
bunch

set

string

list 

/1 115

bunch unpackaged unindexed

set

string

list 

/2 115

bunch unpackaged unindexed

set packaged unindexed

string

list 

/3 115

bunch unpackaged unindexed

set packaged unindexed

string unpackaged indexed

list 

/4 115

bunch unpackaged unindexed

set packaged unindexed

string unpackaged indexed

list packaged indexed 

/5 115

String Theory

Strings are indexed sequences. 

/6 115

String Theory

Strings are indexed sequences.

nil the empty string 

/7 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string 

/8 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string 

/9 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator 

/10 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/11 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

←indexes
3 ; 5 ; 7 ; 9

0 1 2 3 4 5 6

/12 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

 ↑ 

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/13 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

← 4 → 

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/14 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

(3; 5; 7; 9)2 = 7 

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/15 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

 ↑
(3; 5; 7; 9)2 = 7

At index n , the number of items processed is n
the next item to be processed is item n 

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/16 115

String Theory

Strings are indexed sequences.

nil the empty string

3 a one-item string

3; 5; 7; 9 a four-item string

↔(3; 5; 7; 9) = 4 string length operator

(3; 5; 7; 9)2 = 7

(3; 5; 7; 9)2; 1; 2 = 7; 5; 7 

3 ; 5 ; 7 ; 9
0 1 2 3 4 5 6

/17 115

Zero

/18 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991 

/19 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991

0.10¢  

/20 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991

0.10¢ $1.02.9 

/21 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991

0.10¢ $1.02.9

There are a number of things to discuss. (But not zero things to discuss.) 

/22 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991

0.10¢ $1.02.9

There are a number of things to discuss. (But not zero things to discuss.)

Subtract line A from line B; if there is no difference, write “nil”. 

/23 115

Zero

John Allen Paulos:

Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988

Beyond Numeracy, Knopf, 1991

0.10¢ $1.02.9

There are a number of things to discuss. (But not zero things to discuss.)

Subtract line A from line B; if there is no difference, write “nil”.

keyboard, telephone: 1 2 3 4 5 6 7 8 9 0 

/24 115

 

/25 115

 
/26 115

  
/27 115

/28 115

Zero

Measuring must start at 0. 

/29 115

Zero

Measuring must start at 0. Counting is measuring. 

/30 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? 

/31 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15. 

/32 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15.

How many years from July 1 in year X to July 1 in year Y? 

/33 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15.

How many years from July 1 in year X to July 1 in year Y? Y–X years? 

/34 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15.

How many years from July 1 in year X to July 1 in year Y? Y–X years?

Fortran 1955 loop body had to be executed at least once. 

/35 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15.

How many years from July 1 in year X to July 1 in year Y? Y–X years?

Fortran 1955 loop body had to be executed at least once.

count:= 0.
while there's another one
do

count:= count + 1
od

/36 115

Zero

Measuring must start at 0. Counting is measuring.

An octave is an interval of 8. What interval is 2 octaves? It's 15.

How many years from July 1 in year X to July 1 in year Y? Y–X years?

Fortran 1955 loop body had to be executed at least once.

count:= 0.
while there's another one
do

count:= count + 1
od

Algol 1958, PL/I, Pascal: array must have at least 1 element. 

/37 115

Zero

/38 115

Zero

first: preceding all others in time, order, or importance 

/39 115

Zero

first: preceding all others in time, order, or importance

last: following all others in time, order, or importance 

/40 115

Zero

first: preceding all others in time, order, or importance

last: following all others in time, order, or importance

second: following the first 

/41 115

Zero

first: preceding all others in time, order, or importance 1st

last: following all others in time, order, or importance

second: following the first 2nd 

/42 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd 

/43 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd 

/44 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 

/45 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2 

/46 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 

/47 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9 

/48 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 

/49 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 10 to 11 o'clock? 

/50 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 10 to 11 o'clock? 

/51 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 10 to 11 o'clock?

the fifteenth item = item 15 ? item 14 ? 

