
Formal Methods of Software Design, Eric Hehner, segment 1 page  of 1 5

[talking head] Formal Methods of Software Engineering means the use of mathematics as an 
aid to writing programs. Before we can start applying mathematics to programming, we 
have to introduce the relevant mathematics. Now don't worry about this. I'm just going to 
introduce the math that we really are going to use, and nothing more. And you may have 
already learned most of this math in other courses. If you did, this is mostly review. But 
there will be a few things you didn't already know. And I want to make sure we're all using 
the same notations.

If you look at the last couple of pages of the textbook, you'll see all the notations 
used in the course, and I bet you already know most of them.

To start with, this lecture talks about Binary Theory, which is also called boolean 
algebra, or maybe basic logic, or some people say propositional calculus.

[1] The expressions of Binary Theory are called binary expressions. Some binary 
expressions are called theorems, and others are called antitheorems. [2] Binary expressions 
are used to represent anything that comes in two kinds. The theorems represent one kind, 
and the antitheorems represent the other kind. For example, [3] if you think that statements 
about the world come in two kinds, namely the true statements and the false statements, then 
you can use binary expressions to represent statements. You can use the theorems to 
represent the true statements, and the antitheorems to represent the false statements. I don't 
say that statements about the world really do come in just those two kinds, and it's no 
business of Binary Theory to say which statements are true and which are false. But if 
someone supplies us with statements that are labeled true and false, we can use Binary 
Theory to represent them. [4] Another application is digital circuits because the output of a 
digital circuit is either high voltage or low voltage. We can use the theorems to represent the 
circuits with high voltage output, and the antitheorems to represent the circuits with low 
voltage output. [5] Another application is human behavior, as viewed by the legal system. 
We can use the theorems to represent innocent behavior, and the antitheorems to represent 
guilty behavior. [6] Here are the two simplest binary expressions. If we're using them to 
represent statements, we might call the first one true and the other one false. If we're using 
them to represent circuits, we might call the first one power and the other one ground. And 
similarly we could choose words from other application areas. Or, to be independent of all 
application areas, we can call the first one top and the other one bottom. I tend to call them 
true and false. [7] The next notation is the NOT operator, or negation operator. It has one 
operand. Actually, there are four operators that have one operand, but two of them are 
degenerate, which means they don't make use of their operand, and one is just the identity 
operator. [8] Next are the operators that have two operands. Actually, there are sixteen 
operators that have two operands, but six of them are degenerate, leaving only ten good 
operators. And we're using only six of them. The [9] first one is pronounced x and y. It's a 
conjunction, and its operands are called conjuncts. The [10] next one is pronounced x or y. 
It's a disjunction, and its operands are called disjuncts. The [11] next one is pronounced x 
implies y. Or we could say x is stronger than or equal to y. It's an implication, and its left 
operand is called the antecedent, and its right operand is called the consequent. This [12] 
one is pronounced x is implied by y. Or, x is weaker than or equal to y. It's a reverse 
implication. Its left operand is the consequent, and its right operand is the antecedent. This 
[13] one is pronounced x equals y. It's an equation. It's not an assignment. Nothing is 
changing value here. It's an expression whose result is true or false. Its operands don't have 
any special names; we just say left side and right side. [14] The last one says x is unequal to 
y. [15] There are a lot of operators that have three operands, 256 of them, but we just want 
one of them. It's called conditional composition, or if-then-else-fi, and the operands are 
called the if-part, the then-part, and the else-part.

[16] There's a precedence table to say what the order of evaluation is; you can find it 
on the last page of the textbook. And if you want some other order of evaluation, that's what 
parentheses, round brackets, are for. [17] On that same table it says that some operators are 
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associative. For example, conjunction is associative. That means it doesn't matter which way 
we parenthesize, the result is the same. So we don't bother to write the parentheses. And we 
can write a longer chain of conjunctions without parentheses because all ways of 
parenthesizing give the same result. Same for disjunction. Even though equals and unequals 
are also associative, we don't use their associativity to save parentheses. That's because [18] 
they are continuing operators. That means if I write x equals y equals z I mean x equals y and 
y equals z. That's standard mathematical practice, but it's not the practice in most 
programming languages. Likewise the implications are continuing, so if I write x implies y 
implies z I mean x implies y and y implies z. And we can make longer chains of equations, 
longer chains of implications, and even a mixture of the two, and it means a conjunction of 
single equations and implications. You notice I didn't need parentheses to write a 
conjunction of equations, but I did need them to write a conjunction of implications. That's 
because, on the precedence table, EQUALS comes before AND, but IMPLIES comes after 
AND.

