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[1] We've been talking about Binary Theory, and we've pretty well covered it, but there are a 
couple of advanced tricks I'd like to tell you about. The first one is called monotonicity and 
antimonotonicity. Some people call it [2] covariance and contravariance. In high school I 
learned to say [3] varies directly as and varies inversely as. [4] Or we could say 
nondecreasing and nonincreasing, [5] or even sorted, and sorted backwards. If we were 
talking about numbers instead of binary values, [6] here's what it means. Function f is 
monotonic means if x is less than or equal to y then f of x is less than or equal to f of y. And 
antimonotonic means turn one of the less than or equal to signs around. [7] Here's the 
picture. Monotonic means increasing or staying the same, but never decreasing. 
Antimonotonic means decreasing or staying the same, but never increasing. Fine for 
numbers, [8] but what about binary values? [9] Less than or equal to is the ordering on 
numbers, and the corresponding order for binary values is implication. [10] The word 
implies doesn't sound very much like an ordering, so we could say [11] x is falser than or 
equal to y. But the word "falser", if it's even a word, comes from an application area, and 
that's not the word that's used. The word that's used is [12] "stronger". There are lots of 
examples of the number ordering; [13] here are two examples. And we say one operand is 
smaller and the other is larger. For the binary values, there are very few examples, and we 
say one operand is stronger and the other is weaker. Now don't try to take any meaning at all 
from the words stronger and weaker. They don't make any sense. I would prefer to call the 
binary values bottom and top, and to say that bottom is lower than top. But the words 
"stronger" and "weaker" are standard, so we'll use them. [14] We've seen monotonic for 
numbers, so for binary values we just replace less than or equal to with stronger than or 
equal to. [15] For numbers, we say that as x gets larger, f x gets larger – or stays the same. 
So for binary values we say as x gets weaker, f of x gets weaker – or stays the same. Or I 
could say it the other way round – as x gets smaller or stronger, f of x gets smaller or 
stronger. The point is, that as x goes one way, f of x goes the same way. [16] And then 
antimonotonic is just the other way around. As x goes one way, f of x goes the other way. — 
[17] The negation operator is antimonotonic. If a gets stronger, not a gets weaker, and vice 
versa. [18] Conjunction is monotonic in both its operands. If one of the operands gets 
stronger, the whole conjunction gets stronger, or at least stays the same. [19] Same for 
disjunction. [20] Implication is antimonotonic in the antecedent, and monotonic in the 
consequent. [21] And the same for reverse implication, but the operands are reversed. [22] 
If-then-else-fi is monotonic in both the then-part and the else-part. The if-part is neither 
monotonic nor antimonotonic. What's all this good for? [23] It can save a lot of steps in a 
proof. Here's an example. [24] The first hint is the law of generalization, which says a 
implies a or b. Let me say a is stronger than or equal to a or b. We're going to replace the 
disjunction a or b with a. So we're replacing something with something stronger. I really 
mean stronger or equal. But let me just say stronger to save some words. So the [25] 
negation is getting weaker, because negation is antimonotonic. So the [26] conjunction is 
getting weaker. So the [27] whole expression is getting stronger. So that tells us that [28] we 
need an implication sign out front and we need it that way round. The first line is weaker 
than or equal to the second line. And the second line is the [29] law of noncontradiction, so 
it's equal to true. We want to prove the top line, so we want to show that it's equal to true. 
What we've shown is that the top line is weaker than or equal to true. But there's nothing 
weaker than true. True is the weakest. So the top line must be equal to true. In a proof, if 
you're driving towards true on the bottom line, the signs over on the left side don't all have 
to be equal signs. They can be any mixture of equals and is-implied-by signs. This is a proof 
of the top line.

[30] The other advanced trick of Binary Theory that I want to tell you about is called 
context. Here's a context rule. Suppose that somewhere, on some line of a proof, we have a 
conjunction of two binary expressions.  They might be long expressions.  The rule says that 
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exp0 is a local axiom within exp1.  For example [31], within this expression there's a 
conjunction. The rule says that the left conjunct, which is a, is an axiom within the right 
conjunct, which is not a or b.  Since a is an axiom in the right conjunct, we can [32] replace 
it with true. This makes the proof easier, because true or anything is [33] true, and not true is 
[34] false. Anything and false is [35] false. And finally, not false is [36] true. So why does 
this work? [37] Well, a might be true.  If it is, then we can replace a with true, as we did. 
[38] If a is false, then it doesn't matter what we do to the right conjunct. The conjunction 
will still be false because of the left conjunct.

[39] Here is another example. The left conjunct says x equals y, so that's an axiom in 
the right conjunct. So in the right conjunct, we can replace x with y.

[40] Conjunction is symmetric, so there's a symmetric context rule that says the right 
conjunct is an axiom in the left conjunct. And here's [41] the simplest example of it. The 
right conjunct is a, so in the left conjunct we can replace a with true. Or we [42] could have 
used the first context rule and replaced the right conjunct with true. But we [43] cannot use 
both rules at the same time. a and a is not equal to true and true. [44] There are lots more 
context rules. They all work for exactly the same sort of reason as the conjunction rules. You 
can find them all in the textbook. And that's all I want to say about Binary Theory.

[45] The next theory we need is Number Theory, but we don't need to spend much 
time on it because you've been using it since primary school. The main use of number 
theory is to reason about quantities of things. [46] Number expressions are pretty standard. 
But we need one more number expression that's not standard, namely [47] infinity. The 
reason we need that is that we'll be calculating execution times of programs. And for those 
executions that don't terminate, the execution time is infinity. I'm writing [48] multiplication 
with a little x the way mathematicians have done for centuries, and the way it appears on all 
calculators, not with the star that programmers use. The reason that programming languages 
use a star is because long ago card punching machines didn't have any multiplication 
symbol but they did have a star. Please don't leave out the multiplication symbol, because 
then it looks like a two character identifier, or maybe a function applied to an argument. I 
don't mind if [49] division is a slash or a horizontal line with operands above and below. 
[50] Exponentiation looks the way it does in all mathematics books. [51] An up-arrow 
means maximum. x up-arrow y is the maximum of x and y. [52] Down-arrow means 
minimum. There's also an [53] if-then-else-fi where the if-part is binary but the then-part 
and else-part are both numbers. [54] And there are binary expressions that have number 
subexpressions. The laws are listed at the back of the book. They should be pretty familiar, 
except for infinity. Have a look at them.

[55] The last of the 3 basic theories is character theory. There's nothing much to it. A 
character is written between double-quotes. So on the top line there's a [56] capital A 
character, then a [57] small a character, then a [58] blank space character. The [59] left 
double-quote character has to be written twice, and likewise the right double-quote 
character. We might have [60] successor and predecessor operators, and an [61] if-the-else-
fi. And [62] ways to make binary expressions with character subexpressions. And that's it for 
the basic theories. We have binary data, number data, and character data. Now we need 
ways of making data structures. That's next lecture.


