set of all matching
indicators that we are optimizing over, and su, tv are the
capacity for the source u and sink v respectively. Partic-
ularly, the different su are set according to the cardinality
modifier associated with the corresponding noun, while tv
is generally set to 1, as each object in a video clip is very
rarely referenced by more than one instance in a sentence
(the so called coreference resolution), except that when v
refers to the no-obj sink, i.e. v = n, we set tv =

∑
u su,

thus allowing all sources to be matched to it.
This problem has at least one feasible solution (yuv ≡ 0)

when all su and tv values are non-negative. Furthermore,
it can be shown that all basic solutions (i.e. vertices of the
domain) for this problem are integer-valued when su and tv
are all integers. Hence, in our specific setting, the optimum
for this LP must be an integer-valued solution.

We would like the scoring function huv to utilize differ-
ent sources of information, e.g., object appearance, motion,
prior knowledge. We thus define the score of an edge to be
a linear combination of scores coming from different cues:

huv =

K∑
k=1

wkf
(k)
uv = wT fuv. (2)

Here, K is the number of all scoring channels (e.g. appear-
ance, motion, spatial relations), and f (k)uv is the k-th match-

ing score between u and v. Note that we learn the weights
w = (w1, · · · , wK) using structure prediction from train-
ing data (see Section 4.5). We now describe the different
scores in more detail.

4.4. Visual Scores

Appearance: Our object appearance scores are based on
the deformable part-based model (DPM) [7]. Specifically,
for each object track we take a bounding box in every other
frame and run a DPM for each object class of interest in
order to predict how likely the patch belongs to particular
class (e.g. cars, pedestrians). Here, we allow the root fil-
ter to be adjusted in position and scale, under the constraint
that the placement overlaps with the original bounding box
at least 60% IOU. For each class we take the score corre-
sponding to the highest scoring placement of the root and
parts. We transform the scores into positive numbers via a
logistic function with unit scale. The final score for the full
track w.r.t. each object class is obtained by averaging the
class scores over all selected frames.
Motion: Consider a description “a car turns left”, where
the “car” is associated with an action “turn”, which is mod-
ified by an adverb “left”. To match this car to a trajectory,
it is useful to test whether the trajectory contains a left turn.
Further, to cope with descriptions like “a car is parking” or
“a speeding car”, we also need to reason about the absolute
speed of the objects in the world. To this end, we exploit
2D and 3D motion information. As 2D features we use: (1)
Scale factor: defined between bounding boxes in consecu-
tive frames as area(boxi)/area(boxi−1). (2) Difference in
foot position:

(
foot(boxi)−foot(boxi−1)

)
/height(boxi),

where foot denotes the middle point of the lower side of the
box, representing the contact point between the object and
the ground. We also use absolute position of the foot nor-
malized by the image size as a feature. (3) Box dimensions:
width and height of the box normalized by image size.

Note that all the features defined between consecutive
frames are in fact computed between the current and a few
past frames (we used 4 frames), averaged to smooth out the
noise in the tracking and depth estimation algorithms. We
also use a simple duration feature, where the duration of the
track is divided by the total length of the video segment.
This helps us score lower shorter and non-salient tracks.

To extract 3D motion features, we project each 2D
bounding box to 3D using depth information. In particular,
we take a smaller centroid region within the box and find
a median of the (non-zero) depth values, computed using
StereoSLIC [26]. We also compute visual odometry [10]
to transform the 3D frame’s local coordinates into a global
coordinate system across the full video. We define the fol-
lowing 3D motion features in bird’s eye perspective. (1) Ve-
locity: We use the displacement vector in 3D between con-
secutive frames, its magnitude and angle. Note that this dis-
placement compensates for the ego-motion and thus mod-



els object’s absolute movement. (2) Curvature: We use the
curvature of the trajectory, computed by fitting a third-order
polynomial to the curve. (3) Shape-context [4]: We form a
shape context descriptor over the full trajectory to capture
particular shapes of the object’s movement.

Relative motion: Positions of objects are often described
relative to the observer, e.g. “in front of me”, “on my left”,
“is overtaking me”. Note that by “me” the annotators were
typically referring to the ego-car. To exploit such phrases,
we use the following features to characterize the motion and
position of an object relative to the ego-motion. (1) Velocity:
We use the difference between the object’s and ego veloc-
ities, forming a 3-dim vector, as well as the relative angle
between both moving directions. (2) Depth: We use the
difference in depth between the object and the ego-car. (3)
Position: We use the difference in X values corresponding
to the horizontal location of the object and ego-car in 3D,
helping us distinguish, e.g. “to-right-of-me”.

