Formal Methods of Software Design, Eric Hehner, segment 3 page 1 out of 3

[1] Now we're going to look at 4 of the simplest data structures. They are the bunch, the set,
the string, and the list. There's just 2 data structuring principles here, namely packaging, and
indexing. The bunch is the simplest structure there is. It's [2] unpackaged and unindexed.
The set is [3] packaged but not indexed. The string is [4] indexed but not packaged. And the
list is [S] both packaged and indexed. We'll start with [6] bunches. A bunch is a
mathematical data structure that can be used to represent a collection of things. [7] And here
is a bunch of 3 numbers. And just to show that it doesn't have to be all the same kind of
thing, [8] here is a bunch of 2 binary values, a number, and a character. And [9] here is a
bunch consisting of only 1 number. So I guess the obvious question here is: how can you tell
if you're looking at a bunch consisting of 1 number, or at the number itself? And the answer
is: there's no difference between a bunch of one thing, and the thing. That's one of the ways
that bunches are different from sets. A set containing the number 2 is not the same as the
number 2. But the bunch consisting of the number 2 is the same as the number 2. A bunch is
so simple that it hardly needs a name. I could just say [10] there are 3 numbers, and [11]
there are 4 - whatever, and [12] there is a number. [13] Any number, or binary value, or
character, or set which we'll get to later, is an elementary bunch. Or, an element. That means
the same thing as elementary bunch. Or a 1 element bunch. [14] If you have 2 bunches and
you put a comma between them, you have a bunch consisting of the elements of both
bunches. The comma is the bunch union operator. [15] An upside down comma is the bunch
intersection operator. [16] The cent sign is the size or cardinality operator for bunches,
telling how many elements form the bunch. [17] And colon is the bunch inclusion operator.
A colon B is true if all the elements of A are also elements of B. [18] I've been trying hard
here not to say "elements contained in a bunch". Elements are contained in a set. A set is a
kind of container, or package. But a bunch isn't a container or package. The bunch really is
the elements themselves.

[19] This equation is just an example to say that it doesn't matter what order you
write the elements in, and it doesn't matter whether you write them once each or more than
once. [20] The size of an elementary bunch is 1, and the size of a non elementary bunch
isn't. The parentheses are there for the same reason we always use parentheses - to indicate
precedence. On the precedence table, size comes before comma, so we need the parentheses.
[21] And it wouldn't matter if we write elements more than once; that doesn't change the
size of the bunch. [22] This says that 2 is included among 0 2 5 9. [23] This says that 2 is
included in 2. And [24] this says that 2 and 9 are included among 0 2 5 9. Those were just
examples. [25] Here are some of the axioms that define bunches. In these axioms, small
letters are elements, and capital letters are any bunches. [26] The first axiom says that for
elements, colon is the same as equals. [27] The next axiom says that an element is included
in a union if and only if it is included in at least one part of the union. The [28] next one
says comma is idempotent. That's why it doesn't matter how many times you write an
element in a bunch. And the [29] next one says comma is symmetric, or some people say
commutative. And that's why it doesn't matter what order you write elements in a bunch.
And [30] the next one says comma is associative, and that's why I don't bother to write
parentheses when I have 3 or more elements, because all ways of putting in parentheses are
equivalent. And you can look at these other axioms when you have time; they look a lot like
binary laws. [31] [32] Let me just show you the rest of the axioms. There, that's all of them.
[33] The first 3 say that colon is reflexive, antisymmetric, and transitive. That means colon
is an ordering. Colon is the ordering on bunches, just like less-than-or-equal-to for numbers,
and implies for binary values. [34] [35] And then there are lots of laws that can be proven
from the axioms. I'll just [36] point out 2 of them that say union and intersection are both
monotonic. That means that if you make one part of a union bigger, you make the whole
union bigger, or at least not smaller. And the same for intersection. Again, these laws look a
lot like binary laws, with union being like disjunction, intersection being like conjunction,



Formal Methods of Software Design, Eric Hehner, segment 3 page 2 out of 3

and colon being like implication. Look at them more when you have time. [37] Right now I
want to list some [38] bunches that are worth naming. The [39] first one is null, the empty
bunch. Then [40] bin, which is the two binary values. [41] Then nat, which is the natural
numbers, O 1 2 and so on. [42] int is the integers, which includes negatives, zero, and
positives. Then [43] rat, which is the unfortunately named rational numbers, and [44] real,
which is the real numbers. The dots all over this page mean "guess what goes here". They're
not part of the formalism, so none of these is a formal definition — except for bin. The
formal definitions are all in the textbook. [45] The next 4 bunches, xnat, xint, xrat, and
xreal, are extended versions of the previous 4. They just have infinity included. [46] And
finally char is the characters.

