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[1] In this lecture I continue with the formal treatment of features that are common to many 
programming languages. And the first one this lecture is the result expression. It's a way of 
using ifs and loops and all the state changing features and flow of control in order to express 
some value. It may not look like this in your favorite programming language, but I want to 
show it in its simplest form. P is a program, or maybe a specification that still hasn't been 
refined, and e is an expression. If P is a program and e uses only implemented operators, we 
can consider this to be an implemented expression for use in programs. Its meaning is 
roughly [2] execute P and then evaluate e. But [3] don't change the state. Here's [4] an 
example of its use. P starts by declaring two local variables, and initializing them. Then 
there's a loop. Then the result is the value of one of the variables. By the way, it computes 
the base of the natural logarithms, which we usually call e. [5] Here's its axiom. After 
executing P, the result expression is equal to e. [6] But, don't double-prime the result 
expression, and don't substitute in it. [7] Letting P be the assignment x gets x plus 1, and 
letting e be x, the result axiom says this. Now we can use the substitution law, [8] but the 
substitution just replaces the final x. Writing x gets x plus 1 result x is exactly the same as 
writing x plus 1. [9] So if you [10] use it, say in an assignment, it does not say that x is 
incremented. -- 


[11] How do you execute a result expression without changing the state? [12] Here's 
the answer. The implementation has to introduce a fresh local variable for each nonlocal 
variable that gets assigned. Then all changes that would have been made to the state are 
instead made to local variables that disappear at the end. It's an easy implementation. But 
[13] the popular programming languages fail to introduce local variables, so evaluating an 
expression can cause the state to change. Some people even consider it a good feature. It's 
called [14] side effects. The reason it's a terrible feature is that you have to throw away all of 
mathematics if there are side effects. [15] You can't even be sure that x equals x, [16] 
because the first evaluation may change the state so the second evaluation gives a different 
answer. [17] You cannot do any arithmetic, because [18] the laws don't hold. If the 
programming language has expression with side effects, and you want to reason about the 
program, then [19] you have turn the side effects into main effects. The assignment x gets a 
result expression, which says variable y doesn't change, has to be replaced by P followed by 
x gets e, because P might change y. It's a bit more complicated than that in [20] this 
example. Is [21] this supposed to be the value of y before or after P is executed? Addition is 
symmetric, so we could have written the operands of addition the other way round. I'll 
suppose it's the value of y before P is executed, so we have to [22] declare a local variable to 
remember the value y had initially before P is executed, then [23] use the local variable in 
place of y for the result. My main message here is just that side effects cause problems, and 
you have to be careful. It's better to never have side effects.


In the timing, I have tended to neglect the time for expression evaluation, which is 
reasonable for simple expressions. But if expressions can have loops in them [24], then it's 
not reasonable, so with result expressions you have to start accounting for expression 
evaluation time.


Next [25] I want to talk about a feature of all languages that I know, namely the 
function, or it might be called a method. Here's an example in C, and it's probably not too 
different in your favorite language. This function computes the binary exponential, though 
not very efficiently. A C function starts with [26] an assertion about the result, namely its 
type, int. Then there's the [27] name of the function. Then [28] the parameters, then [29] the 
curly brackets delimit the scope of the local declarations. And then there's a [30] result 
expression, except that C uses the word return. Everything I said about side effects applies 
here. In the notations of this course, it looks like [31] this. It doesn't look very different. The 
real difference is that in C, and other programming languages, the function is a package 
deal. If you want one feature, you get them all. If I don't want [32] to name my function, I 
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shouldn't have to. It's still a function, and can still be applied to an argument. And there are 
lots of things I want to name besides functions, so [33] we need a general naming notation, 
not just one for functions. Similarly if I [34] don't want to make an assertion about the 
result, I shouldn't have to, and [35] there are lots of places I might want to make assertions, 
not just about the result of a function, and there are lots of things to assert besides the type 
of the result. In C, functions are the only place you can make local declarations, except for 
the very start of the program. You can't just put a declaration anywhere you want it. But you 
should be able to. I have explained each of these features by itself, and the formalization is 
not too hard to understand. But the C function is far too complicated to have an 
understandable, and usable, formalization, except by decoupling the features and reasoning 
about them separately. Other languages have even more complicated beasts. Their designers 
didn't care about mathematical reasoning, and proof, and that makes life difficult for people 
who do care.