Note that each of the features (appearance, motion and
relative motion) is defined per frame. To turn them into
a descriptor for the entire track (irrespective of its length)
we split the trajectory in K non-overlapping segments (we
used K = 3), average each feature in each segment, and
pool them together to form a K-dimensional feature. All
features are then concatenated to form the final descriptor.

4.5. Learning

We learn the weights w for score combination using a
structural SVM [24, 23]. In what follows, we first present
the learning problem, and then derive a simplified learning
algorithm by exploiting the conciseness of our model.

4.5.1 The Learning Problem

We formalize the learning problem as follows:

min
ξ,w

1

2
‖w‖2 + C

∑
i

ξi (3)

s.t. ξi ≥ wT (φi(y)− φi(y
(i))) + ∆(y,y(i)), ∀y ∈ Y(i).

ξi ≥ 0, ∀i = 1, . . . , N.

Here, y(i) is the ground-truth matching for the i-th instance,
φi(y) a vector of matching scores of y, ∆(y,y(i)) the loss
function, and N the total number of training examples. In
particular, φi(y) can be expressed as

φi(y) = [φ
(1)
i (y), . . . , φ

(K)
i (y)], with φ(k)i =

∑
uv

f (ik)uv yuv.

Note that the domain Y(i) encodes the constraints that y has
to satisfy, and is different for each example, with

Y(i) =

{
y :

∑
v

yuv = s(i)u ,
∑
u

yuv ≤ t(i)v , 0 ≤ yuv ≤ c(i)uv

}
.

Here, cuv equals su when v = n (the no-obj sink), or 1
otherwise. These constraints are the same as those in Eq.(1).

We use the Hamming loss as the loss function, which is
decomposable as

∆(y,y(i)) =
∑
uv

1(yuv 6= y(i)uv ) = a(i) −
∑
uv

yuvy
(i)
uv ,

where a(i) ,
∑
u c

(i)
u is the total number of matching

edges, which is a constant.

4.5.2 Simplified Learning by Leveraging Conciseness

We take advantage of the decomposable property of the con-
straints to derived a simplified learning algorithm. The first
set of constraints in Eq.(3) can be rewritten as:

wTφi(y
(i)) ≥ max

y∈Y(i)

(
wTφi(y) + ∆(y,y(i))

)
− ξi,

This model is called concise [23] if there exists a function
f̃i that is concave in µ and a convex set U (i) such that

max
y∈Y(i)

(
wTφi(y) + ∆(y,y(i))

)
= max

µ∈U(i)
f̃i(w,µ) (4)

Proposition 1 Our model is concise with

f̃i(w,µ) = a(i) +
∑
uv

(
wT f (i)uv − y(i)uv

)
µuv. (5)

and the constraint µ ∈ U (i) can be written as∑
v

µuv = s(i)u ∀u,
∑
u

µuv ≤ t(i)v ∀v,

0 ≤ µuv ≤ c(i)uv ∀u, v.

Note that proofs of propositions are provided in the sup-
plementary material. With Eq.(5), the Lagrangian dual of
maxν∈U(i) f̃i(w,µ) is given by

ρi = a(i) +
∑
u

λus
(i)
u +

∑
v

ηvt
(i)
v +

∑
uv

νuvc
(i)
uv , s (6)

with constraints

wT f (i)uv ≤ y(i)uv + λu + ηv + νuv, ηv ≥ 0, νuv ≥ 0 ∀u, v.

Combining the optimization over w and that over λ, η,
and ν, we finally get the following learning problem:

min
w,ξ,λ,η,ν

1

2
‖w‖2 + C

∑
i

ξi (7)

s.t. wT z(i) ≥ ρi(λ,η,ν)− ξi, ∀i = 1, . . . , N,

wT f (i)uv ≤ y(i)uv + λu + ηv + νuv, ∀u, v, i
ηv ≥ 0, νuv ≥ 0 ∀u, v, i.



K rand noun verb adv n.+v. v.+a. all
GT 1 .0397 .0613 .0873 .0967 .1061 .1274 .1486

2 .0794 .1250 .1533 .1651 .1910 .2288 .2335
3 .1191 .1840 .2052 .2217 .2712 .3160 .3467
5 .1985 .3042 .3443 .3514 .4057 .4481 .4693

real 1 .0425 .0755 .0566 .0889 .0836 .1078 .0943
2 .0849 .1375 .1132 .1321 .1429 .1698 .1779
3 .1274 .1914 .1752 .1698 .2022 .2264 .2399
5 .2123 .2722 .2857 .2722 .3181 .3342 .3208

Table 3. Average hit rates of video segment retrieval.