[47] There's just one more bunch notation: x comma dot dot y, which I pronounce
[48] x to y, and I use it only for extended integers x and y — that means integer or infinity,
and only when [49] x is less than or equal to y. And it stands for the integers starting at x
and continuing up to but not including y. [5S0] Well, that's a rough statement; [51] here's the
precise statement. Integer i is included in x to y if x is less than or equal to 1, and 1 is less
than y. This is an axiom, and comma dot dot is a formal notation. We're not guessing what's
included; we have an axiom telling us exactly what's included. Using only 1 comma like
that is supposed to help us remember that the left endpoint is included, and the right
endpoint isn't. [52] So the size of this bunch is y minus x. There's no plus 1 or minus 1 to
worry about. For example, [53] O to 3 consists of 3 elements. [54] O to 2 consists of 2
elements. [55] O to 1 consists of 1 element. And [56] finally, O to O consists of 0 elements.
And [57] just one more example, O to infinity is nat.

[58] One of the things that makes bunches useful is the distribution property. Most
operators distribute over bunch union. [59] For example, the negation of a bunch of
numbers is the bunch of negated numbers. [60] If you add 2 bunches of numbers, you get a
bunch of sums. You get all the numbers that are the sum of a number from the first bunch
plus a number from the second bunch. [61] Here's a sum of bunches where one of them is an
elementary bunch. And [62] here's an example where both bunches are elementary bunches.
Or is it just the sum of 2 numbers? However you want to say it, 1 plus 10 equals 11. Now
[63] here's an example where one of the bunches is empty. Any guess about the answer? —
If either operand is empty, then the [64] result is empty. The number of elements in the
result is at most the product of the number of elements in the 2 operands. — This
distribution property makes it easy to express lots of bunches. For example, [65] nat plus 2
is the plural naturals, and [66] nat times 2 is the even naturals, and [67] nat squared is the
square naturals, and [68] 2 to the nat is the powers of 2, and so on. Lots of operators
distribute over bunch union. You can find which ones by looking at the last paragraph in the
textbook. — Well, that's it for bunch theory. I think it's the simplest data structure there is.

[69] Now let's look at set theory. If you have some apples lying loosely on a table,
that's a bunch. If you put them in a paper bag, now it's a set of apples. There's no difference
between an apple and a bunch consisting of 1 apple. But there is a difference between an
apple and a bag with an apple in it. With sets you get the power to make nested structures,
which means things within things, and that turns out to be so powerful that it can express all
of mathematics. To make a set, [70] you start with a bunch, and apply the set formation
operator, which is curly brackets. Just like comma, set brackets are also an operator, not just
syntax. And it has an inverse, too. [71] The contents operator. If you apply it to a set, you
get back the contents of the set, which is a bunch. [72] Here's a bunch consisting of 3
elements. [73] Now it's a set containing 3 elements. But that set is an elementary bunch, or
element. [74] Now I'll add another element, so we have a bunch of 2 elements. [75] And we
apply set formation and we have a set containing 2 elements, one of which is a set
containing 3 elements. And the whole thing is a 1 element bunch, or element. [76] The
empty set ends up looking like this, which isn't the standard notation, but I can't help it. And



Formal Methods of Software Design, Eric Hehner, segment 3 page 3 out of 3

the set [77] of naturals looks like this. [78] The set containing the first 3 naturals can be
written either of these ways. [79] Here the contents operator gives us the contents of a set.
[80] The dollar sign is being used as the set size or cardinality operator, instead of the
standard pair of vertical lines. And [81] the power operator gives all sets whose elements
come from its operand. Well, those are just examples. [82] Here are the axioms. That's all
the axioms of set theory. And in fact, some weird set theoreticians don't use [83] this one.
That's called non well founded set theory, which sounds bad, but it's actually interesting.
What I find amusing is that [84] these 3 axioms, defining elementhood, subset, and power,
are all just bunch inclusion. That's it for sets. We'll do strings and lists next time.



