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Recurrent Neural Networks (RNNs) are powerful sequence models that were believed to be difficult to

train, and as a result they were rarely used in machine learning applications. This thesis presents methods

that overcome the difficulty of training RNNs, and applications of RNNs to challenging problems.

We first describe a new probabilistic sequence model that combines Restricted Boltzmann Machines

and RNNs. The new model is more powerful than similar models while being less difficult to train.

Next, we present a new variant of the Hessian-free (HF) optimizer and show that it can train RNNs

on tasks that have extreme long-range temporal dependencies, which were previously considered to be

impossibly hard. We then apply HF to character-level language modelling and get excellent results.

We also apply HF to optimal control and obtain RNN control laws that can successfully operate

under conditions of delayed feedback and unknown disturbances.

Finally, we describe a random parameter initialization scheme that allows gradient descent with mo-

mentum to train RNNs on problems with long-term dependencies. This directly contradicts widespread

beliefs about the inability of first-order methods to do so, and suggests that previous attempts at training

RNNs failed partly due to flaws in the random initialization.
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Chapter 1

Introduction

Recurrent Neural Networks (RNNs) are artificial neural network models that are well-suited for pattern
classification tasks whose inputs and outputs are sequences. The importance of developing methods for
mapping sequences to sequences is exemplified by tasks such as speech recognition, speech synthesis,
named-entity recognition, language modelling, and machine translation.

An RNN represents a sequence with a high-dimensional vector (called the hidden state) of a fixed
dimensionality that incorporates new observations using an intricate nonlinear function. RNNs are
highly expressive and can implement arbitrary memory-bounded computation, and as a result, they can
likely be configured to achieve nontrivial performance on difficult sequence tasks. However, RNNs
have turned out to be difficult to train, especially on problems with complicated long-range temporal
structure – precisely the setting where RNNs ought to be most useful. Since their potential has not been
realized, methods that address the difficulty of training RNNs are of great importance.

We became interested in RNNs when we sought to extend the Restricted Boltzmann Machine (RBM;
Smolensky, 1986), a widely-used density model, to sequences. Doing so was worthwhile because RBMs
are not well-suited to sequence data, and at the time RBM-like sequence models did not exist. We in-
troduced the Temporal Restricted Boltzmann Machine (TRBM; Sutskever, 2007; Sutskever and Hinton,
2007) which could model highly complex sequences, but its parameter update required the use of crude
approximations, which was unsatisfying. To address this issue, we modified the TRBM and obtained an
RNN-RBM hybrid of similar representational power whose parameter update can be computed nearly
exactly. This work is described in Chapter 3 and by Sutskever et al. (2008).

Martens (2010)’s recent work on the Hessian-Free (HF) approach to second-order optimization at-
tracted considerable attention, because it solved the then-impossible problem of training deep autoen-
coders from random initializations (Hinton and Salakhutdinov, 2006; Hinton et al., 2006). Because of
its success with deep autoencoders, we hoped that it could also solve the difficult problem of training
RNNs on tasks with long-term dependencies. While HF was fairly successful at these tasks, we sub-
stantially improved its performance and robustness using a new idea that we call structural damping. It
was exciting, because these problems were considered hopelessly difficult for RNNs unless they were
augmented with special memory units. This work is described in Chapter 4.

Having seen that HF can successfully train general RNNs, we applied it to character-level language
modelling, the task of predicting the next character in natural text (such as in English books; Sutskever
et al., 2011). Our RNNs outperform every homogeneous language model, and are the only non-toy
language models that can exploit long character contexts. For example, they can balance parentheses
and quotes over tens of characters. All other language models (including that of Mahoney, 2005) are
fundamentally incapable of doing so because they can only rely on the exact context matches from the
training set. Our RNNs were trained with 8 GPUs for 5 days and are among the largest RNNs to date.
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CHAPTER 1. INTRODUCTION 2

This work is presented in Chapter 5.
We then used HF to train RNNs to control a simulated limb under conditions of delayed feedback

and unpredictable disturbances (such as a temperature change that introduces friction to the joints) with
the goal of solving reaching tasks. RNNs are well-suited for control tasks, and the resulting controller
was highly effective. It is described in Chapter 6.

The final chapter shows that a number of strongly-held beliefs about RNNs are incorrect, including
many of the beliefs that motivated the research described in the previous chapters. We show that gradient
descent with momentum can train RNNs to solve problems with long-term dependencies, provided the
RNNs are initialized properly and an appropriate momentum schedule is used. This is surprising because
first-order methods were believed to be fundamentally incapable of training RNNs on such problems
(Bengio et al., 1994). These results are presented in Chapter 7.



Chapter 2

Background

This chapter provides the necessary background on machine learning and neural networks that will make
this thesis relatively self-contained.

2.1 Supervised Learning

Learning is useful whenever we want a computer to perform a function or procedure so intricate that
it cannot be programmed by conventional means. For example, it is simply not clear how to directly
write a computer program that recognizes speech, even in the absence of time and budget constraints.
However, it is in principle straightforward (if expensive) to collect a large number of example speech
signals with their annotated content and to use a supervised learning algorithm to approximate the input-
output relationship implied by the training examples.

We now define the supervised learning problem. Let X be an input space, Y be an output space,
and D be the data distribution over X × Y that describes the data that we tend to observe. For every
draw (x, y) from D, the variable x is a typical input and y is the corresponding (possibly noisy) desired
output. The goal of supervised learning is to use a training set consisting of n of i.i.d. samples, S =
{(xi, yi)}ni=1 ∼ Dn, in order to find a function f : X → Y whose test error

TestD(f) ≡ E(x,y)∼D[L(f(x); y)] (2.1)

is as low as possible. Here L(z; y) is a loss function that measures the loss that we suffer whenever we
predict y as z. Once we find a function whose test error is small enough for our needs, the learning
problem is solved.

Although it would be ideal to find the global minimizer of the test error

f∗ = arg min
f is a function

TestD(f) (2.2)

doing so is fundamentally impossible. We can approximate the test error with the training error

TrainS(f) ≡ E(x,y)∼S [L(f(x); y)] ≈ TestD(f) (2.3)

(where we define S as the uniform distribution over training cases counting duplicate cases multiple
times) and find a function f with a low training error, but it is trivial to minimize the training error
by memorizing the training cases. Making sure that good performance on the training set translates
into good performance on the test set is known as the generalization problem, which turns out to be

3
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conceptually easy to solve by restricting the allowable functions f to a relatively small class of functions
F :

f∗ = arg min
f∈F

TrainS(f) (2.4)

Restricting f to F essentially solves the generalization problem, because it can be shown (as we do in
sec. 2.6) that when log |F| is small relative to the size of the training set (so in particular, |F| is finite,
although similar results can be shown for infinite F’s that are small in a certain sense (Vapnik, 2000)),
the training error is close to the test error for all functions f ∈ F simultaneously. This lets us focus
on the algorithmic problem of minimizing the training error while being reasonably certain that the test
error will be approximately minimized as well. The cost of restricting f to F is that the best attainable
test error may be inadequately high for our needs.

Since the necessary size of the training set grows with F , we want F to be as small as possible. At
the same time, we want F to be as large as possible to improve the performance of its best function. In
practice, it is sensible to choose the largest possible F that can be supported by the size of the training
set and the available computation.

Unfortunately, there is no general recipe for choosing a good F for a given machine learning prob-
lem. The theoretically best F consists of just one function that achieves the best test error among all
possible functions, but our ignorance of this function is the reason we are interested in learning in the
first place. The more we know about the problem and about its high-performing functions, the more we
can restrict F while being reasonably sure that it contains at least one good function. In practice, it is
best to experiment with function classes that are similar to ones that are successful for related problems1.

2.2 Optimization

Once we have chosen an appropriate F and collected a sufficiently large training set, we are faced with
the problem of finding a function f ∈ F that has a low training error. Finding the global minimizer of
the training error for most interesting choices of F is NP -hard, but in practice there are many choices
of smoothly-parameterized Fs that are relatively easy to optimize with gradient methods.

Let the function fθ ∈ F be a differentiable parameterization of F where θ ∈ R|θ| and |θ| is the
number of parameters. Let us also assume that the loss L is a differentiable function of its arguments.
Then the function

TrainS(θ) ≡ TrainS(fθ) = E(x,y)∼S [L(fθ(x); y)] (2.5)

is differentiable. If fθ(x) is easy to compute, then it immediately follows that the training error TrainS(θ)
and its derivative ∇TrainS(θ) can be computed at the cost of |S| evaluations of fθ(x) and ∇fθ(x). In
this setting, we can use Gradient Descent (GD), which is a greedy method for minimizing arbitrary dif-
ferentiable functions. Given a functionF (θ), GD operates as follows:

1: for iterations do
2: θt+1 ← θt −∇F (θt) · ε
3: t← t+ 1
4: end for

The learning rate ε is a tunable problem-dependent parameter that has a considerable effect on the speed
of the optimization.

1It is important to evaluate a given F with its performance on a set examples called the validation set which is distinct from
the test set. Otherwise, our choice of F will be informed by the spurious regularities of the test set, which can cause serious
problems when the test set is small.
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GD has been extensively analyzed in a number of settings. If the objective function F is a positive
definite quadratic, then GD will converge to its global minimum at a rate of

F (θt)− F (θ∗) = O((1− 1/R)t) (2.6)

where θ∗ is the global minimum, R is the condition number of the quadratic (given by the ratio of the
largest to the smallest eigenvalues R = λmax/λmin), provided that ε = 1/λmax. When F is a general
convex function, the rate of convergence can be bounded by

F (θt)− F (θ∗) ≤ ‖θ1 − θ∗‖
2

εt
(2.7)

provided that 1/ε is greater than the Lipshitz coefficient of ∇F ,2 which in the quadratic case is λmax

(Nocedal and Wright, 1999). This rate of convergence is valid across the entire parameter space and not
just in the neighborhood of the global minimum, and at first sight appears to be weaker than eq. 2.6 since
it is not exponential. However, it is easy to show that when F has a finite condition number, eq. 2.6 is a
direct consequnce of eq. 2.7 3.

Stochastic Gradient Descent (SGD) is an important generalization of GD that is well-suited for
machine learning applications. Unlike standard GD, which computes∇TrainS(θ) on the entire training
set S, SGD uses the unbiased approximation ∇Trains(θ), where s is a randomly chosen subset of the
training set S. The “minibatch” s can consist of as little as one training case, but using more training
cases is more cost-effective. SGD tends to work better than GD on large datasets where each iteration
of GD is very expensive, and for very large datasets it is not uncommon for SGD to converge in the time
that it takes batch GD to complete a single parameter update. On the other hand, batch GD is trivially
parallelizeable, so it is becoming more attractive due to the availability of large computing clusters.