K rand noun verb adv n.+v. v.+a. all
GT 1 .1673 .2571 .3029 .2800 .3286 .3429 .3629

2 .1673 .2686 .2771 .2600 .3400 .3386 .3557
3 .1673 .2790 .2714 .2610 .3410 .3267 .3533
5 .1673 .2749 .2640 .2589 .3280 .3109 .3383

real 1 .1673 .2680 .2484 .2876 .2810 .2941 .2941
2 .1673 .2647 .2304 .2484 .2843 .2680 .2908
3 .1673 .2702 .2462 .2495 .2898 .2800 .3017
5 .1673 .2686 .2444 .2477 .2784 .2758 .2869

Table 4. Average relevance of video segment retrieval.

Here, z(i) = [z
(i)
1 , . . . , z

(i)
K ] with z(i)k =

∑
uv s

(ik)
uv y

(i)
uv , and

ρi(λ,η,ν) is given by Eq.(6).
We optimize this function using the Gurobi solver. Note

that this optimization is much more efficient than the stan-
dard cutting plane algorithm of [24], as we only have to
solve this QP once to get w, without iteratively adding new
constraints and solving the problem again.
Run-time Complexity: The learning involves solving a
QP problem with K +

∑N
i=1(mi + 1)(ni + 1) and N +∑N

i=1mini constraints, where mi and ni are the number
of noun entities and the number of object tracks for the i-th
video segment, respectively, K is the dimension of weight
vector, and N the number of video segments. In a typical
video segment, mi and ni are relatively small (less than 10
for most videos). Hence, for large datasets, the problem size
scales linearly as N increases. It takes less than 1 second to
learn w on our training set (using Gurobi). The inference is
an LP problem with mini variables and (mi + 1)(ni + 1)
constraints, and can be solved in the matter of milliseconds
on a standard laptop. Hence, the proposed algorithm is well
suited for real-time applications.

5. Experimental Evaluation
We tested the proposed approach on the dataset intro-

duced in Sec. 3. In particular, we performed experiments in
two applications: (1) find the objects described in a query,
and (2) retrieve the video segment relevant to a query. These
applications demonstrate our method’s ability in both se-
mantic analysis and video retrieval.

5.1. Finding Objects of Interest

In the first application, we are interested in locating the
objects, described by a query, in a video. Specifically, we
partitioned the 21 videos into disjoint training and test sub-
sets. The training set comprises of 13 videos with 296
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Figure 4. The bar charts that compare the F1-scores obtained using
different methods under various configurations.

queries, in which 698 objects are described; while the test
set comprises of 8 videos with 147 queries, describing 370
objects. We measured performance with recall, precision,
and F1-scores. We used the proposed method to infer the
object-id of each tracklet found in the video, and compared
it with the ground-truth trajectory associated with the query
object. A track is regarded as a correct match if its bound-
ing boxes overlap with ground-truth by more than 50% IOU
for at least half of its time span. Then, recall1 is the fraction
of mentioned objects that are correctly matched, precision
the proportion of correct matches in all detected tracks, and
F1-score the harmonic average of precision and recall.

As baseline we implemented an algorithm which instead
of solving the LP problem, uses feature-based classification
scores to associate each detected object track to the highest
scoring noun-entity if the score is above a certain thresh-
old. This threshold is determined empirically via cross-
validation, and is chosen as the one achieving highest over-
all F1-score. We call this method BASE and we refer to our
proposed method as GBPM (Generalized Bipartite Match-
ing). Fig. 3 shows the several results obtained using GBPM.

We tested each method on two scenarios: when employ-
ing ground-truth trajectories, which we refer to as GT, and
those computed using DPM and visual trackers, which we
refer to as Real. Comparison of performance between these
two settings shows how detection and tracking errors influ-
ence the matching performance. Moreover, to identify the
contributions of different components, we compared differ-
ent combinations of features for both methods. Specifically,
we tested six different configurations: only-noun, only-verb,
only-adv, noun+verb, verb+adv, and noun+verb+adv.

1Node: this recall is computed w.r.t. the only those objects actually
mentioned in the queries. This recall value is different from the one that we
used to evaluate trackers in Sec 4.1, which is computed w.r.t. all trajectories
in the KITTI dataset.



