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[1] Recursive data definition refers to a way of defining infinite bunches by means of axioms 
called construction and induction. The simplest and best known example is the bunch of 
natural numbers, nat, so we start there. The elements of nat [2] can be constructed by 
starting with 0 and repeatedly adding 1. So the [3] first construction axiom says that 0 is in 
nat. And the [4] other construction axiom says that if you have an element of nat, and you 
add 1 to it, you again have an element of nat. With this pair of axioms we can prove that all 
the natural numbers are in nat, like [5] this. Starting with true, we use the [6] first axiom to 
see that 0 is there. Then we [7] add 1 to each side. We can simplify 0 plus 1 to 1 by an 
axiom of arithmetic, and [8] nat plus 1 is included in nat by the second construction axiom. 
So now we have 1 in nat. Again we [9] add 1 to each side, and [10] again we use an axiom 
of arithmetic to simplify the left side, and the second construction axiom to find that 2 is in 
nat. [11] and so on we can find out that [12] all the natural numbers are in nat. So [13] is nat 
equal to 0, 1, 2, and so on? Forget for a minute that the name nat sounds like it's the natural 
numbers, and just think of nat as unknown. We're wondering what nat might be. We already 
proved that 0 and 1 and 2 are in it, and we see the pattern, so we can prove that 3, 4, 5, and 
so on are in it, but [14] maybe other numbers are in there too. Maybe all the integers. 0 is an 
integer, and for each integer, adding 1 makes another integer. So according to the 
construction axioms, nat could be the integers. [15] Or the rationals. [16] Or the reals. Or 
[17] 0, a half, 1, 1 and a half, 2, 2 and a half, and so on. 0 is there, and for each number 
there, the number 1 greater is also there. The construction axioms by themselves don't define 
nat. We need another axiom to say that there's nothing in nat other than 0, 1, 2, and so on. 
That's [18] the induction axiom. It says: if you have a bunch B such that 0 is in B and if you 
add 1 to an element of B you get an element of B, then nat is included in B. We've just seen 
several examples of such bunches, and there are infinitely many more. The construction 
axioms say that nat is one of them. And the induction axiom says that nat is the smallest 
such bunch. That's how it says that there aren't any elements other than 0, 1, 2, and so on, in 
nat. So now it's ok again to think of nat as the natural numbers.


Let me rewrite [19] the 2 construction axioms as 1 axiom, and then I rewrite the 
induction axiom to match it. These 2 axioms are equivalent to the 3 above. And I want to 
show you one more equivalent pair of axioms [20] using predicates instead of bunches, 
because I'm sure you'll recognize the induction axiom this way. It says if predicate P is true 
of 0, and assuming it is true of n you can prove it's true of n plus 1, then you have proved P 
is true of all elements of nat. It's saying there aren't any other elements in nat by saying that 
you just have to prove P of these elements and you've proved it of all elements. And 
construction is the same but with the main implication pointing the other way. In the 
textbook there's a proof that the bunch and predicate versions are equivalent. I want to show 
you a [21] whole lot of equivalent versions of induction. The [22] first one is the usual one. 
[23] This one is prettier, I think, because it looks more balanced. It says if you can go from 
any natural to the next, then you can go from 0 to any natural. And [24] this one is 
interesting because it doesn't mention 0. It's called course of values induction. In the 
antecedent, in order to prove P of n, you get to assume P of all previous values, not just one 
previous value. And the [25] last one is really interesting. It says, reading the right side first, 
if there's a natural with property P, then, moving to the left side, there's a natural n such that, 
all previous naturals don't have property P, and n does have property P. It says, if there's a 
natural number with some property, then there's a first natural with that property. Induction 
is equivalent to the concept of first. Did you know that?


Now I'd like to mention how the word induction is used in philosophy, because logic 
came from philosophy, and a lot of the philosophical terminology is still with us. Far too 
much, in my opinion. [26] In philosophy, induction means guessing the general case from 
some special cases. And they [27] contrast that with deduction, which means proving, using 
the rules of logic. In [28] mathematics, induction is an axiom, or sometimes it's presented as 
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a proof rule. And you use it in proofs, just like any other axiom. So mathematical induction 
is not the same as philosophical induction. In fact, it's part of philosophical deduction. Then 
there's [29] engineering induction, which means: if it works for n equals 1, 2, and 3, then 
that's good enough for me. I think engineers are being slandered, here. And there's [30] 
military induction, and [31] tax deduction, but [32] let's get back to recursive data definition, 
and the next example is int.


The easiest definition of int is just [33] nat and minus nat. But we could define int 
using [34] construction and induction. The constructors here are 0, adding 1, and subtracting 
1. The induction says that of all bunches satisfying construction, int is the smallest. And 
there's [35] an equivalent predicate version. It says proving P of 0, and assuming P of i and 
proving it of i plus 1, and assuming P of i and proving it of i minus 1, is the same as proving 
P of all integers.


The [36] next example I'm calling pow, and it's the powers of 2. The easiest 
definition is [37] 2 to the nat, or we could define it as [38] those p in nat such that there is an 
m in nat such that p equals 2 to the m. But the point of this lecture is that we [39] could 
define it using construction and induction. The constructors are 1 and doubling. And there's 
the induction axiom, or if you prefer the predicate version, [40] here it is. I guess the point 
here is that induction is not just for the natural numbers. It's for anything that can be defined 
constructively. That includes the rational numbers, but it doesn't include the reals. You can 
make a list of the rational numbers, but you cannot make a list of the real numbers.