Momentum methods (Hinton, 1978; Nesterov, 1983) use gradient information to update the param-
eters in a direction that is more effective than steepest descent by accumulating speed in directions that
consistently reduce the cost function. Formally, a momentum method maintains a velocity vector vt
which is updated as follows:

vt+1 = µvt − ε∇F (θt) (2.8)

θt+1 = θt + vt+1 (2.9)

The momentum decay coefficient µ ∈ [0, 1) controls the rate at which old gradients are discarded. Its
physical interpretation is the “friction” of the surface of the objective function, and its magnitude has an
indirect effect on the magnitude of the velocity.

2The Lipshitz coefficient of an arbitrary functionH : Rm → Rk is defined as the smallest positive real number L such that
‖H(x)−H(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rm; if no such real number exists, the Lipshitz constant is defined to be infinite.
If L ≤ ∞, the function is continuous.

3 We can prove an even stronger statement using proof similar to that of O’Donoghue and Candes (2012):

Theorem 2.2.1. If F is convex, ∇F is L-Lipshitz (so ‖∇F (θ) − ∇F (θ′)‖ ≤ L‖θ − θ′‖ for all θ, θ′), and F is σ-strongly
convex (so, in particular, σ‖θ − θ∗‖2/2 ≤ F (θ) − F (θ∗) for all θ, where θ∗ is the minimum of F ), then F (θt) − F (θ∗) <
(1− σ/6L)t.

Note that when F is quadratic, the above condition implies that its condition number is bounded by L/σ (recall that
ε = 1/L).

Proof. The definition of strong convexity gives ‖θ1 − θ∗‖2 < 2/σ(F (θ1) − F (θ∗)). Applying it into eq. 2.7, we get
F (θt)− F (θ∗) < 2L/(tσ)(F (θ1)− F (θ∗)). Thus after t = 4L/σ iterations, F (θt)− F (θ∗) < (F (θ1)− F (θ∗))/2. Since
this bound can be applied at any point, we get that F (θt) − F (θ∗) is halved every 4L/σ iterations. Algebraic manipulations
imply a convergence rate of (1− σ/6L)t.
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Figure 2.1: A momentum method accumulates velocity in directions of persistent reduction, which
speeds up the optimization.

A variant of momentum known as Nesterov’s accelerated gradient (Nesterov, 1983, described in
detail in Chap. 7) has been analyzed with certain schedules of the learning rate and of the momentum
decay coefficient µ, and was shown by Nesterov (1983) to exhibit the following convergence rate for
convex functions F whose gradients are noiseless:

F (θt)− F (θ∗) ≤ 4
‖θ1 − θ∗‖2

ε(t+ 2)2
(2.10)

where, as in eq. 2.7, 1/ε is larger than the Lipshitz constant of∇F . This convergence rate is also global
and does not assume that the parameters were initialized in the neighborhood of the global minimum.4

Momentum methods are faster than GD because they accelerate the optimization along directions
of low but persistent reduction, similarly to the way second-order methods accelerate the optimization
along low-curvature directions (but second-order methods also decelerate the optimization along high-
curvature directions, which is not done by momentum methods; Nocedal and Wright, 1999) (fig. 2.1).
In fact, it has been shown that when Nesterov’s accelerated gradient is used with the optimal momentum
on a quadratic, its convergence rate is identical to the worst-case convergence rate of the linear conju-
gate gradient (CG) as a function of the condition number (O’Donoghue and Candes, 2012; Shewchuk,
1994; Nocedal and Wright, 1999). This may be surprising, since CG is the optimal iterative method
for quadratics (in the sense that it outperforms any method that uses linear combinations of previously-
computed gradients; although CG can be obtained from eqs. 2.8-2.9 using a certain formula for µ
(Shewchuk, 1994)). Thus momentum can be seen as a second-order method that accelerates the op-
timization in directions of low-curvature. They can also decelerate the optimization along the high-
curvature directions by cancelling the high-frequency oscillations that cause GD to diverge.

Convex objective functions F (θ) are insensitive to the initial parameter setting, since the optimiza-
tion will always recover the optimal solution, merely taking longer time for worse initializations. But,
given that most objective functions F (θ) that we want to optimize are non-convex, the initialization
has a profound impact on the optimization and on the quality of the solution. Chapter 7 shows that
appropriate initializations play an even greater role than previously believed for both deep and recurrent
neural networks. Unfortunately, it is difficult to design good random initializations for new models, so
it is important to experiment with many different initializations. In particular, the scale of the initial-
ization tends to have a large influence for neural networks (see Chap. 7 and Jaeger and Haas (2004);
Jaeger (2012b)). For deep neural networks (sec. 2.4), the greedy unsupervised pre-training of Hinton
et al. (2006), Hinton and Salakhutdinov (2006), and Bengio et al. (2007) is an effective technique for
initializing the parameters, which greedily trains parameters of each layer to model the distribution of

4An argument similar to the one in footnote 3 can show that the convergence rate of a quadratic with condition number
R is (1 −

√
1/R)t, provided that the momentum is reset to zero every

√
R iterations. See O’Donoghue and Candes (2012)

for more details. Note that it is also the worst-case convergence rate of the linear conjugate gradient (Shewchuk, 1994) as a
function of the condition number.
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activities in the layer below.

2.3 Computing Derivatives

In this section, we explain how to efficiently compute the derivatives of any function F (θ) that can
be evaluated with a differentiable computational graph (Baur and Strassen, 1983; Nocedal and Wright,
1999). In this section, the term “input” refers to the parameters rather than to an input pattern, because
we are interested in computing derivatives w.r.t. the parameters.

Consider a graph over N nodes, 1, . . . , N . Let I be the set of the input nodes, and let the last node
N be the output node (the formalism allows for N ∈ I, but this makes for a trivial graph). Each node
i has a set of ancestors Ai (with numbers less than i) that determine its inputs, and a differentiable
function fi whose value and Jacobian are easy to compute. Then the following algorithm evaluates a
computational graph:

1: distribute the input θ across the input nodes zi for i ∈ I
2: for i from 1 to N if i 6∈ I do
3: xi ← concat

j∈Ai
zj

4: zi ← fi(xi)
5: end for
6: output F (θ) = zN

where every node zi can be vector-valued (this includes the output node i = N , so F can be vector-
valued). Thus the computational graph formalism captures nearly all models that occur in machine
learning.

If we assume that our training error has the form L(F (θ)) = L(zN ) where L is the loss func-
tion and F (θ) is the vector of the model’s predictions on all the training cases, the derivative of
L(zN ) w.r.t. θ is given by F ′(θ)>L′(zN ). We now show how the backpropagation algorithm com-
putes the Jacobian-vector product F ′(θ)>w for an arbitrary vector w of the dimensionality of zN :

1: dzN ← w
2: dzi ← 0 for i < N
3: for i from N downto 1 if i 6∈ I do
4: dxi ← f ′i(xi)

> · dzi
5: for all j ∈ Ai do
6: dzj ← dzj + unconcatjdxi
7: end for
8: end for
9: concatenate dzi for i ∈ I onto dθ

10: output dθ, which is equal to F ′(θ)>w
where unconcat is the inverse of concat: if xi = concatj∈Ai zj , then unconcatjxi = zj . The correct-
ness of the above algorithm can be proven by structural induction over the graph, which would show
that each node dzi is equal to ∂zN

∂zi

>
w as we descend from the node dzN , where the induction step is

proven with the chain rule. By setting w to L′(zN ), the algorithm computes the sought-after derivative.
A different form of differentiation known as forward differentiation computes the derivative of each

zi w.r.t. a linear combination of the parameters. Given a vector v (whose dimensionality matches
θ’s), we let Rzi be the directional derivative ∂zi/∂θ · v (the notation is from Pearlmutter (1994)).
Then the following algorithm computes the directional derivative of each node in the graph as fol-
lows:
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1: distribute the input v across the input nodes Rzi for i ∈ I
2: for i from 1 to N if i 6∈ I do
3: Rxi ← concat

j∈Ai
Rzj

4: Rzi ← f ′i(xi) ·Rxi
5: end for
6: output RzN , which is equal to F ′(θ) · v

The correctness of this algorithm can likewise be proven by structural induction over the graph, proving
that Rzi = ∂zi/∂θ · v for each i, starting from i ∈ I and reaching node zN . Unlike backward differen-
tiation, forward differentiation does not need to store the state variables zi, since they can be computed
together with Rzi and be discarded once used.

Thus automatic differentiation can compute the Jacobian-vector products of any function expressible
as a computational graph at the cost of roughly two function evaluations. The Theano compiler (Bergstra
et al., 2010) computes derivatives in precisely this manner automatically and efficiently.

2.4 Feedforward Neural Networks

The Feedforward Neural Network (FNN) is the most basic and widely used artificial neural network. It
consists of a number of layers of artificial neurons (termed units) that are arranged into a layered con-
figuration (fig. 2.2). Of particular interest are deep neural networks, which are believed to be capable of
representing the highly complex functions that achieve high performance on difficult perceptual prob-
lems such as vision and speech (Bengio, 2009). FNNs have achieved success in a number of domains
(e.g., Salakhutdinov and Hinton, 2009; Glorot et al., 2011; Krizhevsky and Hinton, 2011; Krizhevsky,
2010), most notably in large vocabulary continuous speech recognition (Mohamed et al., 2012), where
they were directly responsible for considerable improvements over previous highly-tuned, state-of-the-
art systems.

Formally, a feedforward neural network with ` hidden layers is parameterized by ` + 1 weight
matrices (W0, . . . ,W`) and ` + 1 vectors of biases (b1, . . . , b`+1). The concatenation of the weight
matrices and the biases forms the parameter vector θ that fully specifies the function computed by
the network. Given an input x, the feedforward neural network computes an output z as follows:

1: set z0 ← x
2: for i from 1 to `+ 1 do
3: xi ←Wi−1zi−1 + bi
4: zi ← e(xi)
5: end for
6: Output z ← z`

Here e(·) is some nonlinear function such as the element-wise sigmoid sigmoid(xj) = 1/(1+exp(−xj)).
When e(·) is a sigmoid function, it can be used to implement Boolean logic, which allows deep and

wide feedforward neural networks to implement arbitrary Boolean circuits and hence arbitrary compu-
tation subject to some time and space constraints. But while we cannot hope to always train feedforward
neural networks so deep from labelled cases alone (provably so, under certain cryptographic assump-
tions (Kearns and Vazirani, 1994)5), wide and slightly deep networks (3-5 layers) are often easy to train
in practice with SGD while being moderately expressive.

5Intuitively, given a public key, it is easy to generate a large number of (encryption, message) pairs. If circuits were
learnable, we could learn a circuit that could map an encryption to its secret message with high accuracy (since such a circuit
exists).
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Figure 2.2: The feedforward neural network.