/52 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 10 to 11 o'clock?

the fifteenth item = item 15 ? item 14 ?

zeroth item = item 0 ? 

/53 115

Zero

first: preceding all others in time, order, or importance 1st 0st

last: following all others in time, order, or importance

second: following the first 2nd 1nd

third year of life = what age? 2

tenth annual picnic = how many years? 9

the eleventh hour: the latest possible time 10 to 11 o'clock?

the fifteenth item = item 15 ? item 14 ?

zeroth item = item 0 ? first item 

/54 115

String Theory

Strings are indexed sequences.

/55 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order 

/56 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order 

/57 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y 

/58 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length 

/59 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join 

/60 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

/61 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

/62 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

/63 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

nat; 1; (0,..10) distribution 

/64 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

0; 1; 2: nat; 1; (0,..10) distribution 

/65 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

0; 1; 2: nat; 1; (0,..10) distribution

3*(4; 5) = 4; 5; 4; 5; 4; 5 repetition 

/66 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

0; 1; 2: nat; 1; (0,..10) distribution

3*(4; 5) = 4; 5; 4; 5; 4; 5 repetition

*3 = nil , 3 , 3;3 , 3;3;3 , ... repetition 

/67 115

String Theory

Strings are indexed sequences.

3; 6; 4; 1 < 3; 7; 2 order

3; 6; 4 < 3; 6; 4; 1 order

x;..y “ x to y ” for x≤y

↔(x;..y) = y–x length

(x;..y) ; (y;..z) = x;..z join

“Don't say ““no””.” text

= “D”; “o”; “n”; “'”; “t”; “ ”; “s”; “a”; “y”; “ ”; “““”; “n”; “o”; “”””; “.”

“abcdefghij”3;..6 = “def” subtext

0; 1; 2: nat; 1; (0,..10) distribution

3*(4; 5) = 4; 5; 4; 5; 4; 5 repetition

*3 = nil , 3 , 3;3 , 3;3;3 , ... repetition

(3; 5; 9) ⊲ 2 ⊳ 8 = 3; 5; 8 modification 
/68 115

List Theory

/69 115

List Theory

[0; 1; 2] a string in a package 

/70 115

List Theory

[0; 1; 2] a string in a package

[nat; 1; (0,..10)] distribution 

/71 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)] distribution 

/72 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat] distribution 

/73 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution 

/74 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

–(a, b) = –a, –b

negation of bunch = bunch of negations 

/75 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

–(a, b) = –a, –b

negation of bunch = bunch of negations

(a+b)×(c+d) = a×c + a×d + b×c + b×d

product of sums = sum of products 

/76 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

–(a, b) = –a, –b

negation of bunch = bunch of negations

(a+b)×(c+d) = a×c + a×d + b×c + b×d

product of sums = sum of products

(a∨b)∧(c∨d) = a∧c ∨ a∧d ∨ b∧c ∨ b∧d

conjunction of disjunctions = disjunction of conjunctions

 

/77 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

–(a, b) = –a, –b

negation of bunch = bunch of negations

(a+b)×(c+d) = a×c + a×d + b×c + b×d

product of sums = sum of products

(a∨b)∧(c∨d) = a∧c ∨ a∧d ∨ b∧c ∨ b∧d

conjunction of disjunctions = disjunction of conjunctions

[(2, 3); (4, 5)] = [2; 4], [2; 5], [3; 4], [3; 5]