In some languages there's a [36] procedure, which is simpler than a function, but still 
a bit of a package deal. The main thing is to be able to parameterize a program. Not just a 
program, but any specification, even one that has not been refined to a program. For 
example, [37] procedure P here has an integer parameter, and the body says that the final 
values of variables a and b should be on the two sides of the parameter. Of course we have 
to refine this specification, but even before we refine it, we can already use the procedure. 
We can say that [38] P of 3 puts a and b on the two sides of 3. And [39] P of a plus 1 puts 
the final values of a and b on the two sides of the initial value of a plus 1. [40] Here's a 
refinement. I have chosen to make a 1 less, and b 1 greater than the parameter value. But 
this refinement is completely irrelevant to the use of the procedure. Wherever the procedure 
is used, it's the specification we use. That way the users don't have to know the 
implementation, and the implementer doesn't have to know the uses.


[41] Here's an equation that says that a procedure with an argument is the same as 
having a local variable that's initialized to the argument value. And in some programming 
languages, a parameter is just a local variable that gets initialized when the procedure is 
called. But look at the side condition. They're equal only if you don't make any assignment 
to the parameter within the procedure body. As soon as you do assign to the parameter in the 
procedure body, it's not being a parameter any more. It's just being a local variable, which is 
part of the implementation of the procedure. So that's another mistake in language design 
made by people who don't know any theory of programming.


The kind of parameter we have been talking about is called a value parameter, 
because it stands for some value that will be supplied as argument. [42] There's another kind 
of parameter that used to be called a var parameter, but now it's called a reference parameter. 
This kind of parameter stands for a variable that will be supplied as argument. I'll use [43] 
var to mean reference parameter. A reference parameter should be assigned within the body 
of the procedure, because that's the point of it. This procedure assigns 3 to nonlocal variable 
a, then 4 to nonlocal variable b, then 5 to reference parameter x. The argument [44] can't be 
an expression like 5 or a plus 1. It has to be just a variable, like a. And this means [45] a 
gets 3 and then b gets 4, and then a gets 5, which is [46] a prime equals 5 and b prime 
equals 4. A problem with reference parameters is that the procedure body has to be a 
program, with no other specification notations. If we [47] write this procedure body as a 
prime equals 3 and b prime equals 4 and x prime equals 5, we can't get the right result by 
substituting a for x, or even a prime for x prime. It just doesn't work for arbitrary 
specifications. Worse than that, even if you stick to programs, you can't even reason about 
the procedure body. The assignments appear to be to 3 separate variables, so [48] I should 
be able to reorder them. But that gives a different answer. So reference parameters carry a 
[49] warning label. Use them only for programs, don't manipulate the procedure body. 
Substitute arguments for parameters before doing anything else. So that means you have to 
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apply programming theory separately for each call. You can't reason about the procedure by 
itself. You have to know how it's called. And that, in my opinion, defeats the whole purpose 
of having a procedure.


[50] Here's a standard sort of picture people draw to represent the state of a 
computation. Variable i has value 2, and r is a reference parameter that stands for variable i. 
p is a pointer variable that points to array element 1 at the moment. As you can see, a 
storage location may have no name, it may have one name, it may have more than one 
name. When a storage location has more than one name, the names are called aliases. And 
aliases are a problem for reasoning. We've seen that the substitution law doesn't work if you 
have array elements that can be individually assigned, and we just saw that reference 
parameters are a problem, and so are pointer variables.


There are really two mappings here. [51] One is a mapping from names to storage 
locations, and the other is a mapping from locations to values. A single assignment can 
change both mapping at once. If we change the value of variable i, we not only change the 
right hand mapping, we also move the name A of i to a different location. We can certainly 
invent a theory that can cope with aliases, but it would be a more complicated and less 
usable theory. So here's an alternative. Let's simplify the picture, by [52] eliminating the 
storage cells. Obviously we're not going to eliminate them from the implementation of a 
programming language, but our understanding of programs shouldn't be so tied to the 
implementation. We already saw that we solve the array element assignment problem by 
talking about the value of the array as a whole. We can solve the pointer problem by using 
an array index instead. If a variable is used only to index a single array, it can be 
implemented as an address for efficiency. As for the reference parameter, it can be replaced 
by having functions that can return data structures as values, rather than just single numbers. 
I haven't shown that on the picture. But the point is that we can simplify the picture by 
raising our level of understanding from the implementation, which reads and writes 
memory, to the theory, which applies laws and proves correctness. If having a good, usable 
theory were a design criterion for programming languages, they would be a lot simpler and 
easier to use.