FNNs are trained by minimizing the training error w.r.t. the parameters using a gradient method,
such as SGD or momentum.

Despite their representational power, deep FNNs have been historically considered very hard to
train, and until recently have not enjoyed widespread use. They became the subject of intense attention
thanks to the work of Hinton and Salakhutdinov (2006) and Hinton et al. (2006), who introduced the idea
of greedy layerwise pre-training, and successfully applied deep FNNs to a number of challenging tasks.
Greedy layerwise pre-training has since branched into a family of methods (Hinton et al., 2006; Hinton
and Salakhutdinov, 2006; Bengio et al., 2007), all of which train the layers of a deep FNN in order,
one at time, using an auxiliary objective, and then “fine-tune” the network with standard optimization
methods such as stochastic gradient descent. More recently, Martens (2010) has attracted considerable
attention by showing that a type of truncated-Newton method called Hessian-free optimization (HF) is
capable of training deep FNNs from certain random initializations without the use of pre-training, and
can achieve lower errors for the various auto-encoding tasks considered in Hinton and Salakhutdinov
(2006). But recent results described in Chapter 7 show that even very deep neural networks can be
trained using an aggressive momentum schedule from well-chosen random initializations.

It is possible to implement the FNN with the computational graph formalism and to use backward
automatic differentiation to obtain the gradient (which is done if the FNN is implemented in Theano
(Bergstra et al., 2010)), but it is also straightforward to program the gradient directly:

1: dz` ← dL(z`; y)/dz`
2: for i from `+ 1 downto 1 do
3: dxi ← e′(xi) · dzi
4: dzi−1 ←W>i−1dxi
5: dbi ← dxi
6: dWi−1 ← dxiz

>
i−1

7: end for
8: Output [dW0, . . . , dW`, db1, . . . , db`+1]

2.5 Recurrent Neural Networks

We are now ready to define the Recurrent Neural Network (RNN), the central object of study of this
thesis. The standard RNN is a nonlinear dynamical system that maps sequences to sequences. It is pa-
rameterized with three weight matrices and three bias vectors [Whv,Whh,Woh, bh, bo, h0] whose con-
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Figure 2.3: A Recurrent Neural Network is a very deep feedforward neural network that has a layer for
each timestep. Its weights are shared across time.

catenation θ completely describes the RNN (fig. 2.3). Given an input sequence (v1, . . . , vT ) (which we
denote by vT1 ), the RNN computes a sequence of hidden states hT1 and a sequence of outputs zT1 by the
following algorithm:

1: for t from 1 to T do
2: ut ←Whvvt +Whhht−1 + bh
3: ht ← e(ut)
4: ot ←Wohht + bo
5: zt ← g(ot)
6: end for

where e(·) and g(·) are the hidden and output nonlinearities of the RNN, and h0 is a vector of parameters
that store the very first hidden state. The loss of the RNN is usually a sum of per-timestep losses:

L(z, y) =
T∑
t=1

L(zt; yt) (2.11)

The derivatives of the RNNs are easily computed with the backpropagation through time algorithm
(BPTT; Werbos, 1990; Rumelhart et al., 1986):

1: for t from T downto 1 do
2: dot ← g′(ot) · dL(zt; yt)/dzt
3: dbo ← dbo + dot
4: dWoh ← dWoh + doth

>
t

5: dht ← dht +W>ohdot
6: dzt ← e′(zt) · dht
7: dWhv ← dWhv + dztv

>
t

8: dbh ← dbh + dzt
9: dWhh ← dWhh + dzth

>
t−1

10: dht−1 ←W>hhdzt
11: end for
12: Return dθ = [dWhv, dWhh, dWoh, dbh, dbo, dh0].

2.5.1 The difficulty of training RNNs

Although the gradients of the RNN are easy to compute, RNNs are fundamentally difficult to train, espe-
cially on problems with long-range temporal dependencies (Bengio et al., 1994; Martens and Sutskever,
2011; Hochreiter and Schmidhuber, 1997), due to their nonlinear iterative nature. A small change to
an iterative process can compound and result in very large effects many iterations later; this is known
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colloquially as “the butterfly-effect”. The implication is that in an RNN, the derivative of the loss func-
tion at one time can be exponentially large with respect to the hidden activations at a much earlier time.
Thus the loss function is very sensitive to small changes, so it becomes effectively discontinuous.

RNNs also suffer from the vanishing gradient problem, first described by Hochreiter (1991) and

Bengio et al. (1994). Consider the term
∂L(zT ; yT )

∂Whh
, which is easy to analyze by inspecting line 10 of

the BPTT algorithm:

∂L(zT ; yT )

∂Whh
=

T∑
t=1

dzth
>
t−1 (2.12)

where

dzt =

(
T∏

τ=t+1

W>hhe
′(zt)

)(
W>ohg

′(ot)
∂L(zT ; yT )

∂pT

)
(2.13)

If all the eigenvalues of Whh are considerably smaller than 1, then the contributions dzth>t−1 to dWhh

will rapidly diminish because dzt tends to zero exponentially as T − t increases. The latter phenomenon
is known as the vanishing gradient problem, and it is guaranteed to occur in any RNN that can store one
bit of information indefinitely while being robust to at least some level of noise (Bengio et al., 1994),
a condition that ought to be satisfied by most RNNs that perform interesting computation. A vanishing
dzt is undesirable, because it turns BPTT into truncated-BPTT, which is likely incapable of training
RNNs to exploit long-term temporal structure (see sec. 2.8.6).

The vanishing and the exploding gradient problems make it difficult to optimize RNNs on sequences
with long-range temporal dependencies, and are possible causes for the abandonment of RNNs by ma-
chine learning researchers.

2.5.2 Recurrent Neural Networks as Generative models

Generative models are parameterized families of probability distributions that extrapolate a finite train-
ing set to a distribution over the entire space. They have many uses: good generative models of spec-
trograms can be used to synthesize speech; generative models of natural language can improve speech
recognition by deciding between words that the acoustic model cannot accurately distinguish; and im-
prove machine translation by evaluating the plausibility of a large number of candidate translations in
order to select the best one.

An RNN defines a generative model over sequences if the loss function satisfiesL(zt; yt) = − log p(yt; zt)
for some parameterized family of distributions p(·; z) and if yt = vt+1. This defines the following dis-
tribution over sequences vT1 :

P (vt|vt−11 ) ≡ P (vt; zt) (2.14)

P (vT1 ) =
T∏
t=1

P (vt|vt−11 ) ≡
T∏
t=1

P (vt; zt−1) (2.15)

where z0 is an additional parameter vector that specifies the distribution over the first timestep of the
sequence, v1. This equation defines a valid distribution because zt is a function of vt1 and is independent
of vTt+1. Samples from P (vT1 ) can be obtained by sampling the conditional distribution vt ∼ P (vt|vt−11 )
sequentially, by iterating from t = 1 to T . The loss function is precisely equivalent to the average
negative log probability of the sequences in the training set:

TrainS(θ) = Ev∼S [− logPθ(v)] (2.16)
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where in this equation, the dependence of P on the parameters θ is explicit.
The log probability is a good objective function to optimize if we wish to fit a distribution to data.

Assuming the data distribution D is precisely equal to Pθ∗ for some θ∗ and that the mapping θ → Pθ
is one-to-one, it is meaningful to discuss the rate at which our parameter estimates converge to θ∗ as
the size of the training set increases. In this setting, if the log probability is uniformly bounded across
θ, the maximum likelihood estimator (i.e., the parameter setting maximizing eq. 2.16) is known to have
the fastest possible rate of convergence among all possible ways of mapping data to parameters (in a
minimax sense over the parameters) when the size of the training set is sufficiently large (Wasserman,
2004), which justifies its use. In practice, the true data distribution D cannot usually be represented by
any setting of the parameters in the model Pθ∗ , but the average log probability objective is still used.

2.6 Overfitting

The term overfitting refers to the gap between the training error TrainS(f) and the test error TestD(f).
We mentioned earlier that by restricting the functions of consideration f to a class of functions F we
control overfitting and address the generalization problem. Here we explain how limiting F accom-
plishes this.

Theorem 2.6.1. If F is finite and the loss is bounded L(z; y) ∈ [0, 1], then overfitting is uniformly
bounded with high probability over draws S from the training set (Kearns and Vazirani, 1994; Valiant,
1984):

PrS∼D|S|

[
TestD(f)− TrainS(f) ≤

√
log |F|+ log 1/δ

|S|
for all f ∈ F

]
> 1− δ (2.17)

The result suggests that when the training set is larger than log |F|, then every training error will be
close to every test error. The log |F| term in the bound formally justifies the intuition that each training
case carries a constant number of bits about the best function in F .

Proof. We begin with the proof’s intuition. The central limit theorem ensures that the training error
TrainS(f) is centred at TestD(f) and has Gaussian tails of size 1/

√
|S| (here we rely on L(z; y) ∈

[0, 1]). This means that, for a single function, the probability that its training error deviates from its test
error by more than log |F|/

√
|S| is exponentially small in log |F|. Hence the training error is fairly

unlikely to deviate by more than log |F|/
√
|S| for |F| functions simultaneously.

This intuition can be quantified by means of a one-sided Chernoff or Hoffeding bound for a single
fixed f (Lugosi, 2004; Kearns and Vazirani, 1994; Valiant, 1984):

PrS∼D|S| [TestD(f)− TrainS(f) > t] ≤ exp(−|S|t2) (2.18)

Applying the union bound, we can immediately control the maximal possible overfitting:

Pr [TestD(f)− TrainS(f) > t for some f ∈ F ] = Pr [∪f∈F{TestD(f)− TrainS(f) > t}]

≤
∑
f∈F

Pr [TestD(f)− TrainS(f) > t]

≤ |F| exp(−|S|t2)
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If we set the probability of failure Pr [TestD(f)− TrainS(f) > t for some f ∈ F ] to δ, we can obtain
an upper bound for t:

δ ≤ |F| exp(−|S|t2)
log(δ)− log |F| ≤ −|S|t2

log
1

δ
+ log |F| ≥ |S|t2

t ≤

√
log 1/δ + log |F|

|S|

The above states that with probability at least 1−δ, there is no function f ∈ F whose overfitting exceeds√
log 1/δ + log |F|

|S|
.

This is one of the simplest learning theoretic bounds (Kearns and Vazirani, 1994), and although
formally it is only applicable to finite F , we observe that it trivially applies to any implementation of
any parametric model that uses the common 32 or 64-bit floating point representation for its parameters.
These implementations work with finite subsets of F that have at most 264|θ| different elements (which
can be RNNs, FNNs, or other models), so the theorem applies and guarantees that such implementations
will not overfit if the number of labelled cases exceeds the number of its parameters by some constant
factor. Although this bound is pessimistic, it provides a formal justification for a heuristic practice called
“parameter counting”, where number of parameters is compared to the number of labels in the training
set in order to predict the severity of overfitting.

