inary expressions:	
heorems:	
ntitheorems:	

binary expressions: represent anything that comes in two kinds

theorems: represent one kind

antitheorems: represent the other kind

binary expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary)

theorems: represent one kind represent true statements

antitheorems: represent the other kind represent false statements

binary expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary)
represent digital circuits

theorems: represent one kind
represent true statements
represent circuits with high voltage output

antitheorems: represent the other kind
represent false statements
represent circuits with low voltage output

binary expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

represent digital circuits

represent human behavior

theorems: represent one kind

represent true statements

represent circuits with high voltage output

represent innocent behavior

antitheorems: represent the other kind

represent false statements

represent circuits with low voltage output

represent guilty behavior

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x = y \quad x \neq y$

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x = y \quad x \neq y$

1 operand $\neg x$

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x \leftrightharpoons y$

3 operands if x then y else z fi

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x = y \quad x \neq y$

3 operands if x then y else z fi

precedence and parentheses

 $0 \text{ operands} \qquad \top \quad \bot$

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x = y \quad x \neq y$

3 operands if x then y else z fi

precedence and parentheses

associative operators: $\wedge \vee = \pm$

 $x \wedge y \wedge z$ means either $(x \wedge y) \wedge z$ or $x \wedge (y \wedge z)$

 $x \vee y \vee z$ means either $(x \vee y) \vee z$ or $x \vee (y \vee z)$

1 operand $\neg x$

2 operands $x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x \leftrightharpoons y$

3 operands if x then y else z fi

precedence and parentheses

associative operators: $\wedge \vee = \pm$

 $x \wedge y \wedge z$ means either $(x \wedge y) \wedge z$ or $x \wedge (y \wedge z)$

 $x \vee y \vee z$ means either $(x \vee y) \vee z$ or $x \vee (y \vee z)$

continuing operators: $\Rightarrow \Leftarrow = \pm$

$$x = y = z$$
 means $x = y \land y = z$

$$x \Rightarrow y \Rightarrow z \text{ means } (x \Rightarrow y) \land (y \Rightarrow z)$$

0 operands
$$\top$$
 \bot

1 operand
$$\neg x$$

2 operands
$$x \land y \quad x \lor y \quad x \Longrightarrow y \quad x \leftrightharpoons y \quad x = y \quad x \neq y$$

3 operands if
$$x$$
 then y else z fi

precedence and parentheses

associative operators: $\wedge \vee = \pm$

$$x \wedge y \wedge z$$
 means either $(x \wedge y) \wedge z$ or $x \wedge (y \wedge z)$

$$x \vee y \vee z$$
 means either $(x \vee y) \vee z$ or $x \vee (y \vee z)$

continuing operators: $\Rightarrow \Leftarrow = \pm$

$$x = y = z$$
 means $x = y \land y = z$

$$x \Rightarrow y \Rightarrow z \text{ means } (x \Rightarrow y) \land (y \Rightarrow z)$$

big operators: $= \Rightarrow \Leftarrow$

same as $= \Rightarrow \leftarrow$ but later precedence

$$x = y \Longrightarrow z \text{ means } (x = y) \land (y \Longrightarrow z)$$

• add parentheses to maintain precedence

in
$$x \wedge y$$
 replace x by \bot and y by $\bot v \top$ result: $\bot \wedge (\bot v \top)$

• add parentheses to maintain precedence

in
$$x \wedge y$$
 replace x by \bot and y by $\bot v \top$ result: $\bot \wedge (\bot v \top)$

• every occurrence of a variable must be replaced by the same expression

in
$$x \wedge x$$
 replace x by \bot result: $\bot \wedge \bot$

• add parentheses to maintain precedence

in
$$x \wedge y$$
 replace x by \bot and y by $\bot v \top$ result: $\bot \wedge (\bot v \top)$

• every occurrence of a variable must be replaced by the same expression

in
$$x \wedge x$$
 replace x by \bot result: $\bot \wedge \bot$

• different variables can be replaced by the same expression or different expressions

```
in x \wedge y replace x by \bot and y by \bot result: \bot \wedge \bot
```

• add parentheses to maintain precedence

```
in x \wedge y replace x by \bot and y by \bot v \top result: \bot \wedge (\bot v \top)
```

• every occurrence of a variable must be replaced by the same expression

```
in x \wedge x replace x by \bot result: \bot \wedge \bot
```

• different variables can be replaced by the same expression or different expressions

```
in x \wedge y replace x by \bot and y by \bot result: \bot \wedge \bot in x \wedge y replace x by \top and y by \bot result: \top \wedge \bot
```

new binary expressions

```
(the grass is green)(the sky is green)(there is life elsewhere in the universe)(intelligent messages are coming from space)
```

new binary expressions

```
(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5
```

new binary expressions

(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

$$1 + 1 = 2$$

$$0 / 0 = 5$$

consistent: no binary expression is both a theorem and an antitheorem

(no overclassified expressions)

new binary expressions

(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

$$1 + 1 = 2$$

$$0 / 0 = 5$$

consistent: no binary expression is both a theorem and an antitheorem

(no overclassified expressions)

complete: every fully instantiated binary expression is either a theorem or an antitheorem

(no unclassified expressions)

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

is equivalent to \top

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

is equivalent to $\ \top$

x+y=y+x is true (not really)

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: T

antiaxiom: ⊥

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: T

antiaxiom: ⊥

axiom: (the grass is green)

antiaxiom: (the sky is green)

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

Axiom Rule If a binary expression is an axiom, then it is a theorem.

If a binary expression is an antiaxiom, then it is an antitheorem.

Evaluation Rule If all the binary subexpressions of a binary expression are classified, then it is classified according to the value tables.

