binary expressions:
theorems:
antitheorems:
binary expressions: represent anything that comes in two kinds
theorems: represent one kind
antitheorems: represent the other kind
binary expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary)
theorems: represent one kind represent true statements
antitheorems: represent the other kind represent false statements
binary expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary) represent digital circuits
theorems: represent one kind represent true statements represent circuits with high voltage output
antitheorems: represent the other kind represent false statements represent circuits with low voltage output
binary expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary) represent digital circuits represent human behavior
theorems: represent one kind represent true statements represent circuits with high voltage output represent innocent behavior
antitheorems: represent the other kind represent false statements represent circuits with low voltage output represent guilty behavior

0 operands $\quad \top \quad \perp$

0 operands $\quad \top \quad \perp$
1 operand $\neg x$

0 operands $\quad \top \quad \perp$
1 operand $\neg x$
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
\uparrow

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
\uparrow

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
\uparrow

0 operands $\quad \top \quad \perp$
1 operand
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$

0 operands $\quad \top \quad \perp$
1 operand $\quad \neg x$
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands if x then y else z fi

0 operands	$\supset \quad \perp$
1 operand	$\neg x$
2 operands	$x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands	if x then y else z fi

precedence and parentheses

0 operands $\quad \top \quad \perp$
1 operand $\quad \neg x$
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands if x then y else z fi
precedence and parentheses
associative operators: $\wedge \vee=\neq$

```
x\wedgey^z means either (x\wedge y)\wedgez or }x\wedge(y\wedgez
x\veey\veez means either ( }x\veey\mathrm{ ) }\veez\mathrm{ or }x\vee(y\veez
```

0 operands $\quad \top \quad \perp$
1 operand $\neg x$
2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands if x then y else z fi
precedence and parentheses
associative operators: $\wedge \vee=\neq$

```
x\wedgey^z means either (x\wedge y)\wedgez or }x\wedge(y\wedgez
x\veey\veez means either (x\vee y)\veez or }x\vee(y\veez
```

continuing operators: $\Rightarrow \Leftarrow=\neq$

$$
\begin{aligned}
& x=y=z \text { means } x=y \wedge y=z \\
& x \Rightarrow y \Rightarrow z \text { means }(x \Rightarrow y) \wedge(y \Rightarrow z)
\end{aligned}
$$

0 operands $\quad \top \quad \perp$
1 operand $\neg x$

2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands if x then y else z fi
precedence and parentheses
associative operators: $\wedge \vee=\neq$

```
x\wedgey^z means either (x\wedge y)\wedgez or }x\wedge(y\wedgez
x\veey\veez means either (x\vee y)\veez or }x\vee(y\veez
```

continuing operators: $\Rightarrow \Leftarrow=\neq$

$$
\begin{aligned}
& x=y=z \text { means } x=y \wedge y=z \\
& x \Rightarrow y \Rightarrow z \text { means }(x \Rightarrow y) \wedge(y \Rightarrow z)
\end{aligned}
$$

big operators: $=\Longrightarrow \Longleftarrow$

$$
\text { same as }=\Rightarrow \Leftarrow \text { but later precedence }
$$

$$
x=y \Longrightarrow z \text { means }(x=y) \wedge(y \Longrightarrow z)
$$

truth tables

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
\\
\\
\hline
\end{array} \begin{array}{cc}
& \perp \\
\hline
\end{array} \\
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
\\
\\
\hline
\end{array} \begin{array}{cc}
& \perp \\
\hline
\end{array} \\
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{r}
\quad \\
\neg \quad \perp \\
\hline \\
\hline
\end{array} \\
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{r}
\quad \\
\neg \quad \perp \\
\hline \\
\hline
\end{array} \\
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{l}
\\
\\
\\
\\
\\
\\
\hline
\end{array} \\
&
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
\\
\\
\hline
\end{array} \begin{array}{cc}
& \perp \\
\hline
\end{array}
\end{aligned}
$$

truth tables

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
\\
\\
\hline
\end{array} \begin{array}{cc}
& \perp \\
\hline
\end{array} \\
&
\end{aligned}
$$

variables are for substitution (instantiation)
variables are for substitution (instantiation)

- add parentheses to maintain precedence
in $x \wedge y$ replace x by \perp and y by $\perp \vee \top \quad$ result: $\perp \wedge(\perp \vee \top)$
variables are for substitution (instantiation)
- add parentheses to maintain precedence

```
in x}\wedgey\mathrm{ replace }x\mathrm{ by }\perp\mathrm{ and }y\mathrm{ by }\perp\vee\top\quad\mathrm{ result: }\perp\wedge(\perp\vee\top
```