It should be emphasized that this theorem does not suggest that learning will necessarily succeed,
since it could fail if the training error of each f ∈ F is unacceptably high. It is therefore important for
F to be well-chosen so that at least one of its functions achieves low training (and hence test) error.

It should also be emphasized that this result does not mean that overfitting must occur when |S| �
|θ|. In these cases, generalization may occur for other reasons, such as the inability of the optimization
method to fully exploit the neural network’s capacity, or the relative simplicity of the dataset.

2.6.1 Regularization

There are several other techniques for preventing overfitting. A common technique is regularization,
which replaces the training error TrainS(θ) with TrainS(θ) + λR(θ), where R(·) is a function that
penalizes “overly complex” models (as determined by some property of θ). A common choice for R(θ)
is ‖θ‖2/2.

While the method of regularization seems to be different from working with subsets of F , it turns
out to be closely related to the use of the smaller function class Fλ = {fθ : R(θ) < λ} and is equivalent
when TrainS(θ) and R(θ) are convex functions of θ.

Theorem 2.6.2. Assume that TrainS(θ) and R(θ) are smooth. Then for every local minimum θ∗ of

TrainS(θ) s.t. R(θ) ≤ λ (2.19)

there exists a λ′ such that θ∗ is a local minimum of

TrainS(θ) + λ′R(θ) (2.20)
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Figure 2.4: A Restricted Boltzmann Machine.

If TrainS(θ) andR(θ) are convex functions of θ, then every local minimum is also global minimum,
and as a result, the method of regularization and restriction are equivalent up to the choice of λ. Their
equivalence breaks down in the presence of multiple local minima.

Proof. Let λ be given, and let θ∗ be a local minimum of eq. 2.19. Then either R(θ∗) < λ or R(θ∗) = λ.
If R(θ∗) < λ, then the choice λ′ = 0 makes θ∗ a local minimum of eq. 2.20.
When R(θ∗) = λ, consider the Lagrange function for the problem of minimizing

TrainS(θ) s.t. R(θ) = λ (2.21)

which is given by
L(θ, µ) = TrainS(θ) + µ · (R(θ)− λ) (2.22)

A basic property of Lagrange functions states that if θ∗ is a local minimum of eq. 2.21, then there exists
µ∗ such that

∇θL(θ∗, µ∗) = 0 (2.23)

Eq. 2.23 implies that ∇θTrainS(θ∗) + µ∗∇θR(θ∗) = 0, so θ∗ is a local minimum of the regularized
objective TrainS(θ) + µ∗R(θ) as well.

The converse (that for every local minimum θ∗ of TrainS(θ) + λR(θ) there exists a λ′ such that θ∗
is a local minimum of TrainS(θ) subject to R(θ) < λ′) can be proved with a similar method.

2.7 Restricted Boltzmann Machines

The Restricted Boltzmann Machine, or RBM, is a parameterized family of probability distributions over
binary vectors. It defines a joint distribution over v ∈ {0, 1}Nv and h ∈ {0, 1}Nh via the following
equation (fig. 2.4):

P (v, h) ≡ Pθ(v, h) ≡
exp

(
h>Wv + v>bv + h>bh

)
Z(θ)

(2.24)

where the partition function Z(θ) is given by

Z(θ) =
∑

v∈{0,1}Nv

∑
h∈{0,1}Nh

exp
(
h>Wv + v>bv + h>bh

)
(2.25)

Here θ = [W, bv, bh] is the parameter vector. Thus each setting of θ has a corresponding RBM distribu-
tion Pθ.
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The partition function Z(θ) is an sum of exponentially many terms and cannot be efficiently ap-
proximated to a constant multiplicative factor unless P = NP (Long and Servedio, 2010). This makes
the RBM difficult to handle, because we cannot evaluate the RBM’s objective function and measure
the progress of learning. Nevertheless, it enjoys considerable popularity despite its intractability for
two reason: first, the RBM can learn excellent generative models, and its samples often “look like” the
training (and test) data (Hinton, 2002); and second, the RBM plays an important role in the training
of Deep Belief Networks (Hinton et al., 2006; Hinton and Salakhutdinov, 2006), by acting as a good
initialization for the FNN. The ease of posterior inference is another attractive feature since the distri-
butions P (h|v) and P (v|h) are product distributions (or factorial distributions) and have the following
simple form (recall that sigmoid(x) = 1/(1 + exp(−x))):

P (hi = 1|v) = sigmoid((Wv + bh)i) (2.26)

P (vj = 1|h) = sigmoid((W>h+ bv)j) (2.27)

To derive these equations, let t = Wv + bh and c =
1

Z(θ)P (v)
exp(v>bv):

P (h|v) = P (h, v)/P (v) (2.28)

= exp
(
h>(Wv + bh) + v>bv

) 1

Z(θ)P (v)
= exp

(
h>t

)
· c (2.29)

= exp

(
Nh∑
i=1

hi · ti

)
· c =

Nh∏
i=1

exp(hiti) · c (2.30)

Thus P (h|v) is a product distribution. By treating eq. 2.30 as a function of hi ∈ {0, 1} and normalizing
it so that it sums to 1 over its domain {0, 1}, we get

P (hi|v) =
exp(ti · hi) · c

exp(ti · 0) · c+ exp(ti · 1) · c
=

1

exp(ti · (0− hi)) + exp(ti · (1− hi))

=
1

1 + exp(ti · ([[hi = 0]]− [[hi = 1]]))
= sigmoid(ti · (2hi − 1))

= sigmoid((Wv + bh)i · (2hi − 1)) (2.31)

where [[X]] is 1 if X is true and 0 otherwise. A similar derivation applies to the other conditional
distribution.

As a generative model, the RBM can be trained by maximizing the average log probability of a
training set S:

TrainS(θ) = Ev∼S [logPθ(v)] (2.32)

We will maximize the RBM’s average log probability with a gradient method, so we need to compute
the derivative w.r.t. the RBM’s parameters. Letting G(v, h) = h>Wv + b>v v + b>h h and noticing that
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P (v, h) = exp(G(v, h))/Z(θ), we can compute the derivatives of TrainS(θ) w.r.t. W as follows:

∇WTrains(θ) = Ev∼S [∇W logP (v)] = Ev∼S

[
∇W log

∑
h

P (v, h)

]

= Ev∼S

[
∇W log

∑
h

exp(G(v, h))−∇W logZ(θ)

]

= Ev∼S

[
∇W

∑
h exp(G(v, h))∑

h′ exp(G(v, h′))

]
−∇W log

∑
v,h

exp(G(v, h))

= Ev∼S

[∑
h

exp(G(v, h))∇WG(v, h)∑
h′ exp(G(v, h′))

]
−
∑

v,h∇W exp(G(v, h))∑
v′,h′ exp(G(v′, h′))

= Ev∼S

[∑
h

P (h|v)∇WG(v, h)

]
−
∑
v,h

exp(G(v, h))∇WG(v, h)∑
v′,h′ exp(G(v′, h′))

= Ev∼S
[
Eh∼P (·|v)[∇WG(v, h)]

]
−
∑
v,h

P (v, h)∇WG(v, h)

= Ev∼S,h∼P (·|v)[∇WG(v, h)]−Ev,h∼P [∇WG(v, h)]

We finish by noticing that ∇WG(v, h) = hv>. An identical derivation yields the derivatives w.r.t. the
biases, where we use∇bhG(v, h) = h and ∇bvG(v, h) = v.

These derivatives consist of expectations that can be approximated using unbiased samples from
S(v)P (h|v) and P (v, h). Unsurprisingly, it is difficult to do, because the objective can be estimated by
an integral of unbiased derivative estimates. Indeed (assuming P 6= #P ), there is no efficient method
for drawing approximately-unbiased samples from P (v, h) that is valid for every setting of the RBM’s
parameters (Long and Servedio, 2010).

Nonetheless, it is possible to train RBMs reasonably well with Contrastive Divergence (CD). CD
is an approximate parameter update (Hinton, 2002) that works well in practice. CD computes a pa-
rameter update by replacing the model distribution P (h|v)P (v), which is difficult to sample, with the
distribution P (h|v)Rk(v) which is easy to sample. Rk(v) is sampled by running a Markov chain that is
initialized to the empirical data distribution S and is followed by k-steps of some transition operator T
that converges to the distribution P (v):

1: randomly pick v0 from the training set S
2: for i from 1 to k do
3: vi ∼ T (·|vi−1)
4: end for
5: return vk

The above algorithm computes a sample fromRk. The value of k is arbitrary, since k steps of a transition
operator T (·|v) can be combined to one step of the transition operator T k(·|v). However, it is customary
to use the term “CDk” to a CD update that is based on k steps of the above algorithm with some simple
T .

As k → ∞, the Markov chain T converges to P , and hence Rk → P . Consequently, the qual-
ity of the parameter updates computed by CD increases, although the benefit of increasing k quickly
diminishes.

The partition function of RBMs was believed to be difficult to estimate in practical settings until
Salakhutdinov and Murray (2008) applied Annealed Importance Sampling (Neal, 2001) to obtain an
unbiased estimate of it. Their results showed that CD1 is inferior to CD3, which in turn is inferior to
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CD25 for fitting RBMs to the MNIST dataset. Thus the best generative models can be obtained only
with fairly expensive parameter updates that are derived from CD. Note that it is possible that the results
of Salakhutdinov and Murray (2008) have substantial variance and that the true value of the partition
function is much larger than reported, but there is currently no evidence that it is the case.

The RBM can be slightly modified to allow the vector v to take real values; one way of achieving
this is by modifying the RBM’s definition as follows:

P (v, h) =
exp(−‖v‖2/2σ2 + v>bv + h>bh + h>Wv)

Z(θ)
(2.33)

This equation does not change the form of the gradients and the conditional distribution P (h|v). The
only change it introduces is in the conditional distribution P (v|h), which is now equal to a multivariate
Gaussian with parameters N ((bv + W>h)σ2, Iσ2). See Welling et al. (2005) and Taylor et al. (2007)
for more details and generalizations.

2.7.1 Adding more hidden layers to an RBM

In this section we describe how to improve an ordinary RBM by introducing additional hidden layers,
and creating a “better” representation of the data, as described by Hinton et al. (2006). This is useful for
making the model more powerful and for allowing features of features.

