shared variables

shared variables

can be read and written by any process (most interaction)

shared variables

can be read and written by any process (most interaction)

difficult to implement

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction) easier to implement

easier to reason about

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

easier to implement

easier to reason about

boundary variables

can be read and written by only one process (least interaction)

but initial value can be seen by all processes

shared variables

can be read and written by any process (most interaction)

difficult to implement

difficult to reason about

interactive variables

can be read by any process, written by only one process (some interaction)

easier to implement

easier to reason about

boundary variables

can be read and written by only one process (least interaction)

but initial value can be seen by all processes

easiest to implement

easiest to reason about

boundary variable **new** $a: T \cdot S$

boundary variable

new $a: T \cdot S = \exists a, a': T \cdot S$

boundary variable

new $a: T \cdot S = \exists a, a': T \cdot S$

interactive variable

new *x*: *time* \rightarrow *T*·*S*

boundary variable

new
$$a: T \cdot S = \exists a, a': T \cdot S$$

interactive variable

new x: time $\rightarrow T$ · S = $\exists x$: time $\rightarrow T$ · S

boundary variable

new
$$a: T \cdot S = \exists a, a': T \cdot S$$

interactive variable

new x: time
$$\rightarrow T$$
· S = $\exists x$: time $\rightarrow T$ · S

The value of variable x at time t is x t

boundary variable interactive variable

$$\mathbf{new} \ a: T \cdot S = \exists a, a': T \cdot S$$

new x: time $\rightarrow T \cdot S = \exists x: time \rightarrow T \cdot S$

The value of variable x at time t is x t

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

boundary variable interactive variable

new
$$a: T \cdot S = \exists a, a': T \cdot S$$

new x: time $\rightarrow T$ · S = $\exists x$: time $\rightarrow T$ · S

The value of variable x at time t is xt

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

a := a + x

is really

a := a + x t

boundary variable interactive variable

new $a: T \cdot S = \exists a, a': T \cdot S$

new x: time $\rightarrow T$ · S = $\exists x$: time $\rightarrow T$ · S

The value of variable x at time t is xt

But sometimes we write x for x t, x' for x t', x'' for x t'', ...

a := a + x

is really

a := a + x t

Most laws still work but not the Substitution Law

suppose boundary a, b; interactive x, y; time t

suppose boundary a, b; interactive x, y; time t

 $ok = a' = a \land b' = b \land t' = t$

suppose boundary a, b; interactive x, y; time t

$$ok = a' = a \land b' = b \land t' = t$$

$$x'=x \land y'=y$$
 means $x t' = x t \land y t' = y t$

suppose boundary a, b; interactive x, y; time t

 $ok = a' = a \land b' = b \land t' = t$

suppose boundary a, b; interactive x, y; time t

- $ok = a' = a \land b' = b \land t' = t$
- $a:=e = a'=e \land b'=b \land t'=t$

suppose boundary a, b; interactive x, y; time t

$$ok = a' = a \land b' = b \land t' = t$$

$$a:=e = a'=e \land b'=b \land t'=t$$

$$x:=e \quad = \quad a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)$$

 $\land t' = t + (\text{the time required to evaluate and store } e)$

suppose boundary a, b; interactive x, y; time t

$$ok = a' = a \land b' = b \land t' = t$$

$$a:=e = a'=e \land b'=b \land t'=t$$

$$x:=e \quad = \quad a'=a \land b'=b \land x'=e \land (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)$$

∧ t' = t + (the time required to evaluate and store e) ←

suppose boundary a, b; interactive x, y; time t

$$ok = a' = a \land b' = b \land t' = t$$
$$a := e = a' = e \land b' = b \land t' = t$$

$$x:=e \quad = \quad a'=a \ \land \ b'=b \ \land \ x'=e \ \land \ (\forall t'' \cdot t \leq t'' \leq t' \Rightarrow y''=y) \quad \Leftarrow$$

 $\land t' = t + (\text{the time required to evaluate and store } e)$

suppose boundary a, b; interactive x, y; time t

$$ok = a'=a \wedge b'=b \wedge t'=t$$

$$a:= e = a'=e \wedge b'=b \wedge t'=t$$

$$x:= e = a'=a \wedge b'=b \wedge x'=e \wedge (\forall t'' \cdot t \le t'' \le t' \Rightarrow y''=y)$$

$$\wedge t' = t+(\text{the time required to evaluate and store } e)$$

$$P.Q = \exists a'', b'', t'' \cdot (\text{substitute } a'', b'', t'' \text{ for } a', b', t' \text{ in } P)$$

$$\wedge (\text{substitute } a'', b'', t'' \text{ for } a, b, t \text{ in } Q)$$

suppose boundary a, b; interactive x, y; time t

example boundary a, b; interactive x, y; extended natural time t

 $(x:=2. x:=x+y. x:=x+y) \parallel (y:=3. y:=x+y)$

example boundary a, b; interactive x, y; extended natural time t

 $(x:=2, x:=x+y, x:=x+y) \parallel (y:=3, y:=x+y)$ x left, y right, a left, b right

example boundary a, b; interactive x, y; extended natural time t

$$(x:=2, x:=x+y, x:=x+y) \parallel (y:=3, y:=x+y)$$
 x left, y right, a left, b right