- every occurrence of a variable must be replaced by the same expression

```
in x}\wedgex\mathrm{ replace }x\mathrm{ by }
result: }\perp\wedge
```

variables are for substitution (instantiation)

- add parentheses to maintain precedence

```
in }x\wedgey\mathrm{ replace }x\mathrm{ by }\perp\mathrm{ and }y\mathrm{ by }\perp\veeT result: \perp^( \perp\veeT)
```

- every occurrence of a variable must be replaced by the same expression

```
in x}\wedgex\mathrm{ replace }x\mathrm{ by }\perp\quad\mathrm{ result: }\perp\wedge
```

- different variables can be replaced by the same expression or different expressions in $x \wedge y$ replace x by \perp and y by $\perp \quad$ result: $\perp \wedge \perp$
variables are for substitution (instantiation)
- add parentheses to maintain precedence

```
in }x\wedgey\mathrm{ replace }x\mathrm{ by }\perp\mathrm{ and }y\mathrm{ by }\perp\veeT result: \perp^( \perp\veeT)
```

- every occurrence of a variable must be replaced by the same expression

```
in x}\wedgex\mathrm{ replace }x\mathrm{ by }\perp\quad\mathrm{ result: }\perp\wedge
```

- different variables can be replaced by the same expression or different expressions

```
in x}^y\mathrm{ replace x by }\perp\mathrm{ and }y\mathrm{ by }\perp\quad\mathrm{ result: }\perp\wedge
in x}\wedgey\mathrm{ replace }x\mathrm{ by }\top\mathrm{ and }y\mathrm{ by }\perp\quad\mathrm{ result: }\top\wedge
```


new binary expressions

(the grass is green)
(the sky is green)
(there is life elsewhere in the universe)
(intelligent messages are coming from space)

new binary expressions

(the grass is green)
(the sky is green)
(there is life elsewhere in the universe)
(intelligent messages are coming from space)
$1+1=2$
$0 / 0=5$

new binary expressions

(the grass is green)
(the sky is green)
(there is life elsewhere in the universe)
(intelligent messages are coming from space)
$1+1=2$
$0 / 0=5$
consistent: no binary expression is both a theorem and an antitheorem (no overclassified expressions)

new binary expressions

(the grass is green)
(the sky is green)
(there is life elsewhere in the universe)
(intelligent messages are coming from space)
$1+1=2$
$0 / 0=5$
consistent: no binary expression is both a theorem and an antitheorem (no overclassified expressions)
complete: every fully instantiated binary expression is either a theorem or an antitheorem (no unclassified expressions)

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression
represents a truth in an application such that
when you put quantities together, the total quantity does not depend on the order in which you put them together

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression
represents a truth in an application such that
when you put quantities together, the total quantity does not depend on the order in which you put them together
is an axiom

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression
represents a truth in an application such that
when you put quantities together, the total quantity does not depend on the order in which you put them together
is an axiom
is a theorem

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression
represents a truth in an application such that
when you put quantities together, the total quantity does not depend on the order in which you put them together
is an axiom
is a theorem
is equivalent to T

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
$x+y=y+x \quad$ is a mathematical expression
represents a truth in an application such that
when you put quantities together, the total quantity does not depend on the order in which you put them together
is an axiom
is a theorem
is equivalent to T
$x+y=y+x \quad$ is true (not really)

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
axiom: $\quad \top$
antiaxiom: \perp

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
axiom: $\quad \top$
antiaxiom: \perp
axiom: (the grass is green)
antiaxiom: (the sky is green)

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
axiom: $\quad \top$
antiaxiom: \perp
axiom: (the grass is green)
antiaxiom: (the sky is green)
axiom: (intelligent messages are coming from space)
$\Rightarrow \quad$ (there is life elsewhere in the universe)

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.
If a binary expression is an antiaxiom, then it is an antitheorem.
axiom: $\quad \top$
antiaxiom: \perp
axiom: (the grass is green)
antiaxiom: (the sky is green)
axiom: (intelligent messages are coming from space)
$\Rightarrow \quad$ (there is life elsewhere in the universe)

Evaluation Rule If all the binary subexpressions of a binary expression are classified, then it is classified according to the truth tables.

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.
theorem: (there is life elsewhere in the universe) $\vee \mathrm{T}$

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.
theorem: (there is life elsewhere in the universe) $\vee \mathrm{T}$
theorem: (there is life elsewhere in the universe)
$\vee \neg$ (there is life elsewhere in the universe)

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.
theorem: (there is life elsewhere in the universe) $\vee \mathrm{T}$
theorem: (there is life elsewhere in the universe)
$\vee \neg$ (there is life elsewhere in the universe)
antitheorem: (there is life elsewhere in the universe)
$\wedge \neg$ (there is life elsewhere in the universe)

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?
If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.
That would be inconsistent. So y is a theorem.