list of bunches = bunch of lists 

/78 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

/79 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content 

/80 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length 

/81 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index 

/82 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index

☐[3; [5; 7]; 4] = 0,..3 domain

/83 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index

☐[3; [5; 7]; 4] = 0,..3 domain

[3; 5; 7; 4] [2; 1; 2] = [7; 5; 7] composition 

/84 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index

☐[3; [5; 7]; 4] = 0,..3 domain

[3; 5; 7; 4] [2; 1; 2] = [7; 5; 7] composition

[3; 5; 7; 4];;[2; 1; 2] = [3; 5; 7; 4; 2; 1; 2] join 

/85 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index

☐[3; [5; 7]; 4] = 0,..3 domain

[3; 5; 7; 4] [2; 1; 2] = [7; 5; 7] composition

[3; 5; 7; 4];;[2; 1; 2] = [3; 5; 7; 4; 2; 1; 2] join

[3; 6; 4; 1] < [3; 7; 2] order

[3; 6; 4] < [3; 6; 4; 1] order 

/86 115

List Theory

[0; 1; 2] a string in a package

[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution

~[3; [5; 7]; 4] = 3; [5; 7]; 4 content

#[3; [5; 7]; 4] = 3 length

[3; [5; 7]; 4] 2 = 4 index

☐[3; [5; 7]; 4] = 0,..3 domain

[3; 5; 7; 4] [2; 1; 2] = [7; 5; 7] composition

[3; 5; 7; 4];;[2; 1; 2] = [3; 5; 7; 4; 2; 1; 2] join

[3; 6; 4; 1] < [3; 7; 2] order

[3; 6; 4] < [3; 6; 4; 1] order

2→22 | [10;..15] = [10; 11; 22; 13; 14] modification 

/87 115

List Theory

modification

Let L = [10;..15]

2 → L 3 | 3 → L 2 | L = 

/88 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = 

/89 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L =

  

/90 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 13; 14]

  

/91 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 13; 14]

/92 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 12; 14]

/93 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 12; 14]

  

/94 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 12; 14] ✗

  

/95 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = 

/96 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L =

  

/97 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 13; 14]

/98 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 13; 14]

  

/99 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 12; 14]

  

/100 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 12; 12; 14]

 

/101 115

List Theory

modification

Let L = [10;..15] = [10; 11; 12; 13; 14]

2 → L 3 | 3 → L 2 | L = [10; 11; 13; 12; 14] ✔︎

 

/102 115

String and List Theory

Sn, m = Sn, Sm L (n, m) = L n, L m

/103 115

String and List Theory

Sn, m = Sn, Sm L (n, m) = L n, L m

S{n, m} = {Sn, Sm} L {n, m} = {L n, L m}

Sn; m = Sn; Sm L (n; m) = L n; L m

S[n; m] = [Sn; Sm] L [n; m] = [L n; L m]

/104 115

String and List Theory

Sn, m = Sn, Sm L (n, m) = L n, L m

S{n, m} = {Sn, Sm} L {n, m} = {L n, L m}

Sn; m = Sn; Sm L (n; m) = L n; L m

S[n; m] = [Sn; Sm] L [n; m] = [L n; L m]

S0, {1, [2; 1]; 0} L (0, {1, [2; 1]; 0})

 = S0, {S1, [S2; S1]; S0} = L 0, {L 1, [L 2; L 1]; L 0}

/105 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]] 

/106 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]] 

/107 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5] 

/108 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2 

/109 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2

A (1, 2)

A [1, 2] 

/110 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2

A (1, 2) = A 1, A 2

A [1, 2] 

/111 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2

A (1, 2) = A 1, A 2 = [4; 9; 2; 5], [1; 5; 8; 3]

A [1, 2] 

/112 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2

A (1, 2) = A 1, A 2 = [4; 9; 2; 5], [1; 5; 8; 3]

A [1, 2] = [A 1, A 2] 

/113 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2

A (1, 2) = A 1, A 2 = [4; 9; 2; 5], [1; 5; 8; 3]

A [1, 2] = [A 1, A 2] = [[4; 9; 2; 5], [1; 5; 8; 3]] 

/114 115

List Theory

multidimensional structures

A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;

[1; 5; 8; 3]]

A: [3*[4*nat]]

A 1 = [4; 9; 2; 5]

A 1 2 = 2 ←

A (1, 2) = A 1, A 2 = [4; 9; 2; 5], [1; 5; 8; 3]

A [1, 2] = [A 1, A 2] = [[4; 9; 2; 5], [1; 5; 8; 3]]

/115 115