Let P (v, h) denote the joint distribution defined by the RBM. The idea is to get another RBM,
Q(h, u), which has h as its visible and u as its hidden variables, to learn to model the aggregated
posterior distribution, Q̃(h), of the first RBM:

Q̃(h) ≡
∑
v

P (h|v)S(v). (2.34)

When a single RBM is not an adequate model for v, the aggregated posterior Q̃(h) typically has
many regularities that can be modelled with another model. Thus provided Q(h) approximates Q̃(h)
better than P (h) does, it can be shown that the augmented model MPQ(v, h, u) = P (v|h)Q(h, u) is a
better model of the original data than the distribution P (v, h) defined by the first RBM alone (Hinton
et al., 2006). It follows from the definition that MPQ(v, h, u) uses the undirected connections learned
byQ between h and u, but it uses directed connections from h to v. It thus inherits P (v|h) from the first
RBM but discards P (h) from its generative model. Data can be generated from the augmented model
by sampling from Q(h, u) by running a Markov chain, discarding the value of u, and then sampling
from P (v|h) (in a single step) to obtain v. Provided Nu ≥ Nv, the RBM Q can be initialized by using
the parameters from P to ensure that the two RBMs define the same distribution over h. Starting from
this initialization, optimization then ensures that Q(h) models Q̃(h) better than P (h) does.

The second RBM, Q(h, u), learns by fitting the distribution Q̃(h), which is not equivalent to max-
imizing logMPQ(v). Nevertheless, it can be proved (Hinton et al., 2006) that this learning procedure
maximizes a variational lower bound on logMPQ(v). Even though MPQ(v, h, u) does not involve the
conditional P (h|v), we can nonetheless approximate the posterior distribution MPQ(h|v) by P (h|v).
Applying the standard variational bound (Neal and Hinton, 1998), we get

L ≥ EP (h|v),v∼S [logQ(h)P (v|h)] + Hv∼S(P (h|v)). (2.35)

where H(P (h|v)) is the entropy of P (h|v). Maximizing this lower bound with respect to the parameters
of Q whilst holding the parameters of P and the approximating posterior P (h|v) fixed is precisely
equivalent to fitting Q(h) to Q̃(h). Note that the details of Q are unimportant; Q could be any model
and not an RBM. The main advantage of using another RBM is that it is possible to initialize Q(h)
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to be equal to P (h), so the variational bound starts as an equality and any improvement in the bound
guarantees that MPQ(v) is a better model of the data than P (v).

This procedure can be repeated recursively as many times as desired, creating very deep hierarchical
representations. For example, a third RBM, R(u, x) can be used to model the aggregated approximate
posterior over u obtained by

R̃(u) =
∑
v

∑
h

Q(u|h)P (h|v)S(v). (2.36)

Provided R(u) is initialized to be the same as Q(u), the distribution MPQR(h) will be a better model
of Q̃(h) than Q(h), but this does not mean that MPQR(v) is necessarily a better model of S(v) than
MPQ(v). It does mean, however, that the variational lower bound using P (h|v) and Q(u|h) to approx-
imate the posterior distribution MPQR(u|v) will be equal to the variational lower bound to MPQ(v) of
eq. 2.35, and learning R will further improve this variational bound.

2.8 Recurrent Neural Network Algorithms

2.8.1 Real-Time Recurrent Learning

Real-Time Recurrent Learning (RTRL; Williams and Zipser, 1989) is an elegant forward-pass only
algorithm that computes the derivatives of the RNN w.r.t. its parameters at each timestep. Unlike BPTT,
which requires an entire forward and a backward pass to compute a single parameter update, RTRL
maintains the exact derivative of the loss so far at each timestep of the forward pass, without a backward
pass and without the need to store the past hidden states. This property allows it to update the parameters
after each timestep, which makes the learning “online” (as opposed to the “batch” learning of BPTT that
requires an entire forward and a backward pass before the parameters can be updated.

Sadly the computational cost of RTRL is prohibitive, as it uses |θ| concurrent applications of for-
ward differentiation, each of which obtains the derivative of the cumulative loss w.r.t. a single parameter
at every timestep. It requires |θ|/2 times more computation and |θ|/T more memory than BPTT. Al-
though it is possible to make RTRL time-efficient with the aid of parallelization, the amount of resources
required to do so is prohibitive.

2.8.2 Skip Connections

The vanishing gradients problem is one of the main difficulties in the training of RNNs. To mitigate it,
we could reduce the number of nonlinearities separating the relevant past information from the current
hidden unit by introducing direct connections between the past and the current hidden state. Doing so
reduces the number of nonlinearities in the shortest path which makes the learning problem less “deep”
and therefore easier.

One of the earlier uses of skip connections was in the Nonlinear AutoRegressive with eXogenous
inputs method (NARX; Lin et al., 1996), where they improved the RNN’s ability to infer finite state
machines. They were also successfully used by the Time-Delay Neural network (TDNN; Waibel et al.,
1989), although the TDNN was not recurrent and could process temporal information only with the aid
of the skip connections.

2.8.3 Long Short-Term Memory

Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) is an RNN architecture that
elegantly addresses the vanishing gradients problem using “memory units”. These linear units have a
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self-connection of strength 1 and a pair of auxiliary “gating units” that control the flow of information
to and from the unit. When the gating units are shut, the gradients can flow through the memory unit
without alteration for an indefinite amount of time, thus overcoming the vanishing gradients problem.
While the gates never isolate the memory unit in practice, this reasoning shows that the LSTM addresses
the vanishing gradients problem in at least some situations, and indeed, the LSTM easily solves a number
of synthetic problems with pathological long-range temporal dependencies that were previously believed
to be unsolvable by standard RNNs.6 LSTMs were also successfully applied to speech and handwritten
text recognition (Graves and Schmidhuber, 2009, 2005), robotic control (Mayer et al., 2006), and to
solving Partially-Observable Markov Decision Processes (Wierstra and Schmidhuber, 2007; Dung et al.,
2008).

We now define the LSTM. Let N be the number of memory units of the LSTM. At each timestep
t, the LSTM maintains a set of vectors, described in table 2.1, whose evolution is governed by the
following equations:

ht = tanh(Whhht−1 +Whvvt +Whmm̃t−1) (2.37)

igt = sigmoid(Wighht +Wigvvt +Wigmm̃t−1) (2.38)

it = tanh(Wihht +Wivvt +Wimm̃t−1) (2.39)

ot = sigmoid(Wohht +Wovvt +Womm̃t−1) (2.40)

ft = sigmoid(bf +Wfhht +Wfvvt +Wfmm̃t−1) (2.41)

mt = mt−1 � ft + it � igt the input gate allows the memory unit to be updated (2.42)

m̃t = mt � ot the output gate determines if information can leave the unit (2.43)

zt = g(Wyhht +Wymm̃t) (2.44)

The product � denotes element-wise multiplication. Eqs. 2.37-2.41 are standard RNN equations, but
eqns. 2.42-2.43 are the main LSTM-specific equations defining the memory units that describe how the
input and output gates guard the contents of the memory unit. They also describe how the forget gate
can make the memory unit forget its contents.

The gating units are implemented by multiplication, so it is natural to restrict their domain to [0, 1]N ,
which corresponds to the sigmoid nonlinearity. The other units do not have this restriction, so the tanh
nonlinearity is more appropriate.

We have included an explicit bias bf for the forget gates because it is important for them to be
approximately 1 at the early stages of learning, which is accomplished by initializing bf to a large value
(such as 5). If it is not done, it will be harder to learn long range dependencies because the smaller
values of the forget gates will create a vanishing gradients problem.

Since the forward pass of the LSTM is relatively intricate, the equations for the correct derivatives
of the LSTM are highly complex, making them tedious to implement. Fortunately, LSTMs can now be
easily implemented with Theano, which can compute arbitrary derivatives efficiently (Bergstra et al.,
2010).

2.8.4 Echo-State Networks

The Echo-State Network (ESN; Jaeger and Haas, 2004) is a standard RNN that is trained with the ESN
training method, which learns neither the input-to-hidden nor the hidden-to-hidden connections, but sets
them to draws from a well-chosen distribution, and only uses the training data to learn the hidden-to-
output connections.

6We discovered (in Chap. 7) that standard RNNs are capable of learning to solve these problems provided they use an
appropriate random initializaiton.
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variable name description
igt [0, 1]N -valued vector of input gates
it [−1, 1]N -valued vector of inputs to the memory units
ot [0, 1]N -valued vector of output gates
ft [0, 1]N -valued vector of the forget gates
vt Rv-valued input vector
ht [−1, 1]h-valued conventional hidden state
mt RN -valued state of the memory units
m̃t RN -valued memory state available to the rest of the LSTM
zt the output vector

Table 2.1: A list and a description of the variables used by the LSTM.

It may at first seem surprising that an RNN with random connections can be effective, but random
parameters have been successful in several domains. For example, random projections have been used in
machine learning, hashing, and dimensionality reduction (Datar et al., 2004; Johnson and Lindenstrauss,
1984), because they have the desirable property of approximately preserving distances. And, more
recently, random weights have been shown to be effective for convolutional neural networks on problems
with very limited training data (Jarrett et al., 2009; Saxe et al., 2010). Thus it should not be surprising
that random connections are effective at least in some situations.

Unlike random projections or convolutional neural networks with random weights, RNNs are highly
sensitive to the scale of the random recurrent weight matrix, which is a consequence of the exponential
relationship between the scale and the evolution of the hidden states (most easily seen when the hidden
units are linear). Too small recurrent connections cause the hidden state to have almost no memory of
its past inputs, while too large recurrent connections cause the hidden state sequence to be chaotic and
difficult to decode. But when the recurrent connections are sparse and are scaled so that their spectral
radius is slightly less than 1, the hidden state sequence remembers its inputs for a limited but nontrivial
number of timesteps while applying many random transformations to it, which are often useful for
pattern recognition.