[41] Here are the nat construction and induction axioms again, and [42] here are 2 
very similar axioms, called fixed-point construction and induction. If you compare [43] the 
two construction axioms, you see that the only difference is a colon in ordinary construction 
has become an equal sign in fixed-point construction. So fixed-point construction is 
stronger. And [44] in the induction axioms, the same colon becomes equals. But it's in an 
antecedent, so fixed-point induction is weaker than ordinary induction. This new pair of 
axioms, one stronger and one weaker, is exactly equivalent to the old pair. From ordinary 
construction and induction you can prove fixed-point construction and induction, and vice 
versa. Some people prefer the fixed-point version. The reason it's called fixed-point comes 
from function theory. [45] x is called a fixed-point of function f if [46] x equals f of x. 
Applying f to x gives back x. [47] And that looks like fixed-point construction, where nat is 
equal to some function of nat. The [48] fixed-point induction axiom says that of all the 
fixed-points of the constructor function, nat is the smallest, or least, so it's the least fixed-
point. One place you might have seen this before is a [49] grammar. Maybe the grammars 
you've seen used colon colon equals instead of equals, and a vertical line instead of a 
comma, and maybe nothing instead of a semicolon for joining. If it was equating something 
to some function of itself, then it was a fixed-point construction axiom. For grammars, the 
induction axiom is usually just said in words like: there are no other ways of forming 
expressions. But it could be [50] written formally, like this.  And you have to write it 
formally if you want to prove anything about all expressions.  It's called structural induction.


[51] When we define something by construction and induction, sometimes it's not 
easy to see what's been defined. Recursive data construction is a procedure for finding out 
what's been defined. It usually works, but not always. [52] A fixed-point construction axiom 
equates some name we're defining to some expression involving that name. I wrote the 
fixed-point version here, but it doesn't matter which version I write because, as I said fixed-
point and ordinary construction and induction are equivalent. The [53] first step in this 
procedure is to write a sequence of definitions, for name sub 0, name sub 1, name sub 2, and 
so on. Name sub 0 is null, because to start with we don't know anything about what's in the 
bunch being defined. Name sub 1 uses the constructor but putting name sub 0 in place of the 
name, and so on. We know exactly what name sub 0 is, it's null. So we know exactly what 
name sub 1 is. And so on. When we've got several of these definitions, maybe we can see a 
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pattern, so the [54] second step is to guess the general case. That's a philosophical induction. 
The [55] next step is to substitute infinity for n. Now we have a nonrecursive definition, and 
that might be the answer. I say might be, because this procedure doesn't always work. So 
[56] now we have to test this candidate and see if it really is a fixed-point. If it passes that 
test, then [57] we test to see if it's the least fixed-point. Here's how it works on the [58] pow 
example that we saw earlier. pow equals 1 comma 2 times pow. Suppose we have no idea 
what pow is, and we want to find out. The [59] first step is to construct. So we start with 
[60] pow 0 equals null. Now [61] pow 1 equals, and we use the construction axiom, but put 
pow 0 in place of pow. So that's [62] 1 comma 2 times null, and 2 times null is [63] null, and 
that's just [64] 1. [65] Pow 2 is 1 comma 2 times pow 1, which is [66] 1 comma 2 times 1, 
which is [67] 1, 2. [68] Pow 3 equals that, which is [69] 1 comma 2 times 1 and 2, which is 
[70] 1, 2, and 4. Maybe we're ready for the [71] guess. I am. I guess [72] pow n equals 2 to 
the powers 0 to n. It doesn't really matter if this guess is the correct generalization of what 
we've seen. We have to test it anyway to see if it fits the axioms. But first, we [73] substitute 
infinity for n, like [74] this, which is [75] 2 to the power nat. Now we [76] test. That means 
we [77] put our candidate in place of pow in the axiom, and then try to prove it. First [78] 
rewrite 1 and 2 as powers of 2. Now use the law of exponents to change [79] the product 
into a sum of exponents. And [80] exponentiation distributes over bunch union, so factor out 
the 2. And this [81] is implied by the fact that nat equals 0 comma nat plus 1, which is [82] 
the fixed-point construction axiom for nat. [83] Now we have to [84] test if our candidate is 
the least fixed-point. That means putting 2 to the nat in place of pow in the fixed-point 
induction axiom, and trying to prove it. I'll do it like [85] this, 2 to the nat colon B is implied 
by B equals 1 comma 2 times B, and try to fill in the lines in between. My first step is to 
rewrite the top line as [86] a universal quantification. 2 to the nat is in B means that for 
every n in nat, 2 to the n is in B. And now I can prove this universal quantification over nat 
by [87] nat induction. Well, you knew we were going to have to use it somewhere. I leave 
you to read [88] the rest of the steps in the textbook. There might be a more direct proof 
using the bunch form of induction instead of the predicate form. If you find it, please let me 
know. [89]


So that's recursive data construction. I'll just mention a couple of variations on the 
procedure. [90] We started with name 0 equal null. But actually, you can start with name 0 
equal anything you want. I find null usually works best because we're trying to find the 
smallest fixed point, so it's usually good to start with the smallest bunch. But sometimes that 
doesn't work, and some other starting point does. The other variation [91] is, after you have 
name sub n, instead of putting infinity in place of n, take the limit of name sub n. Mostly 
that's the same as name sub infinity, but on rare occasions it isn't. I mention it, but I seldom 
do it because it's more work and it's not guaranteed to succeed any more than name sub 
infinity is.