BASE REAL
noun verb adv n.+v. v.+a. all noun verb adv n.+v. v.+a. all

recall .8777 .5897 .2170 .6884 .2485 .6726 .4379 .5700 .5562 .6391 .6430 .6765
GT prec. .2483 .5182 .7006 .3721 .6632 .4906 .4302 .6021 .5434 .6243 .6257 .6583

F1 .3871 .5517 .3313 .4830 .3615 .5674 .4340 .5856 .5497 .6316 .6342 .6673
recall .5301 .5137 .5246 .5246 .5191 .5301 .3251 .4563 .3497 .5328 .4754 .5710

real prec. .1102 .1068 .1091 .1091 .1080 .1102 .2333 .6007 .2485 .5357 .5743 .5633
F1 .1825 .1769 .1806 .1806 .1787 .1825 .2717 .5186 .2906 .5342 .5202 .5672

Table 2. This table lists the performance in terms of recall, precision, and F1-scores, obtained using both BASE and GBPM methods.

A bicyclist is biking on the road, to the right of my car. 
A white van is driving at safe distance in front of me.

There are multiple cars parked on the left side of the street and 
one blue car parked on the right side of the street.

There is a car in front of us. 
A couple of cars are in the opposite street.

Some people are sitting and some pedestrians are on right sidewalk. 
Some pedestrians on left sidewalk, and a van is parked. 

And I see a cyclist.
Figure 3. Results on several scenes obtained using GBPM. Here, each video segment is shown together with the descriptions, where words
are highlighted, with different colors to indicate their different roles (e.g. nouns, verbs, etc). Trajectories that match to the nouns in the
descriptions are shown using a sequence of boxes in gradually varying colors.

Table 2 shows several important observations: (1)
GBPM, which seeks the optimal matching under the capac-
ity constraints, consistently outperforms BASE. This can be
seen more clearly in Fig. 4, which shows the F1-scores of
GBPM and BASE in juxtaposition. (2) The performance of
BASE degrades severely when tested on the real trajecto-
ries, where the F1-scores are below 0.2. This suggests that
the BASE method is very sensitive to feature noise, and re-
lies on high quality features. In contrast, the performance
of GBPM degrades much more gracefully in the presence
of noisy features. Such resilience to noise is partly ascribed
to the capacity constrains that we enforce in the LP prob-
lem. (3) For both methods, the configurations that combine
multiple features generally work better than those that only
use one feature type. For example, on real trajectories, the
configuration noun + verb achieves an F1-score of 0.534,
higher than those obtained with nouns or verbs alone (which
are 0.272 and 0.519). Additional incorporation of adverbs
further pushes the F1-score to 0.567. These results clearly
indicate that the different features are complementary.

5.2. Retrieving Relevant Video Segments

Next, we consider the application of retrieving the rel-
evant video segment given a text query. This is an even
more challenging problem, as we do not have knowledge

about the correspondence between descriptions and video
segments. Our approach to this problem is to evaluate the
total matching score between the given description and each
video segment as the measurement of the relevance, i.e.,∑
uv huv ŷuv, where ŷuv is the optimal solution to Eq.(1).

Then, we sort the video segments in descending order of
the total matching scores. A good ranking algorithm should
place the most relevant segments to the top of the list.

We measured the performance using two different met-
rics. The first metric is the average hit rate, which is de-
fined to be the relative frequency that the ground-truth seg-
ment is placed at one of the top-K positions of the sorted
list. Table 3 shows the results obtained on both GT trajec-
tories and real ones, under all six configurations. We also
compare them with random guesses. It is evident that our
method yields substantially higher performance. Particu-
larly, it raises the hit-rate by three times when working with
GT trajectories, and two times with real trajectories, across
different settings of K. Also, combining multiple types of
features works better than using individual features alone.

We note that in KITTI videos, a query can be a good
match to multiple segments. For example, a sentence “a car
is moving forward” can match pretty well to many segments
in a typical traffic video. Taking this into account, we con-
sider another metric for performance assessment, namely



the average relevance, which is defined as the average pro-
portion of the top-K segments that are truly relevant. To
provide objective evaluation of the relevance of the results,
we presented pairs of queries and video segments to inde-
pendent annotators, and asked them to judge whether they
are relevant or not. Table 4 shows the average relevance ob-
tained on both GT and real trajectories with different con-
figurations. Again, we observe that the proposed method
considerably increases the relevance of the retrieved video,
which clearly indicates that the total matching scores, which
we used as the criteria in retrieval, are positively correlated
with semantic relevance. The results in this table also cor-
roborate our previous observation that combining comple-
mentary features improves the retrieval accuracy.

6. Conclusions
We have tackled the problem of semantic retrieval of

videos using complex natural language queries, and demon-
strated that our approach is able to locate objects in the
video with high accuracy by parsing the lingual descrip-
tions into a semantic graph that is then matched to the vi-
sual concepts by solving a linear program. In the future, we
plan to further improve the performance by incorporating
additional features and relations for both text and videos.
We also consider connecting descriptions for different video
segments to provide a coherent interpretation of an entire
video and support context-aware retrieval.
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