
Formal Methods of Software Design, Eric Hehner, segment 18 page out of 2 3

fine, there's nothing to be done; continue execution with whatever follows this assert. If not,
something has gone wrong, so print an error message, and suspend execution. Don't go on
and execute anything that follows this assert. That's what wait until infinity says. — If the
program is correct, then all asserts are [38] redundant. You can remove them from the
program. But in case there's something wrong, they [39] add robustness to the program.
They're a useful way to check if things are all right. [40] But they're not free. They cost
execution time. So use them only where the error checking is worth the cost.

The [41] next sort of assertion is ensure b. It means something like [42] make b be
true without doing anything. Formally, that's [43] if b then fine, same as before, but if not,
then make it be true without doing anything. Well that's just [44] b prime and ok. I'm going
to show you how to use this construct, but first we should note that it's [45]
unimplementable. You can't just make anything be true that you might like to be true
without doing anything. But even though it's unimplementable [46] by itself, it can be part
of something larger that is implementable.

[47] Nondeterministic choice can be obtained by disjunction. Do P or Q. We resolve
nondeterminism by refinement to a program. Another possibility is to [48] make disjunction
a programming notation, so we don't have to refine it. Maybe it would look more like a
programming notation if I use a [49] bold word or. Making it a programming notation just
means that the programming language implementer has to resolve the nondeterminism,
maybe by always choosing the first one, or maybe by choosing randomly. So we can write
[50] x gets 0 or x gets 1, which is [51] x prime equals 0 and all other variables, well let's just
have one other variable y, is unchanged, or x prime equals 1 and y is unchanged. So x could
be 0 or 1 in the end. But I'm going to follow that with [52] ensure x equals 1, which is x
prime equals 1 and all variables unchanged. The sequential composition is [53] an
existential quantification, like this. And we can get rid of it by using [54] one point for x
double prime, replacing it with x prime, and [55] one-point for y double prime, replacing it
with y prime. And [56] this is what we get. And we can simplify this to [57] x prime equals
1 and y prime equals y, which is the same as [58] x gets 1. We start off with a choice
between x gets 0 and x gets 1, but it turns out later that it wasn't a free choice. We had to
choose x gets 1. The implementation of these constructs is called [59] backtracking. You
make a choice, and if it turns out later that it was the wrong choice, you back up and choose
the other option. This was a simple example, with one choice and one ensure immediately
after. But you could have many of each, and they could be ordered and nested in
complicated ways. You execute it like this. Whenever there's a choice, choose one.
Whenever you hit an ensure and it turns out the condition is false, back up to the last
previous choice that still has untried options, and choose a different option. There are two
different ways such an execution might end. One way is that you finally make it past all
ensures right to the end of the program. That's success. The other way is that you come to an
ensure with a false condition, and you back up right to the beginning of the program without
finding any choices with untried options. That's failure. It means the execution did not
satisfy the program. But you have to expect that, sometimes, if you use an unimplementable
programming construct.

[60] Here's a nice little example. Given natural n, find natural s satisfying this
condition, which means that s is the square root of n, rounded down. The square root of 16
is 4, and the square root of 17 up to 24 is 4 point something, so we take it to be 4. How can
we calculate square root? With these constructs, it's easy. First, a [61] nondeterministic
assignment, using the notation suggested in one of the exercises at the back of the book.
That doesn't mean s gets the bunch 0 to n plus 1. It means s gets one of the numbers in the
bunch 0 to n plus 1. Any one of them. It's s gets 0, or s gets 1, or s gets 2, and so on. And
then [62] ensure exactly the thing we want to be true. The execution will choose one of the
numbers in the bunch, maybe 0, and test the condition, and if it's false it makes another