[19] The equation and implication operators come in two sizes. The big operators 
mean exactly the same thing as the little operators. All the same laws apply. The only 
difference between a little operator and a big operator is the precedence, so you can choose 
the size that saves you some parentheses. Too many parentheses cluttering up an expression 
can make it confusing. On the last line is an example of a mixture of big operators being 
used in a continuing way.

[20] Binary expression are evaluated according to these truth tables, as they are 
usually called. They shouldn't be called truth tables because truth is just one of two values in 
just one application. So I'll call them value tables. The operands are on the top line, and the 
result is inside the table. [21] For negation, it says that NOT applied to true gives false, and 
not applied to false gives true. Actually, it says more than that. The symbol for true is 
representing any theorem, and the symbol for false is representing any antitheorem. It says 
that if you apply NOT to a theorem you get an antitheorem, and if you apply NOT to an 
antitheorem you get a theorem. [22] This row shows why conjunction is called AND. You 
see that the result is true just when both the left conjunct AND the right conjunct are true. 
[23] And on this row you see why disjunction is called OR. The result is true when either 
the left disjunct OR the right disjunct is true. It's false only when they're both false. If I 
could remember to call them top and bottom, which would be better because it's 
independent of application, then I should say that conjunction gives the minimum of its two 
operands, and disjunction gives the maximum of its two operands. Do you see that? [24] 
Implication is the ordering operator. It means "lower than or equal to". The first entry says 
top is lower than or equal to top, because they're equal. The next entry says that top isn't 
lower than or equal to bottom. Bottom is lower than or equal to top. And last, bottom is 
lower than or equal to itself. If I'm saying true and false, I could call this operator falser than 
or equal to. [25] On the next line we have reverse implication, which means higher than or 
equal to. Or if you prefer, truer than or equal to. [26] The equal operator is pretty obvious. 
[27] And so is the unequal operator; its result is true just when its operands are unequal. 
Some people like to call this operator exclusive or because its result is true when either the 
left operand or the right operand is true, but not both of them. [28] The if-then-else-fi is easy 
to remember because if the if-part is true, then the result is the same as the then-part. If the 
if-part is false, then the result is the same as the else-part. The if at the beginning and the fi 
at the end are like opening and closing brackets for this operator.

[29] The purpose of variables in an expression is to substitute something else in their 
place. Substituting something for a variable is called instantiation. When you substitute, you 
have to be a little careful about the precedence of operators. For example, [30] if we have 
the expression x and y, we can replace x by anything, so let's replace it by false. And we can 
replace y by anything, so let's replace it by false or true. So the result is supposed to be the 
conjunction of false on the left, with false or true on the right. But because of the precedence 
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table, we have to put parentheses around false or true. We started with a conjunction, and 
after we replace the operands, we should still have a conjunction. If we didn't add the 
parentheses, it would end up as a disjunction. [31] The other rule of substitution is that it has 
to be systematic. If the same variable occurs more than once, you have to replace it with the 
same thing at each occurrence. [32] Different variables can be replaced by different things, 
but they could also be replaced by the same thing if we want. So from x and y, we can get 
false and false. [33] Or, we can get true and false if we want.

Well, that's all there is to binary expressions. So now we have to apply binary theory 
to some application area. An application always supplies its own new binary expressions. 
[34] For example, it might supply these new binary expressions. The grass is green, the sky 
is green, there is life elsewhere in the universe, and intelligent messages are coming from 
space. I don't know what this application is about, but anyway, it gives us these new binary 
expressions. When we get to number theory, it will give us [35] these new binary 
expressions. And infinitely many others. The application also has to tell us which of the new 
expressions are theorems, and which are antitheorems. When you're classifying binary 
expressions as theorems and antitheorems, it's really important to be [36] consistent. That 
means you don't want to classify some binary expression as both a theorem and an 
antitheorem. You might like to be [37] complete also, which means you've classified every 
binary expression one way or the other. But you don't have to be complete. You do have to 
be consistent.