Some of the most impressive applications of ESNs are to problems with pathological long range
dependencies (Jaeger, 2012b). It turns out that the problems of Chapter 4 can easily be solved with an
ESN that has several thousand hidden units, provided the ESN is initialized with a semi-random initial-
ization that combines the correctly-scaled random initialization with a set of manually fixed connections
that implement oscillators with various periods that drive the hidden state. 7

Despite its impressive performance on the synthetic problems from Martens and Sutskever (2011),
the ESN has a number of limitations. Its capacity is limited because its recurrent connections are not
learned, so it cannot solve data-intensive problems where high-performing models must have millions of
parameters. In addition, while ESNs achieve impressive performance on toy problems (Jaeger, 2012b),

7 ESNs can trivially solve other problems with pathological long range dependencies using explicit integration units,
whosed dynamics are given by

ht = αht−1 + (1− α) tanh(Whhht−1 +Wvhvt) (2.45)

However, explicit integration trivializes most of the synthetic problems from Martens and Sutskever (2011) (see Jaeger
(2012b)), since if Whh is set to zero and α is set to nearly 1, then hT ≈ (1 − α)

∑T
t=1 tanh(Wvhvt), and simple choices

of the scales of Wvh make it trivial for hT to represent the solution. However, integration is not useful for the memorization
problems of Chapter 4, and when integration is absent (or ineffective), the ESN must be many times larger than the smallest
equivalent standard RNN that can learn to solve these problems (Jaeger, 2012a).
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Figure 2.5: A diagram of the alignment computed by CTC. A neural network makes a prediction
each timestep of the long signal. CTC aligns the network’s predictions to the target label (“hello” in
the figure), and reinforces this alignment with gradient descent. The figure also shows the network’s
prediction of the blank symbol. The matrix in the figure represents the S matrix from the text, which
represents a distribution over the possible alignments of the input image to the label.

the size of high-performing ESNs grows very quickly with the information that the hidden state needs to
carry. For example, the 20-bit memorization problem (Chap. 7) requires an ESN with at least 2000 units
(while being solvable by RNNs that have 100 units whose recurrent connections are allowed to adapt;
Chapter 4). Similarly, the ESN that achieves nontrivial performance on the TIMIT speech recognition
benchmark used 20,000 hidden units (Triefenbach et al., 2010), and it is likely that ESNs achieving
nontrivial performance on language modelling (Sutskever et al., 2011; Mikolov et al., 2010, 2011) will
require even larger hidden states due to the information-intensive nature of the problem. This explana-
tion is consistent with the performance characteristics of random convolutional networks, which excel
only when the number of labelled cases is very small, so systems that adapt all the parameters of the
neural network lose because of overfitting.

But while ESNs do not solve the problem of RNN training, their impressive performance suggests
that an ESN-based initialization could be successful. This is confirmed by the results of Chapter 7.

2.8.5 Mapping Long Sequences to Short Sequences

Our RNN formulation assumes that the length of the input sequence is equal to the length of the output
sequence. It is a fairly severe limitation, because most sequence pattern recognition tasks violate this
assumption. For example, in speech recognition, we may want to map long sequence of frames (where
each frame is a spectrogram segment that can span between 50-200 ms) to the much shorter phoneme
sequence or the even shorter character sequence of the correct transcription. Furthermore, the length of
the target sequence need not directly depend on the length of the input sequence.

The problem of mapping long sequences to short sequences has been addressed by Bengio (1991);
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Bottou et al. (1997); LeCun et al. (1998), using dynamic programming techniques, which was suc-
cessfully applied to handwritten text recognition. In this section, we focus on Connectionist Sequence
Classification (CTC; Graves et al., 2006), which is a more recent embodiment of the same idea. It has
been used with LSTMs to obtain the best results for Arabic handwritten text recognition (Graves and
Schmidhuber, 2009) and the best performance on the slightly easier “online text recognition” problem
(where the text is written on a touch-pad) (Graves et al., 2008).

CTC computes a gradient by aligning the network’s predictions (a long sequence) with the target
sequence (a short sequence), and uses the alignent to provide a target for each timestep of the RNN
(fig. 2.5). This idea is formalized probabilistically as follows. Let there be K distinct output labels,
{1, . . . ,K} for each timestep, and suppose that the RNN (or the LSTM) outputs a sequence of T pre-
dictions. The prediction of each timestep t is a distribution over theK+1 labels (p1t , . . . , p

K
t , p

B
t ) which

includes the K output labels and a special blank symbol B which represents the absence of a prediction.
CTC defines a distribution over sequences (l1, . . . , lM ) (where each symbol li ∈ {1, . . . ,K} and whose
length is M ≤ T ):

P (l|p) =
∑

1≤i1<...<lM≤T

M∏
j=1

p
lj
ij

∏
m 6∈{i1,...,iM}

pBm (2.46)

In other words, CTC defines a distribution over label sequences P (l|p) which is obtained by indepen-
dently sampling a symbol at each timestep t and dropping all the blank symbols B.

We now show that logP (l|p) can be efficiently computed with dynamic programming, so its deriva-
tives can be obtained with automatic differentiation. Recalling that the length of p is T and of l is M ,
the idea is to construct a matrix S of size (M + 1)× (T + 1) whose indicies start with 0, so that every
monotonic path from the bottom-left entry up to the top-right entry corresponds to an alignment of p to
l (fig. 2.5). The entries of the matrix for m > 0 and t > 0 are given by the expression

Sm,t =
∑

1≤i1<...<lm≤t

m∏
j=1

p
lj
ij

∏
j 6∈{i1,...,im},j≤t

pBj (2.47)

It is a useful matrix because its top-right entry satisfies SM,T = P (l|p) and because it is efficiently
computable with dynamic programming:

S0,0 = 1 (2.48)

Sm,0 = 0 m > 0 (2.49)

S0,t = pBt · S0,t−1 t > 0 (2.50)

Sm,t = pBt · Sm,t−1 + plmt · Sm−1,t−1 (2.51)

The S matrix encodes a distribution over alignments, and its gradient reinforces those alignments that
have a relatively high probability. Thus CTC is a latent variable model (with the alignment being the
latent variable) based on the EM algorithm.

Unfortunately, it is not obvious how CTC could be implemented with neural network-like hardware
due to the need to store a large alignment matrix in memory. Hence it is worth devising more neurally-
plausible approaches to alignment, based on the CTC or otherwise.

At prediction time we need to solve the decoding problem, which is the problem of computing the
MAP prediction

arg max
l

P (l|p) (2.52)

Unfortunately the problem is intractable because it is necessary to use dynamic programming to evaluate
P (l|p) for a single l, so classical search techniques such as beam-search are used for approximate
decoding (Graves et al., 2006).
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2.8.6 Truncated Backpropagation Through Time

Truncated backpropagation (Williams and Peng, 1990) is arguably the most practical method for training
RNNs. The earliest use of truncated BPTT was by Elman (1990), and since then truncated-BPTT has
successfully trained RNNs on word-level language modelling (Mikolov et al., 2010, 2011, 2009) that
achieved considerable improvements over much larger N -gram models.

One of the main problems of BPTT is the high cost of a single parameter update, which makes
it impossible to use a large number of iterations. For instance, the gradient of an RNN on sequences
of length 1000 costs the equivalent of a forward and a backward pass in a neural network that has
1000 layers. The cost can be reduced with a naive method that splits the 1000-long sequence into 50
sequences (say) each of length 20 and treats each sequence of length 20 as a separate training case.
This is a sensible approach that can work well in practice, but it is blind to temporal dependencies
that span more than 20 timesteps. Truncated BPTT is a closely related method that has the same per-
iteration cost, but it is more adept at utilizing temporal dependencies of longer range than the naive
method. It processes the sequence one timestep at a time, and every k1 timesteps, it runs BPTT for k2
timesteps, so a parameter update can be cheap if k2 is small. Consequently, its hidden states have been
exposed to many timesteps and so may contain useful information about the far past, which would be
opportunistically exploited. This cannot be done with the naive method.

Truncated BPTT is given below:
1: for t from 1 to T do
2: Run the RNN for one step, computing ht and zt
3: if t divides k1 then
4: Run BPTT (as described in sec. 2.5), from t down to t− k2
5: end if
6: end for



Chapter 3

The Recurrent Temporal Restricted
Boltzmann Machine

In the first part of this chapter, we describe a new family of non-linear sequence models that are sub-
stantially more powerful than hidden Markov models (HMM) or linear dynamical systems (LDS). Our
models have simple approximate inference and learning procedures that work well in practice. Mul-
tilevel representations of sequential data can be learned one hidden layer at a time, and adding extra
hidden layers improves the resulting generative models. The models can be trained with very high-
dimensional, very non-linear data such as raw pixel sequences. Their performance is demonstrated
using synthetic video sequences of two balls bouncing in a box. In the second half of the chapter, we
show how to modify the model to make it easier to train by introducing a deterministic hidden state that
makes it possible to apply BPTT.

3.1 Motivation

Many different models have been proposed for high-dimensional sequential data such as video se-
quences or the sequences of coefficient vectors that are used to characterize speech. Models that use
latent variables to propagate information through time can be divided into two classes: tractable mod-
els for which there is an efficient procedure for inferring the exact posterior distribution over the latent
variables and intractable models for which there is no exact and efficient inference procedure. Tractable
models such as linear dynamical systems and hidden Markov models have been widely applied but they
are very limited in the types of structure that they can model. To make inference tractable when there is
componential hidden state1, it is necessary to use linear models with Gaussian noise so that the posterior
distribution over the latent variables is Gaussian. Hidden Markov Models combine non-linearity with
tractable inference by using a posterior that is a discrete distribution over a fixed number of mutually
exclusive alternatives, but the mutual exclusion makes them exponentially inefficient at dealing with
componential structure: to allow the history of a sequence to impose N bits of constraint on the future
of the sequence, an HMM requires at least 2N nodes. Inference remains tractable in mixtures of linear
dynamical systems (Ghahramani and Hinton, 2000), but if we want to switch from one linear dynami-
cal system to another during a sequence, exact inference becomes intractable (Ghahramani and Hinton,

1A componential hidden state differs from a non-componential hidden state chiefly by its number of possibly configura-
tion. The number of configurations of a componential hidden state are exponential in its size. In contrast, the number of
configuration of a non-componential hidden state, such as the hidden state of the HMM, is linear in its size.

24
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2000). Inference is also tractable in products of hidden Markov models (Brown and Hinton, 2001). 2

To overcome the limitations of the tractable models, many different schemes have been proposed for
performing approximate inference (Isard and Blake, 1996; Ghahramani and Jordan, 1997). Boyen and
Koller (1998) investigated the properties of a class of approximate inference schemes in which the true
posterior density in the latent space is approximated by a simpler “assumed” density such as a mixture
of a modest number of Gaussians (Ihler et al., 2004). At each time step, the model dynamics and/or
the likelihood term coming from the next observation causes the inferred posterior density to become
more complicated, but the inferred posterior is then approximated by a simpler distribution that lies in
the space of assumed distributions. Boyen and Koller showed that the stochastic dynamics attenuates
the approximation error created by projecting into the assumed density space and that this attenuation
typically prevents the approximation error from diverging.

In this chapter we describe a family of generative models for sequential data that can capture many
of the regularities that cannot be modeled efficiently by hidden Markov models or linear dynamical
systems. The key idea is to use an undirected model for the interactions between the hidden and visible
variables. This ensures that the contribution of the likelihood term to the posterior over the hidden
variables is approximately factorial, which greatly facilitates inference. The model family has some
attractive properties:

• It has componential hidden state which means it has an exponentially large state space3.

• It has non-linear dynamics and it can make multimodal predictions.

• There is a very simple on-line filtering procedure which provides a reasonable approximation to
the true conditional distribution over the hidden variables given the data observed so far.