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) $\vee \top$

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) $\vee \top$

theorem: (there is life elsewhere in the universe)

v ¬(there is life elsewhere in the universe)

Completion Rule If a binary expression contains unclassified binary subexpressions, and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) $\vee \top$

theorem: (there is life elsewhere in the universe)

v ¬(there is life elsewhere in the universe)

antitheorem: (there is life elsewhere in the universe)

 \land ¬(there is life elsewhere in the universe)

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \rightarrow y$ are theorems. What is y?

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y?

If y were an antitheorem, then by the Evaluation Rule, $x \rightarrow y$ would be an antitheorem.

That would be inconsistent. So y is a theorem.

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y?

If y were an antitheorem, then by the Evaluation Rule, $x \rightarrow y$ would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x?

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y?

If y were an antitheorem, then by the Evaluation Rule, $x \rightarrow y$ would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x?

If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

Consistency Rule If a classified binary expression contains binary subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y?

If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x?

If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

$$\neg x \Rightarrow (x \land x) \lor y = \top$$

$$\neg x \Rightarrow (x \land x) \lor y = \top$$

$$\neg x \Rightarrow (x \land x) \lor y = (y \lor \top)$$

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

axiom: x = x

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

axiom: x = x

theorem: x = x

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: $(\top = \bot \lor \bot) = (\top = \bot \lor \bot)$

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: $(\top = \bot \lor \bot) = (\top = \bot \lor \bot)$

theorem: (intelligent messages are coming from space)

= (intelligent messages are coming from space)

Instance Rule If a binary expression is classified,

then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: $(\top = \bot \lor \bot) = (\top = \bot \lor \bot)$

theorem: (intelligent messages are coming from space)

= (intelligent messages are coming from space)

Classical Logic: all six rules

Constructive Logic: not Completion Rule

Evaluation Logic: neither Consistency Rule nor Completion Rule

Expression and Proof Format

 $a \wedge b \vee c$

Expression and Proof Format

 $a \wedge b \vee c$ **NOT** $a \wedge b \vee c$

Expression and Proof Format

```
a \wedge b \vee c NOT a \wedge b \vee c
( first part \\ \wedge second part )
```

```
a \wedge b \vee c NOT a \wedge b \vee c
              first part
              second part )
C and Java convention
          while (something) {
```

various lines

in the body

of the loop

```
a \wedge b \vee c NOT a \wedge b \vee c
( first part \\ \wedge second part )
```

```
AND V c NOT a N bvc

( first part

N second part )

first part

= second part
```

```
NOT a \wedge b \vee c
    a \wedge b \vee c
         first part
         second part )
         first part
         second part
expression0
expression1
expression2
expression3
```

```
NOT a \wedge b \vee c
    a \wedge b \vee c
         first part
         second part )
         first part
         second part
expression0
                                                  expression0=expression1
expression1
                                                 expression1=expression2
                        means
expression2
                                                 expression2=expression3
expression3
```

```
NOT a \wedge b \vee c
    a \wedge b \vee c
         first part
         second part )
         first part
         second part
expression0
expression1
expression2
expression3
```

```
NOT a \wedge b \vee c
    a \wedge b \vee c
         first part
         second part )
         first part
         second part
                                             hint0
expression0
                                             hint1
expression1
                                             hint2
expression2
expression3
```

Prove $a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$

Prove
$$a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$$

$$a \wedge b \Rightarrow c$$

$$= \neg (a \land b) \lor c$$

$$=$$
 $\neg a \lor \neg b \lor c$

$$=$$
 $a \Rightarrow \neg b \lor c$

$$= a \Rightarrow (b \Rightarrow c)$$

Material Implication

Duality

Material Implication

Material Implication

Prove
$$a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$$

$$a \wedge b \Rightarrow c$$

$$= \neg (a \land b) \lor c$$

$$= \neg a \lor \neg b \lor c$$

$$=$$
 $a \Rightarrow \neg b \lor c$

$$= a \Rightarrow (b \Rightarrow c)$$

Material Implication

Duality

Material Implication

Material Implication

Material Implication:

$$a \Rightarrow b = \neg a \lor b$$

Prove
$$a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$$

$$a \wedge b \Rightarrow c$$

$$= \neg (a \land b) \lor c$$

$$= \neg a \lor \neg b \lor c$$

$$=$$
 $a \Rightarrow \neg b \lor c$

$$= a \Rightarrow (b \Rightarrow c)$$

Material Implication

Duality

Material Implication

Material Implication

Material Implication:

$$\underline{a} \Rightarrow \underline{b} = \neg \underline{a} \vee \underline{b}$$

Instance of Material Implication:

$$a \wedge b \Rightarrow c = \neg(a \wedge b) \vee c$$

Prove
$$a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$$

$$a \wedge b \Rightarrow c$$

$$= \neg (a \land b) \lor c$$

$$=$$
 $\neg a \lor \neg b \lor c$

$$=$$
 $a \Rightarrow \neg b \lor c$

$$= a \Rightarrow (b \Rightarrow c)$$

Material Implication

Duality

Material Implication

Material Implication

Prove
$$a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$$

	$a \wedge b \Rightarrow c$	Material Implication
=	$\neg(a \land b) \lor c$	Duality
=	$\neg a \lor \neg b \lor c$	Material Implication
=	$a \Rightarrow \neg b \lor c$	Material Implication
=	$a \Rightarrow (b \Rightarrow c)$	
	$(a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c))$	Material Implication 3 times
=	$(\neg(a \land b) \lor c = \neg a \lor (\neg b \lor c))$	Duality
=	$(\neg a \lor \neg b \lor c = \neg a \lor \neg b \lor c)$	Reflexivity of =
=	Т	