[38] Finding out if a binary expression is a theorem or antitheorem is called proving. 
And there are six rules for how to do that. The first rule is trivial. It's the axiom rule. Long 
ago, mathematicians thought that some things in mathematics were obviously true, and 
those things were called axioms. For example, it was obvious to them that parallel lines 
never meet. So that was an axiom. Later on, mathematicians discovered that there are 
interesting non-Euclidean geometries in which parallel lines do meet. Every single thing 
they thought was obviously true turned out to be just a choice. If you say it's true, you get 
one kind of mathematics. If you say it's false, that's another kind of mathematics. In my 
opinion, there's nothing true or false in mathematics. An application area may have true and 
false statements, and so you have to design your mathematics to apply to that application 
area. For example, we include [39] this expression in our mathematics to [40] represent the 
truth, in some applications, that when you put quantities together, the total quantity does not 
depend on the order in which you put them together. There are other applications where 
that's not true. But we're designing our mathematics for those applications where it is true, 
so [41] we make it an axiom. And according to the axiom rule, [42] it's a theorem. And we'll 
see that that makes it [43] equivalent to top. However, just like everyone else in the world, 
[44] I'll probably say that x plus y equals y plus x is true, even though that's not quite right; 
we just choose to use it to represent a truth in an application area. But I'm getting [45] way 
ahead of myself here; let's get back to binary theory.

[46] The only axiom of binary theory is top, and the only antiaxiom is bottom. For 
our silly example application area, [47] we have an axiom that says the grass is green, and 
an antiaxiom that says the sky is green. Now [48] here's another axiom. I have no idea if 
there's life elsewhere in the universe, so I won't make that an axiom or an antiaxiom. I'll just 
leave it unclassified until we find out if it's true or false. And I also have no idea if intelligent 
messages are coming from space, so I'll leave that unclassified too. But if intelligent 
messages are coming from space, then there must be life elsewhere, so we might want this 
implication to be an axiom.

[49] The second proof rule is the evaluation rule. It says: If all the subexpressions are 
classified, then use the value tables. If you know what the operands are, then the value tables 
tell you what the whole expression is.

[50] Next comes the completion rule. It says: if an expression contains unclassified 
subexpressions, and all ways of classifying them place it in the same class, then it is in that 
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class. — If you don't know what the operands are, you might still be able to tell what the 
whole expression is. For example, [51] there is life elsewhere in the universe or true. Now if 
there's life elsewhere, then that's true or true, which is true. If there isn't life elsewhere, then 
that's false or true, which is still true. So either way, it's true. So the completion rule says it's 
a theorem. [52] Here's another example. Either there's life elsewhere, or there isn't. If we put 
true in both places, we get true. If we put false in both places, we get true. So it's true. [53] 
And one more example. There's life elsewhere and there isn't. If we put true in both places, 
we get false. If we put false in both places, we get false. So it's false.

[54] Next we have the consistency rule. It says: if a classified binary expression 
contains binary subexpressions, and only one way of classifying them is consistent, then 
they are classified that way. This time, we know what the whole expression is, and we're 
wondering what the parts might be. [55] Here's an example. We're given that x is a theorem, 
and also that x implies y is a theorem. And the question is: what's y? Here's [56] how we 
figure it. Suppose y is an antitheorem. Now we have x is a theorem, and we're supposing y 
is an antitheorem. So we can use a value table to find out that x implies y is an antitheorem. 
But we already know it's a theorem. So that's inconsistent. So y has to be a theorem. Here's 
[57] another example. We're given that not x is a theorem. What's x? [58] If x is a theorem, 
then the value tables say that not x is an antitheorem. But we already know it's a theorem. 
So x has to be an antitheorem. This example is important because it means that we [59] 
never need to talk about antiaxioms or antitheorems. If we want to say something is an 
antitheorem, we just say its negation is a theorem. We also don't need to have both true and 
false; for false we could say not true. The logic tradition here seems a bit odd to me. 
Traditionally, logicians use both the words true and false, but they don't use both axiom and 
antiaxiom, and they don't use both theorem and antitheorem. Oh well.

The next [60] proof rule is the transparency rule.  A binary expression does not gain, 
lose, or change classification when a classified subexpression is replaced by another 
expression in the same class.  For example, [61] here is a binary expression.  I don't care 
whether it is a theorem, or an antitheorem, or unclassified.  It has subexpression true, which 
is a theorem.  So if we [62] replace true with y or true, which is also a theorem, we don't 
change the whole expression; if it was a theorem, it still is; if it was an antitheorem, it still 
is; if it was unclassified, it still is. -- The subexpression x and x might be a theorem or an 
antitheorem or unclassified. Whatever it is, [63] x is the same, so if we replace it with x, we 
don't change the whole expression. It stays whatever it was.

