shared variables

shared variables

can be read and written by any process (most interaction)

shared variables

can be read and written by any process (most interaction) difficult to implement

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

easier to implement

easier to reason about

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

easier to implement

easier to reason about

boundary variables

can be read and written by only one process (least interaction)

but initial value can be seen by all processes

shared variables

```
can be read and written by any process (most interaction)
```

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

easier to implement

easier to reason about

boundary variables

can be read and written by only one process (least interaction)

but initial value can be seen by all processes

easiest to implement

easiest to reason about

boundary variable $\mathbf{var} \ a : T \cdot S$

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable **ivar** x: $T \cdot S$

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable ivar x: $T \cdot S = \exists x : time \rightarrow T \cdot S$

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable ivar x: $T \cdot S = \exists x: time \rightarrow T \cdot S$

The value of variable x at time t is x t

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable ivar $x: T \cdot S = \exists x: time \rightarrow T \cdot S$

The value of variable x at time t is x t

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable ivar $x: T \cdot S = \exists x: time \rightarrow T \cdot S$

The value of variable x at time t is x t

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

$$a := a + x$$

is really

$$a := a + x t$$

boundary variable $\operatorname{var} a: T \cdot S = \exists a, a': T \cdot S$

interactive variable ivar x: $T \cdot S = \exists x: time \rightarrow T \cdot S$

The value of variable x at time t is x t

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

$$a := a + x$$

is really

$$a := a + x t$$

Most laws still work but not the Substitution Law

$$ok = a'=a \wedge b'=b \wedge t'=t$$

$$ok = a'=a \land b'=b \land t'=t$$

$$x'=x \land y'=y$$
 means $x t'=x t \land y t'=y t$

$$ok = a'=a \wedge b'=b \wedge t'=t$$

$$ok$$
 = $a'=a \land b'=b \land t'=t$

$$a:=e$$
 = $a'=e \land b'=b \land t'=t$

```
ok = a'=a \land b'=b \land t'=t

a:=e = a'=e \land b'=b \land t'=t

x:=e = a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)

\land t'=t+(\text{the time required to evaluate and store } e)
```

$$ok = a'=a \land b'=b \land t'=t$$
 $a:=e = a'=e \land b'=b \land t'=t$
 $x:=e = a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \leq t'' \leq t' \Rightarrow y''=y)$
 $\land t'=t+(\text{the time required to evaluate and store } e)$

```
ok = a'=a \land b'=b \land t'=t
a:=e = a'=e \land b'=b \land t'=t
x:=e = a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)
\land t'=t+(\text{the time required to evaluate and store } e)
```

```
ok = a'=a \land b'=b \land t'=t
a:= e = a'=e \land b'=b \land t'=t
x:= e = a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)
\land t' = t + (\text{the time required to evaluate and store } e)
P. Q = \exists a'', b'', t'' \cdot (\text{substitute } a'', b'', t'' \text{ for } a', b', t' \text{ in } P)
\land (\text{substitute } a'', b'', t'' \text{ for } a, b, t \text{ in } Q)
```

$$ok = a'=a \land b'=b \land t'=t$$

$$a:=e = a'=e \land b'=b \land t'=t$$

$$x:=e = a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \leq t'' \leq t' \Rightarrow y''=y)$$

$$\land t' = t + (\text{the time required to evaluate and store } e)$$

$$P. Q = \exists a'', b'', t'' \qquad (\text{substitute } a'', b'', t'' \text{ for } a', b', t' \text{ in } P)$$

$$\land (\text{substitute } a'', b'', t'' \text{ for } a, b, t \text{ in } Q)$$

$$P||Q = \exists tP, tQ \qquad (\text{substitute } tP \text{ for } t' \text{ in } P)$$

$$\land (\text{substitute } tQ \text{ for } t' \text{ in } Q)$$

$$\land t' = tP \uparrow tQ$$

$$\land (\forall t'' \cdot tP \leq t'' \leq t' \Rightarrow x t'' = x(tP)) \qquad \text{interactive variables of } P$$

$$\land (\forall t'' \cdot tQ \leq t'' \leq t' \Rightarrow y t'' = y(tQ)) \qquad \text{interactive variables of } Q$$

$$27/54$$

$$(x = 2. \ x = x+y. \ x = x+y) \parallel (y = 3. \ y = x+y)$$

$$(x = 2. \ x = x + y. \ x = x + y) \parallel (y = 3. \ y = x + y)$$
 x left, y right, a left, b right

$$(\underline{x}:=2. \ x:=x+y. \ x:=x+y) \parallel (y:=3. \ y:=x+y)$$
 $x = x+y = x+$

$$(x := 2. \ \underline{x := x + y}. \ x := x + y) \parallel (y := 3. \ y := x + y)$$
 $x = x + y = x +$