 $= (a'=a \land x t'=2 \land t'=t+1.$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a' = a \land x t' = 2 \land t' = t+1. a' = a \land x t' = x t+y t \land t' = t+1.$$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

 $= (a'=a \land x t'=2 \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1)$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$$

$$\parallel (b'=b \land y \ t'=3 \land t'=t+1.$$

example boundary a, b; interactive x, y; extended natural time t

 $(x:= 2. \ x:= x+y. \ x:= x+y) \parallel (y:= 3. \ \underline{y:= x+y}) \qquad x \text{ left, } y \text{ right, } a \text{ left, } b \text{ right}$ $= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$ $\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$$

$$\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)$$

$$= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)$$

$$\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)$$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a'=a \land x t'=2 \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1)$$

$$\parallel (b'=b \land y t'=3 \land t'=t+1. b'=b \land y t'=x t+y t \land t'=t+1)$$

- $= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)$ $\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)$
- $= x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)$

 $\land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land y(t+3)=y(t+2)$

 $\land a'=a \land b'=b \land t'=t+3$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a'=a \land x \ t'=2 \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1. \ a'=a \land x \ t'=x \ t+y \ t \land t'=t+1)$$

$$\parallel (b'=b \land y \ t'=3 \land t'=t+1. \ b'=b \land y \ t'=x \ t+y \ t \land t'=t+1)$$

- $= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)$ $\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)$
- $= x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)$

example boundary a, b; interactive x, y; extended natural time t

(x:=2, x:=x+y, x:=x+y) || (y:=3, y:=x+y) x left, y right, a left, b right

$$= (a'=a \land x t'=2 \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1. a'=a \land x t'=x t+y t \land t'=t+1)$$

$$\parallel (b'=b \land y t'=3 \land t'=t+1. b'=b \land y t'=x t+y t \land t'=t+1)$$

- $= (a'=a \land x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2) \land t'=t+3)$ $\parallel (b'=b \land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land t'=t+2)$
- $= x(t+1)=2 \land x(t+2)=x(t+1)+y(t+1) \land x(t+3)=x(t+2)+y(t+2)$ $\land y(t+1)=3 \land y(t+2)=x(t+1)+y(t+1) \land y(t+3)=y(t+2)$ $\land a'=a \land b'=b \land t'=t+3$
- $= x(t+1)=2 \land x(t+2)=5 \land x(t+3)=10 \land y(t+1)=3 \land y(t+2)=y(t+3)=5 \land a'=a \land b'=b \land t'=t+3$

thermometer $\parallel control \parallel$ thermostat \parallel burner

thermometer || *control* || *thermostat* || *burner*

inputs to the thermostat:

- real *temperature*, which comes from the thermometer and indicates the actual temperature.
- real *desired*, which comes from the control and indicates the desired temperature.
- binary *flame*, which comes from a flame sensor in the burner and indicates whether there is a flame.

thermometer || control || thermostat || burner

inputs to the thermostat:

- real *temperature*, which comes from the thermometer and indicates the actual temperature.
- real *desired*, which comes from the control and indicates the desired temperature.
- binary *flame*, which comes from a flame sensor in the burner and indicates whether there is a flame.

outputs of the thermostat:

- binary gas; assigning it \top turns the gas on and \perp turns the gas off.
- binary *spark*; assigning it \top causes sparks for the purpose of igniting the gas.

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. GasOff

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{fi}$$

thermostat = $(gas:= \bot || spark:= \bot)$. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{final}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon \quad \longleftarrow$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark \circ ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{ fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$\longrightarrow then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{ fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame \iff$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{ fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. GasOff

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = if temperature < desired + \varepsilon \land flame$$

$$\longrightarrow then ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOn$$

$$else (gas:= \bot || (frame spark ok) || t' \ge t+20) \land t' \le t+21. GasOff fi$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon \quad \longleftarrow$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark \circ ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{ fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. GasOff

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$\longrightarrow else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame \iff$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{ fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\longrightarrow \text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{fi}$$

thermostat =
$$(gas:= \bot || spark:= \bot)$$
. *GasOff*

$$GasOff = if temperature < desired - \varepsilon$$

$$then (gas:= \top || spark:= \top || t' \ge t+1) \land t' \le t+3. spark:= \bot. GasOn$$

$$else ((frame gas, spark ok) || t' \ge t) \land t' \le t+1. GasOff fi$$

$$GasOn = \text{if temperature} < desired + \varepsilon \land flame$$

$$\text{then} ((\text{frame } gas, spark \cdot ok) \parallel t' \ge t) \land t' \le t+1. \ GasOn$$

$$\text{else} (gas:= \perp \parallel (\text{frame } spark \cdot ok) \parallel t' \ge t+20) \land t' \le t+21. \ GasOff \text{fi}$$