
Formal Methods of Software Design, Eric Hehner, segment 22 page out of 1 3

[1] Recursive data definition refers to a way of defining infinite bunches by means of axioms
called construction and induction. The simplest and best known example is the bunch of
natural numbers, nat, so we start there. The elements of nat [2] can be constructed by
starting with 0 and repeatedly adding 1. So the [3] first construction axiom says that 0 is in
nat. And the [4] other construction axiom says that if you have an element of nat, and you
add 1 to it, you again have an element of nat. With this pair of axioms we can prove that all
the natural numbers are in nat, like [5] this. Starting with true, we use the [6] first axiom to
see that 0 is there. Then we [7] add 1 to each side. We can simplify 0 plus 1 to 1 by an
axiom of arithmetic, and [8] nat plus 1 is included in nat by the second construction axiom.
So now we have 1 in nat. Again we [9] add 1 to each side, and [10] again we use an axiom
of arithmetic to simplify the left side, and the second construction axiom to find that 2 is in
nat. [11] and so on we can find out that [12] all the natural numbers are in nat. So [13] is nat
equal to 0, 1, 2, and so on? Forget for a minute that the name nat sounds like it's the natural
numbers, and just think of nat as unknown. We're wondering what nat might be. We already
proved that 0 and 1 and 2 are in it, and we see the pattern, so we can prove that 3, 4, 5, and
so on are in it, but [14] maybe other numbers are in there too. Maybe all the integers. 0 is an
integer, and for each integer, adding 1 makes another integer. So according to the
construction axioms, nat could be the integers. [15] Or the rationals. [16] Or the reals. Or
[17] 0, a half, 1, 1 and a half, 2, 2 and a half, and so on. 0 is there, and for each number
there, the number 1 greater is also there. The construction axioms by themselves don't define
nat. We need another axiom to say that there's nothing in nat other than 0, 1, 2, and so on.
That's [18] the induction axiom. It says: if you have a bunch B such that 0 is in B and if you
add 1 to an element of B you get an element of B, then nat is included in B. We've just seen
several examples of such bunches, and there are infinitely many more. The construction
axioms say that nat is one of them. And the induction axiom says that nat is the smallest
such bunch. That's how it says that there aren't any elements other than 0, 1, 2, and so on, in
nat. So now it's ok again to think of nat as the natural numbers.

Let me rewrite [19] the 2 construction axioms as 1 axiom, and then I rewrite the
induction axiom to match it. These 2 axioms are equivalent to the 3 above. And I want to
show you one more equivalent pair of axioms [20] using predicates instead of bunches,
because I'm sure you'll recognize the induction axiom this way. It says if predicate P is true
of 0, and assuming it is true of n you can prove it's true of n plus 1, then you have proved P
is true of all elements of nat. It's saying there aren't any other elements in nat by saying that
you just have to prove P of these elements and you've proved it of all elements. And
construction is the same but with the main implication pointing the other way. In the
textbook there's a proof that the bunch and predicate versions are equivalent. I want to show
you a [21] whole lot of equivalent versions of induction. The [22] first one is the usual one.
[23] This one is prettier, I think, because it looks more balanced. It says if you can go from
any natural to the next, then you can go from 0 to any natural. And [24] this one is
interesting because it doesn't mention 0. It's called course of values induction. In the
antecedent, in order to prove P of n, you get to assume P of all previous values, not just one
previous value. And the [25] last one is really interesting. It says, reading the right side first,
if there's a natural with property P, then, moving to the left side, there's a natural n such that,
all previous naturals don't have property P, and n does have property P. It says, if there's a
natural number with some property, then there's a first natural with that property. Induction
is equivalent to the concept of first. Did you know that?

Now I'd like to mention how the word induction is used in philosophy, because logic
came from philosophy, and a lot of the philosophical terminology is still with us. Far too
much, in my opinion. [26] In philosophy, induction means guessing the general case from
some special cases. And they [27] contrast that with deduction, which means proving, using
the rules of logic. In [28] mathematics, induction is an axiom, or sometimes it's presented as

Formal Methods of Software Design, Eric Hehner, segment 22 page out of 2 3

a proof rule. And you use it in proofs, just like any other axiom. So mathematical induction
is not the same as philosophical induction. In fact, it's part of philosophical deduction. Then
there's [29] engineering induction, which means: if it works for n equals 1, 2, and 3, then
that's good enough for me. I think engineers are being slandered, here. And there's [30]
military induction, and [31] tax deduction, but [32] let's get back to recursive data definition,
and the next example is int.

The easiest definition of int is just [33] nat and minus nat. But we could define int
using [34] construction and induction. The constructors here are 0, adding 1, and subtracting
1. The induction says that of all bunches satisfying construction, int is the smallest. And
there's [35] an equivalent predicate version. It says proving P of 0, and assuming P of i and
proving it of i plus 1, and assuming P of i and proving it of i minus 1, is the same as proving
P of all integers.

The [36] next example I'm calling pow, and it's the powers of 2. The easiest
definition is [37] 2 to the nat, or we could define it as [38] those p in nat such that there is an
m in nat such that p equals 2 to the m. But the point of this lecture is that we [39] could
define it using construction and induction. The constructors are 1 and doubling. And there's
the induction axiom, or if you prefer the predicate version, [40] here it is. I guess the point
here is that induction is not just for the natural numbers. It's for anything that can be defined
constructively. That includes the rational numbers, but it doesn't include the reals. You can
make a list of the rational numbers, but you cannot make a list of the real numbers.