$$(x:= 2. \ x:= x+y. \ \underline{x:= x+y}) \parallel (y:= 3. \ y:= x+y)$$
 $x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}$
= $(a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$

```
(x:= 2. \ x:= x+y. \ x:= x+y) \parallel (\underline{y}:= 3. \ y:= x+y)  x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}
= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)
\parallel (b'=b \land y \ t'=3 \land t'=t+1.
```

```
(x:= 2. \ x:= x+y. \ x:= x+y) \parallel (y:= 3. \ \underline{y:= x+y}) x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}
= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)
\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)
```

```
(x:= 2. \ x:= x+y. \ x:= x+y) \parallel (y:= 3. \ y:= x+y) \qquad x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}
= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)
\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)
= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)
\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)
```

```
(x:=2. \ x:=x+y. \ x:=x+y) \parallel (y:=3. \ y:=x+y) \qquad x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}
= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)
\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)
= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)
\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)
= x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)
\land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land y(t+3)=y(t+2)
\land a'=a \land b'=b \land t'=t+3
```

Interactive Variables

example boundary a, b; interactive x, y; extended natural time t

$$(x:= 2. \ x:= x+y. \ x:= x+y) \parallel (y:= 3. \ y:= x+y) \qquad x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}$$

$$= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$$

$$\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)$$

$$= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)$$

$$\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)$$

$$= x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)$$

$$\land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land y(t+3)=y(t+2)$$

$$\land a'=a \land b'=b \land t'=t+3$$

Interactive Variables

example boundary a, b; interactive x, y; extended natural time t

```
(x:=2. \ x:=x+y. \ x:=x+y) \parallel (y:=3. \ y:=x+y)
                                                                 x left, y right, a left, b right
  (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)
(a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)
 || (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)|
   x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)
 \wedge v(t+1)=3 \wedge v(t+2)=x(t+1)+v(t+1) \wedge v(t+3)=v(t+2)
 \wedge a'=a \wedge b'=b \wedge t'=t+3
 x(t+1)=2 \land x(t+2)=5 \land x(t+3)=10 \land y(t+1)=3 \land y(t+2)=y(t+3)=5 \land a'=a \land b'=b \land t'=t+3
```

 $thermometer \parallel control \parallel thermostat \parallel burner$

thermometer || control || thermostat || burner

inputs to the thermostat:

- real *temperature*, which comes from the thermometer and indicates the actual temperature.
- real *desired*, which comes from the control and indicates the desired temperature.
- binary *flame*, which comes from a flame sensor in the burner and indicates whether there is a flame.

thermometer || control || thermostat || burner

inputs to the thermostat:

- real *temperature*, which comes from the thermometer and indicates the actual temperature.
- real *desired*, which comes from the control and indicates the desired temperature.
- binary *flame*, which comes from a flame sensor in the burner and indicates whether there is a flame.

outputs of the thermostat:

- binary gas; assigning it \top turns the gas on and \bot turns the gas off.
- binary spark; assigning it \top causes sparks for the purpose of igniting the gas.

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame \ gas, spark: ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

$$\downarrow$$
 \downarrow

thermostat = $(gas:= \bot || spark:= \bot)$. GasOff

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired − ε
→ then
$$(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$$
. $spark:= \bot$. GasOn else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon$$
 \wedge flame
then ((frame gas, spark ok) $\parallel t' \ge t$) \wedge t' \le t+1. GasOn
else (gas:= $\bot \parallel$ (frame spark ok) $\parallel t' \ge t+20$) \wedge t' \le t+21. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame \ gas, spark: ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
 \longrightarrow then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired − ε
then
$$(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$$
. $spark:= \bot$. $GasOn$
→ else $((frame gas, spark: ok) \parallel t' \ge t) \land t' \le t+1$. $GasOff fi$

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon$$
 \wedge flame
then ((frame gas, spark ok) $\parallel t' \ge t$) \wedge t' \le t+1. GasOn
else (gas:= $\bot \parallel$ (frame spark ok) $\parallel t' \ge t+20$) \wedge t' \le t+21. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame\ gas, spark:\ ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
 \longrightarrow else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. $GasOff$

GasOff = if temperature < desired –
$$\varepsilon$$

then $(gas:= \top \parallel spark:= \top \parallel t' \ge t+1) \land t' \le t+3$. $spark:= \bot$. GasOn
else $((frame \ gas, spark: ok) \parallel t' \ge t) \land t' \le t+1$. GasOff fi

GasOn = if temperature < desired +
$$\varepsilon \wedge f$$
lame
then ((frame gas, spark· ok) $\parallel t' \ge t$) $\wedge t' \le t+1$. GasOn
else (gas:= $\bot \parallel$ (frame spark· ok) $\parallel t' \ge t+20$) $\wedge t' \le t+21$. GasOff fi