On to the last proof rule. [64] The instance rule. If a binary expression is classified as 
a theorem or an antitheorem, then all its instances have that same classification. For 
example: [65] in the textbook somewhere there's the axiom x equals x. So by the axiom rule, 
[66] it's a theorem. And so [67] if I substitute any expression for both x's, it's still a theorem. 
We could evaluate this expression to find out that it's a theorem, but the instance rule says 
it's a theorem just because it's an instance of a theorem. In [68] this example, we cannot 
evaluate the two sides, but still it is an instance of x equals x, so it's a theorem.

That's all the rules. In this course we can use all six rules, [69] and that's called 
classical logic. In a logic course, it's interesting to see what you can do if you don't allow the 
completion rule; that's called constructive logic. And if you don't allow the consistency rule 
and the completion rule, it's called evaluation logic. But we can use all six rules.

[70] Now I want to talk a little about format. It helps a lot if you leave more space 
around operators with less precedence. Since conjunction comes ahead of disjunction on the 
precedence table, this expression should be written with the spacing shown. You may think 
that's a silly little point, but [71] look what happens if you write the same expression with a 
different spacing. It's misleading, and causes errors. [72] When an expression is too long to 
fit on one line, it should be broken at a sensible place, which usually means at the main 
connective. Programmers seem to appreciate the importance of good format better than 
mathematicians because programmers' formulas, namely programs, are much longer than 
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mathematicians' formulas. Now about the parentheses, or brackets. There's a popular 
convention in programming [73] that puts the opening bracket of a loop over on the right 
side, and the closing bracket over on the left. Do you know why? I'm old enough to 
remember where that convention comes from. It comes from the days when programs were 
punched onto cards, one line per card. Now you might want to reorder the lines in the body 
of the loop, and you do that by reordering the cards. Or you might want to delete the first 
line by throwing away one card, or add a new first line, or delete the last line, or add one 
more line to the end. So you don't want the opening bracket on the first line of the body of 
the loop because after editing it might be in the middle of the body somewhere, or get 
thrown away. And the same for the closing bracket. But we don't use punched cards 
anymore. When we edit, we can select just what we want to delete, and it doesn't have to be 
a whole line. And we can insert text where we want it and everything else moves over. So 
there's no purpose to that convention any more. Still, all those C and Java programmers are 
following it without even knowing why. [74] Let's get rid of that, and put our left brackets 
on the left, and our right brackets on the right. [75] And if we don't have brackets, format 
the same way but without the brackets.

[76] Here's a continuing equation, nicely formatted. It really means [77] that 
expression 0 equals expression 1, and expression 1 equals expression 2, and expression 2 
equals expression 3. [78] A continuing equation is very useful as a proof that the first 
expression equals the last one. To help the reader understand the proof, [79] we put hints 
over on the right side of the page. Hint 0 is supposed to say why expression 0 equals 
expression 1. Usually it's just the name of some law. And hint 1 says why expression 1 
equals expression 2, and so on. The hints go between the two expressions that we're trying 
to bridge. [80] Let's look at an example. Actually, this example is a law that's in the back of 
the book. It's called portation, and it's a really useful law. You should probably memorize 
this one. But suppose we don't know it's a law. If we want to prove this equation, we can do 
so as follows. [81] I started with the left side, but I could just as well start with the right side 
and work down to the left side. I usually start with the more complicated side, but here 
they're about equally complicated. The first hint says material implication. [82] That's a law 
from the back of the book that equates an implication and a disjunction. A law is just a 
theorem that's worth giving a name and worth remembering. [83] We're replacing a with a 
and b. Both occurrences of a get replaced. The second time, I had to add parentheses. And 
we're replacing b with c. So that's how the first line of the proof becomes the second line. 
[84] And the same for the other lines.

[85] Now here's another way to write the proof. I put the whole equation that I'm 
trying to prove on the top line, and show that it's equal to true on the bottom line. One 
reason I like this way is that proof is just the same as simplifying. Proof means simplify to 
true. Another reason is that equations aren't the only thing we prove. We could be proving a 
conjunction, or a disjunction, or anything. We can always prove by simplifying to true.

That's enough for this lecture. I'll finish up Chapter 1 next time.