[41] Here are the nat construction and induction axioms again, and [42] here are 2
very similar axioms, called fixed-point construction and induction. If you compare [43] the
two construction axioms, you see that the only difference is a colon in ordinary construction
has become an equal sign in fixed-point construction. So fixed-point construction is
stronger. And [44] in the induction axioms, the same colon becomes equals. But it's in an
antecedent, so fixed-point induction is weaker than ordinary induction. This new pair of
axioms, one stronger and one weaker, is exactly equivalent to the old pair. From ordinary
construction and induction you can prove fixed-point construction and induction, and vice
versa. Some people prefer the fixed-point version. The reason it's called fixed-point comes
from function theory. [45] x is called a fixed-point of function f if [46] x equals f of x.
Applying f to x gives back x. [47] And that looks like fixed-point construction, where nat is
equal to some function of nat. The [48] fixed-point induction axiom says that of all the
fixed-points of the constructor function, nat is the smallest, or least, so it's the least fixed-
point. One place you might have seen this before is a [49] grammar. Maybe the grammars
you've seen used colon colon equals instead of equals, and a vertical line instead of a
comma, and maybe nothing instead of a semicolon for joining. If it was equating something
to some function of itself, then it was a fixed-point construction axiom. For grammars, the
induction axiom is usually just said in words like: there are no other ways of forming
expressions. But it could be [50] written formally, like this. And you have to write it
formally if you want to prove anything about all expressions. It's called structural induction.

[51] When we define something by construction and induction, sometimes it's not
easy to see what's been defined. Recursive data construction is a procedure for finding out
what's been defined. It usually works, but not always. [52] A fixed-point construction axiom
equates some name we're defining to some expression involving that name. I wrote the
fixed-point version here, but it doesn't matter which version I write because, as I said fixed-
point and ordinary construction and induction are equivalent. The [53] first step in this
procedure is to write a sequence of definitions, for name sub 0, name sub 1, name sub 2, and
so on. Name sub 0 is null, because to start with we don't know anything about what's in the
bunch being defined. Name sub 1 uses the constructor but putting name sub 0 in place of the
name, and so on. We know exactly what name sub 0 is, it's null. So we know exactly what
name sub 1 is. And so on. When we've got several of these definitions, maybe we can see a

Formal Methods of Software Design, Eric Hehner, segment 22 page out of 3 3

pattern, so the [54] second step is to guess the general case. That's a philosophical induction.
The [55] next step is to substitute infinity for n. Now we have a nonrecursive definition, and
that might be the answer. I say might be, because this procedure doesn't always work. So
[56] now we have to test this candidate and see if it really is a fixed-point. If it passes that
test, then [57] we test to see if it's the least fixed-point. Here's how it works on the [58] pow
example that we saw earlier. pow equals 1 comma 2 times pow. Suppose we have no idea
what pow is, and we want to find out. The [59] first step is to construct. So we start with
[60] pow 0 equals null. Now [61] pow 1 equals, and we use the construction axiom, but put
pow 0 in place of pow. So that's [62] 1 comma 2 times null, and 2 times null is [63] null, and
that's just [64] 1. [65] Pow 2 is 1 comma 2 times pow 1, which is [66] 1 comma 2 times 1,
which is [67] 1, 2. [68] Pow 3 equals that, which is [69] 1 comma 2 times 1 and 2, which is
[70] 1, 2, and 4. Maybe we're ready for the [71] guess. I am. I guess [72] pow n equals 2 to
the powers 0 to n. It doesn't really matter if this guess is the correct generalization of what
we've seen. We have to test it anyway to see if it fits the axioms. But first, we [73] substitute
infinity for n, like [74] this, which is [75] 2 to the power nat. Now we [76] test. That means
we [77] put our candidate in place of pow in the axiom, and then try to prove it. First [78]
rewrite 1 and 2 as powers of 2. Now use the law of exponents to change [79] the product
into a sum of exponents. And [80] exponentiation distributes over bunch union, so factor out
the 2. And this [81] is implied by the fact that nat equals 0 comma nat plus 1, which is [82]
the fixed-point construction axiom for nat. [83] Now we have to [84] test if our candidate is
the least fixed-point. That means putting 2 to the nat in place of pow in the fixed-point
induction axiom, and trying to prove it. I'll do it like [85] this, 2 to the nat colon B is implied
by B equals 1 comma 2 times B, and try to fill in the lines in between. My first step is to
rewrite the top line as [86] a universal quantification. 2 to the nat is in B means that for
every n in nat, 2 to the n is in B. And now I can prove this universal quantification over nat
by [87] nat induction. Well, you knew we were going to have to use it somewhere. I leave
you to read [88] the rest of the steps in the textbook. There might be a more direct proof
using the bunch form of induction instead of the predicate form. If you find it, please let me
know. [89]

So that's recursive data construction. I'll just mention a couple of variations on the
procedure. [90] We started with name 0 equal null. But actually, you can start with name 0
equal anything you want. I find null usually works best because we're trying to find the
smallest fixed point, so it's usually good to start with the smallest bunch. But sometimes that
doesn't work, and some other starting point does. The other variation [91] is, after you have
name sub n, instead of putting infinity in place of n, take the limit of name sub n. Mostly
that's the same as name sub infinity, but on rare occasions it isn't. I mention it, but I seldom
do it because it's more work and it's not guaranteed to succeed any more than name sub
infinity is.