• Even though maximum likelihood learning is intractable, there is a simple and efficient learning
algorithm that finds good values for the parameters.

• There is a simple way to learn multiple layers of hidden variables and this can greatly improve
the overall generative model.

By using approximations for both inference and learning, we obtain a family of models that are much
more powerful than those that are normally used for modeling sequential data. The empirical question
is whether our approximations are good enough to allow us to exploit the power of this family for
modeling real sequences in which each time-frame is high-dimensional and the past has high-bandwidth
non-linear effects on the future.

3.2 The Temporal Restricted Boltzmann Machine

Figure 3.1 shows an RBM that has been augmented by directed connections from previous states of
the visible and hidden units. We call this a Temporal Restricted Boltzmann Machine (TRBM). The
resulting sequence model is defined as a product of standard RBMs conditioned on the previous states
of the hidden and the visible variables. As a result of this definition, the log probability of a sequence
decouples into a sum, where each term is learned separately and efficiently by CD; approximate filtering

2Products of linear dynamical systems are linear dynamical systems and mixtures of hidden Markov models are hidden
Markov models.

3The number of parameters is only quadratic, so there are strong limitations on how the exponentially large state space can
be used, but for sequences in which there are several independent things going on at once, it is easy to use different subsets of
the hidden units to model different components of the sequential structure.
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Figure 3.1: A schematic diagram of the TRBM. It is a directed model with an RBM at each timestep.

is easy (see subsection 3.2.1); and finally, it is straightforward to introduce more hidden layers to the
model, as it is for the RBM.

The TRBM defines a joint distribution over (vt, ht) that is conditional on earlier hidden and visible
states. The effect of these earlier states is to dynamically adjust the effective biases of the visible and
hidden units at time t:

P (vt, ht|vt−1t−m, h
t−1
t−m) =

exp
(
h>t Wvt +Bv(v

t−1
t−m)>vt +Bh(vt−1t−m, h

t−1
t−m)>ht

)
Z(vt−1t−m, h

t−1
t−m)

(3.1)

where vt, ht denote the state of the variables at time t and the notation vt−1t−m stands for vt−1, . . . , vt−m,
and likewise, ht−1t−m. The functions Bv(vt−1t−m) and Bh(vt−1t−m, h

t−1
t−m) represent dynamic biases that pro-

vide the TRBM with its dynamic biases, and are defined by the equations

Bv
(
vt−1t−m

)
= A1vt−1 + · · ·+Amvt−m + bv

Bh
(
vt−1t−m, h

t−1
t−m

)
= W ′1ht−1 + · · ·+W ′mht−m +W1vt−1 + · · ·+Wmvt−m + bh (3.2)

Consequently, Z depends on the states of vt−1t−m, h
t−1
t−m, as well as on the weight matrices W , {Wj}j≤m,

{W ′j}j≤m, {Aj}j≤m, and bv, bh that parameterize the bias functions. Thus, the TRBM is a standard
RBM with W as its weight matrix and Bh(·, ·), Bv(·) as its biases; it is through the bias functions that
the TRBM can model sequential structure. It is easy introduce additional connections to the model that
make Bv(·) depend on ht−1t−m as well. Whenever the TRBM needs to use a value of vτ or hτ where τ is
less than 1, we use learned “initial” values that depend on τ .

We model the probability of a whole sequence using a product of the distributions defined by a
separate TRBM for each time step, with all of the TRBMs sharing the same parameters:

P (vT1 , h
T
1 ) =

T∏
t=1

P (vt, ht|vt−1t−m, h
t−1
t−m) (3.3)

Alg. 1 samples from the TRBM. It is fairly expensive, because it computes samples from an RBM at
every timestep.

We chose the TRBM as the building block for our sequence model for three reasons. The first is
that given vt1 and ht−11 the distribution over ht is factorial as long as the future variables vTt+1, h

T
t+1 are

unknown. This helps to ensure that a factorial approximation to the filtering distribution P (ht|vt1) is
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Algorithm 1 Sampling from the TRBM
1: for 1 ≤ t ≤ T do
2: sample vt ∼ P (vt|ht−1t−m, v

t−1
t−m)

3: sample ht ∼ P (ht|vtt−m, ht−1t−m)
4: end for
5: output (vT1 , h

T
1 )

reasonably accurate. The second reason is that parameter estimation for an individual TRBM can be
done efficiently using CD if we know the previous hidden and visible states, so by using the filtering
distribution to approximate the posterior distribution over the hidden variables we can reduce the prob-
lem of modeling whole sequences to the problem of modeling the distribution of the current time frame
of data given the previous data and the previous hidden states computed by the filtering distribution.

The third reason is that the TRBM model can easily be extended to include additional hidden layers
(see section 3.4) and by adding more hidden layers we get a better representation and a better generative
model.

3.2.1 Approximate Filtering

Our model is designed to make it easy to approximate the filtering distributionP (ht|vt1). LetPapprox(ht,i =
1|vt1) be the probability that the ith hidden unit is one in the factorial approximation to the filtering dis-
tribution. For each time t we maintain a vector pt ∈ [0, 1]Nh such that pt,i = Papprox(ht,i = 1|vt1). We
show how to compute pt, which clearly shows how to immediately obtain Papprox.

We derive our factorial approximation from the following observation. Suppose that vt1 and ht−11

are known with certainty. In that case, the filtering distribution is truly factorial and is given by

P (ht,i = 1|vt1, ht−11 ) = sigmoid
(
(Wvt)i +Bh

(
vt−1t−m, h

t−1
t−m

)
i

)
, (3.4)

In the general case, we assume that vt1 is given by the data with certainty but ht−11 is unknown and
its uncertainty is represented by a factorial distribution Papprox (that is summarized by p). We use the
mean-field equations (Peterson and Anderson, 1987) to compute pt from pt−11 and vt1. The resulting
equation is very similar to equation 3.4, except that we replace the values of the variables ht with their
probabilities pt, thus getting the equation

pt,i = sigmoid
(
(Wvt)i +Bh

(
vt−1t−m, p

t−1
t−m

)
i

)
, (3.5)

where we note that the definition of the bias function Bh is valid for real-valued arguments.

3.2.2 Learning

To allow online learning, we ignore the effect of future data on the inferred distribution over ht and
use the approximate filtering distribution as an approximate posterior (i.e., our distribution over ht is a
function of vt1 and not vT1 ). Once no hidden variables remain, learning is done by a CD update for each
time step separately.

Consider the standard lower bound to the log likelihood (Jordan et al., 1999):

logP (vT1 ) ≥ EPapprox

[
logP

(
vT1 , h

T
1

)]
+ H

(
Papprox

)
, (3.6)

where H is the entropy of a distribution, and Papprox(hT1 |vT1 ) is the approximate filtering distribution. We
would like to maximize this lower bound with respect to P and Papprox; doing so enables us to obtain
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the weight updates necessary for learning. Maximizing this lower bound with respect to P amounts
precisely to learning each TRBM separately using the factorial hidden distribution provided by Papprox,
but as a result of this maximization with respect to P , the distribution Papprox changes as well, and can
possibly reduce the value of the bound. The fact that the learning works in practice suggests that this
ignored effect is not too serious at least in some situations. Even though the lower bound is described
with respect to one vector vT1 , we maximize the average of these lower bounds over the training set,
thus maximizing a lower bound to the average log likelihood. It is, in principle, possible to compute the
correct derivatives of the bound w.r.t. the parameters of Papprox, but the variance of the gradient estimate
will be infeasibly large, so we do not do so.

Learning a TRBM when the hidden states are known is simple. It is just an RBM with dynamic
biases which can be learned in the same way as normal biases. In the equation below we write the
weight update for a single TRBM. There are T such TRBMs, and the sum of their weight updates
constitutes the full weight update. To simplify the notation we assume that there is only one training
sequence in which case the weight update for time step t is

∆W ∝ EQ1

[
htvt

>
]
−EQt2

[
htvt

>
]

(3.7)

∆Wn ∝ EQ1

[
(ht −EQt2 [ht])vt−n

>
]

(3.8)

∆W ′n ∝ EQ1

[
(ht −EQt2 [ht])ht−n

>
]

(3.9)

∆An ∝ EQ1

[
(vt −EQt2 [vt])vt−n

>
]

(3.10)

The distribution Q1 is the filtering distribution obtained given the single training sequence vT1 , and
the distributionQt2 is identical toQ1 for frames 1, . . . , t−1, but for timestep t it is the TRBM distribution
over (vt, ht) conditioned on the previous states ht−11 and vt−11 , namely

Qt2(v
t
1, h

t
1) = P (vt, ht|ht−1t−m, v

t−1
t−m)Q1(v

t−1
1 , ht−11 ) (3.11)

(the distribution of Qt2 over the variables hTt+1, v
T
t+1 is irrelevant). Note that even though the values

of ht−11 are uncertain and are averaged over by Q1 (which is also Papprox), in practice we substitute
the values of each coordinate of ht−11 by pt−11 , the vector of probabilities of each coordinate being 1
under the filtering distribution Q1 of vT1 . This makes the biases to the TRBM deterministic and eases
learning. We also cannot evaluate the expectations with respect to the TRBM distribution, so we use
CD by replacing Qt2(vt, ht) by the distribution obtained from running Gibbs sampling in the TRBM at
time t for one step starting at vt, exactly as for an RBM (sec. 2.7). We assumed that there was only
one datapoint in the training set in the above description, but actually the datapoint is sampled from the
training set, so the gradients are averaged by the empirical data distribution.

3.3 Experiments with a single layer model

To demonstrate that our learning procedure works we used it to learn synthetic video sequences com-
posed of 20× 20 grey-scale pixel time-frames of two balls bouncing in a box. The first row in figure 2
shows a sample from the training data. A movie can be viewed at the URL www.cs.utoronto.ca/

˜ilya/aistats2007_filter/index.html
In the pixel space, the dynamics are highly non-linear. Even if we could extract the positions and

velocities of the centers of both balls, the dynamics would be highly non-linear when the balls bounce off
the walls or off each other. Also, the underlying coordinates are related to the pixel intensities in a very

www.cs.utoronto.ca/~ilya/aistats2007_filter/index.html
www.cs.utoronto.ca/~ilya/aistats2007_filter/index.html
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non-linear way. For all these reasons, modeling the raw sequence of pixel intensities is a challenging task
which is made even more difficult if the model class cannot handle componential structure efficiently.
An HMM, for example, would need about 104 hidden states to distinguish 10 values of the x and y
positions and velocities of one ball, and 108 states for both balls.