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?
If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.
That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x ?

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?
If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.
That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x ?
If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.
That would be inconsistent. So x is an antitheorem.

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?
If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.
That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x ?
If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.
That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

Proof Rules

Instance Rule If a binary expression is classified, then all its instances have that same classification.

Proof Rules

Instance Rule If a binary expression is classified, then all its instances have that same classification.
axiom: $\quad x=x$

Proof Rules

Instance Rule If a binary expression is classified, then all its instances have that same classification.
axiom: $\quad x=x$
theorem: $\quad x=x$

Proof Rules

Instance Rule If a binary expression is classified, then all its instances have that same classification.
axiom: $\quad x=x$
theorem: $\quad x=x$
theorem: $\quad \mathrm{T}=\perp \vee \perp=\top=\perp \vee \perp$

Proof Rules

Instance Rule If a binary expression is classified, then all its instances have that same classification.
axiom: $\quad x=x$
theorem: $\quad x=x$
theorem: $\quad \top=\perp \vee \perp=\top=\perp \vee \perp$
theorem: (intelligent messages are coming from space)
$=$ (intelligent messages are coming from space)

Proof Rules

```
Instance Rule If a binary expression is classified, then all its instances have that same classification.
axiom: \(\quad x=x\)
theorem: \(\quad x=x\)
theorem: \(\quad \mathrm{T}=\perp \vee \perp=\top=\perp \vee \perp\)
theorem: (intelligent messages are coming from space)
    \(=\) (intelligent messages are coming from space)
Classical Logic: all five rules
Constructive Logic: not Completion Rule
Evaluation Logic: neither Consistency Rule nor Completion Rule
```


Expression and Proof Format

$a \wedge b \vee c$

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)

C and Java convention

```
while (something) {
    various lines
    in the body
    of the loop
}
```


Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)
first part
$=$ second part

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)
first part
$=$ second part
$=$ expression 1
$=$ expression 2
$=$ expression 3

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)
first part
$=$ second part

	expression0
$=$	expression $1 \quad$ means
$=$	expression 2
$=$	expression 3

expression0=expression1
\wedge expression $1=$ expression 2
\wedge expression $2=$ expression 3

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)
first part
$=$ second part
expression0
$=$ expression 1
$=$ expression 2
$=$ expression 3

Expression and Proof Format

```
a^b\veec NOT a ^ b\veec
( first part
^ second part )
        first part
        = second part
\begin{tabular}{ll} 
& expression0 \\
\(=\) & expression \\
\(=\) & expression 2 \\
\(=\) & expression 3
\end{tabular}
```


Expression and Proof Format

Prove $a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c)$

Expression and Proof Format

Prove $a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c)$

$$
\begin{array}{ll}
& a \wedge b \Rightarrow c \\
= & \neg(a \wedge b) \vee c \\
= & \neg a \vee \neg b \vee c \\
= & a \Rightarrow \neg b \vee c \\
= & a \Rightarrow(b \Rightarrow c)
\end{array}
$$

Material Implication
Duality
Material Implication
Material Implication

Expression and Proof Format

Prove $a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c)$		
	$a \wedge b \Rightarrow c$	Material Implication
$=$	$\neg(a \wedge b) \vee c$	Duality
	$\neg a \vee \neg b \vee c$	Material Implication
	$a \Rightarrow \neg b \vee c$	Material Implication
	$a \Rightarrow(b \Rightarrow c)$	

Material Implication:

$$
a \Rightarrow b=\neg a \vee b
$$

Expression and Proof Format

Material Implication:

Instance of Material Implication:

Expression and Proof Format

Prove $a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c)$

$$
\begin{array}{ll}
& a \wedge b \Rightarrow c \\
= & \neg(a \wedge b) \vee c \\
= & \neg a \vee \neg b \vee c \\
= & a \Rightarrow \neg b \vee c \\
= & a \Rightarrow(b \Rightarrow c)
\end{array}
$$

Material Implication
Duality
Material Implication
Material Implication

Expression and Proof Format

	$a \wedge b \Rightarrow c$	Material Implication
=	$\neg(a \wedge b) \vee c$	Duality
=	$\neg a \vee \neg b \vee c$	Material Implication
=	$a \Rightarrow \neg b \vee c$	Material Implication
	$a \Rightarrow(b \Rightarrow c)$	
	$(a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c))$	Material Implication 3 times
$=$	$(\neg(a \wedge b) \vee c=\neg a \vee(\neg b \vee c))$	Duality
$=$	$(\neg a \vee \neg b \vee c=\neg a \vee \neg b \vee c)$	Reflexivity of $=$
	T	