We used several different TRBM models that had 400 visible units, 200 hidden units, and direct
access to the hidden and visible states of the 4 previous time steps (i.e., m = 4). The full TRBM has 3
kinds of connections: connections between the hidden variables (HH), connections between the visible
variables (VV) and connections between the visible and hidden variables (VH). In addition to trying
the full TRBM we also tried leaving out each set of connections in turn. We call these special cases
TRBM-VV, TRBM-HH, and TRBM-VH where the last part of the name indicates which connections
are omitted. TRBM-VV, for example, has no visible-to-visible connections. Despite its name, TRBM-
VH retains the undirected connections between the current instantiations of V and H.

The TRBM-HH model is an interesting special case because the lack of hidden-to-hidden connec-
tions makes exact inference possible. This model is particularly well suited for hierarchical learning, as
we will show in section 3.4.

Each model was trained on 10,000 sequences of length 100. The weights were updated at the
end of each sequence, with an initial learning rate of 0.00005 and momentum of 0.9. In addition, we
double the learning rate at iteration 100, 200, 500 and 1000. This increase in the speed of learning
proved crucial: without it, learning takes more than an order of magnitude more time, and even then
it results in worse generative models. All four variations of the TRBM learned quite good generative
models that could continue an initial segment of a video (see the URL above for examples of sequences
generated by these models). The models could also be used for online denoising of sequences by
performing approximate filtering and then reconstructing the visible state from the approximate filtering
distribution. Figure 3.2 shows a typical image sequence and the same sequence corrupted by noise.
The noise is correlated in both time and space which makes denoising much more difficult. All four
variations of the TRBM denoise the sequence quite well, even though they were trained on noiseless
data. Figure 3.2 shows the denoised sequence produced by the TRBM-VV which must use the hidden
states to combine information across frames. When an extra hidden layer is added to any of the TRBMs
(as described in the next section), there is a noticeable improvement in the denoising (see fig. 3.2),
as well as in the generation (see the URL). To denoise with two hidden layers we first compute the
approximate filtering distribution for the second hidden layer and then reconstruct each frame of the
data from the second hidden layer.

Our models denoise much better than a simple RBM which cannot make use of previous frames.
They are not as good as a linear autoregressive model that has been trained to predict the clean image
from the four previous noisy ones, but our model is not trained with noise so it can denoise without
requiring training data that contains both the noisy and the noisy-free sequence.

The biggest disadvantage of our models is that, before Tesla GPUs were available, they took 20
hours to train and even then the training was not complete. We also tried training a full TRBM with 400
hidden units for two weeks after which it had a model that generated extremely well.

3.4 Multilayer TRBMs

We straightforwardly generalize the idea (and use the notation) of sec. 2.7.1 to our sequence model.
First we learn a TRBM, and then learn another TRBM that learns to model the hidden states of the first
TRBM, which is precisely analogous to the way the RBM was augmented.

Denote by P (vT1 , h
T
1 ) the distribution defined by the first TRBM. The posterior P (hT1 |vT1 ) is not

factorial, so we crudely approximate it by the filtering distribution, Papprox(hT1 |vT1 ). Let Q(hT1 , u
T
1 ) be a
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Figure 3.2: Top row: An image sequence. Second row: The same sequence corrupted by noise that
is highly correlated in space and time. The noise consists of images of balls of a smaller radius whose
position is fixed that appear and disappear at random times. Third row: Denoising by a TRBM-VV using
a single hidden layer. Bottom row: Denoising by a TRBM-VV with two hidden layers (see sec. 3.4).

TRBM that we use to learn the aggregated approximate filtering distribution
∑

vT1
Papprox(hT1 |vT1 )S(vT1 ),

where uT1 is the sequence of the hidden variables of the TRBM Q. The approximate posterior of uT1 ,
given by Qapprox(uT1 |hT1 )Papprox(hT1 |vT1 ) with hT1 marginalized, allows uT1 to represent higher-level fea-
tures that can be computed on-line, since neither Papprox nor Qapprox make use of future frames. The
resulting augmented generative model, MPQ(vT1 ), is one where we first sample from Q(hT1 ), then from
P (vT1 |hT1 ), so, as with the RBMs, MPQ(vT1 ) =

∑
hT1
P (vT1 |hT1 )Q(hT1 ). If we can initialize Q so that

Q(hT1 ) = P (hT1 ), then the augmented model is identical to P and has the same likelihood. By making
Q learn the distribution of the hidden states of P , which is

∑
v Papprox(hT1 |vT1 )S(vT1 ), we maximize the

lower bound
L ≥ EPapprox

[
logQ

(
hT1
)
P
(
vT1 |hT1

)]
+ H

(
Papprox

)
, (3.12)

with respect to Q. This is very similar to the bound in equation 2.35, except for the use of the approx-
imate posterior. At the beginning of the optimization this bound is strictly less than logP (vT1 ) even
when Q(hT1 ) = P (hT1 ), because an approximate posterior is used. It could, therefore, remain less than
logP (vT1 ). This is not the case for RBMs, since the exact posterior P (h|v) is easily computable, so the
lower bound is equal to logP (v) at the beginning of the optimization.

Although our learning procedure maximizes a lower bound that is initially smaller than logP (vT1 ),
it is very likely that by the end of learning the bound will exceed logP (vT1 ). In addition, since we use
an approximate posterior during the learning of P (vT1 ) (recall that inference is intractable in our TRBM
model), we are performing approximate maximization of a lower bound on logP (vT1 ) as well (this is
also equation 3.6; see subsection 3.2.2):

logP (vT1 ) ≥ EPapprox

[
P
(
hT1
)
P
(
vT1 |hT1

)]
+ H

(
Papprox

)
, (3.13)

(the maximization is approximate in that we ignore the effect that changing the approximate posterior
has on the bound), so by introducing Q the new lower bound of equation 3.12 will be equal to the bound
in equation 3.13 if Q is properly initialized. Therefore, the lower bound in eq. 3.12 will be greater than
the lower bound in eq. 3.13.

In order to initializeQ such thatQ(hT1 ) = P (hT1 ), it is necessary forQ to have directed connections
between its visible variables (the variables hT1 ) so that Q(hT1 ) can represent every distribution P (hT1 )
can. For RBMs, learning one hidden layer at a time works well even if Q(h) is not initialized to be
equal to P (h) (Hinton et al., 2006), so in our experiments (see section 3.4.1), we did not initialize
Q(hT1 ) = P (hT1 ).
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We can also add further hidden layers in the same way as is done for RBMs and each time another
layer is added we should get a better generative model.

Notice that for the model TRBM-HH, for which P (hT1 |vT1 ) is exactly factorial, the situation is
significantly better. Not only does it have an exact learning procedure (if we ignore the approximations
introduced by contrastive divergence), but its augmented model always has a greater likelihood since
the lower bound (eq. 3.13) is equal to the log likelihood if Q(hT1 ) = P (hT1 ), because Papprox(hT1 |vT1 ) =
P (hT1 |vT1 ).

A drawback of TRBMs with direct connections between their hidden units is that P (vT1 |hT1 ) is not
factorial. This makes it intractable to generate unbiased samples from the multilayered models, so
further approximations must be used.

3.4.1 Results for multilevel models

We conducted experiments to determine whether adding an extra hidden layer improves the quality of
generative models. For each of TRBM, TRBM-VV, TRBM-VH, TRBM-HH, we used the same type
of TRBM with 400 hidden units (and 200 visibles) to learn the aggregated posterior distribution of the
hidden units in the first-level model. The learning parameters of all these models were the same as those
for the original TRBMs and training lasted for 10,000 updates. All of the generative models improved
and they all became better at denoising (see figure 3.2 for a typical denoising example, or the URL for
many movies of denoising and generation).

Despite the improved performance, we cannot generate exactly from the improved multilevel models
if they have visible-to-visible connections. To generate a sample (see sec. 2.7), we first need to use
Q(hT1 , u

T
1 ) to sample the activities of hT1 and then we need to sample from P (vT1 |hT1 ), which is the

distribution over sequences of visible frames given a sequence of hidden frames. This distribution
is intractable for the same reasons inference is intractable in our models, and we approximate it in a
similar spirit. However, if they do not have visible-to-visible connections, then it is possible to draw
samples from the multilayered model.

3.5 The Recurrent Temporal Restricted Boltzmann Machine

The TRBM, while powerful and expressive, is unappealing because of the crude approximations that
are required to compute a parameter update. In the remainder of this chapter we introduce the Recurrent
TRBM (RTRBM), which is a model very similar to the TRBM that is just as expressive. But despite
their similarity, the exact inference in RTRBMs is trivial and it is feasible to compute the gradient of
the log likelihood up to the error introduced by the use of Contrastive Divergence. We demonstrate that
the RTRBM generates more realistic samples than an equivalent TRBM for motion capture and for the
pixels of videos of bouncing balls. The RTRBMs performance is better than the TRBM mainly because
it learns to convey more information through its hidden-to-hidden connections. The first RTRBM was
described by Sutskever et al. (2008) and later extended by Boulanger-Lewandowski et al. (2011, 2012).

3.6 Simplified TRBM

We will use a simplified definition of the TRBM for the reminder of the chapter. The simplified TRBM
P (vT1 , h

T
1 ) is defined as follows:

P (vT1 , h
T
1 ) =

T∏
t=1

P (vt, ht|ht−1) (3.14)
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Figure 3.3: The graphical structure of the RTRBM. The variables ht are real valued while the variables
h′t are binary. The conditional distribution P̂ (vt, h

′
t|ht−1) is given by the equation P̂ (vt, h

′
t|ht−1) =

exp
(
h′>t Wvt + v>t bv + h′t(bh +W ′ht−1)

)
/Z(ht−1), which is essentially the same as the TRBMs

conditional distribution P from equation 3.15. We will always integrate out h′t and will work directly
with the distribution P̂ (vt|ht−1). Notice that when v1 is observed, h′1 does not affect h1.

The conditional distribution P (vt, ht|ht−1) is an RBM whose biases for ht are a function of ht−1:

P (vt, ht|ht−1) = exp
(
v>t bv + h>t Wvt + h>t (bh +W ′ht−1)

)
/Z(ht−1) (3.15)

where bv, bh and W are as in eq. 2.24, and W ′ is the weight matrix of the connections from ht−1 to ht,
making bh +W ′ht−1 be the bias of RBM at time t. In the above equations, h0 is a parameter vector of
the very first hidden state.

Algorithm 2 Sampling from the simplified TRBM
1: for 1 ≤ t ≤ T do
2: sample vt ∼ P (vt|ht−1)
3: sample ht ∼ P (ht|vt, ht−1)
4: end for
5: output (vT1 , h

T
1 )

As in most probabilistic models, the weight update is computed by solving the inference problem
and computing the weight update as if the inferred variables were observed. The main computational
difficulty of learning TRBMs is in obtaining samples from a distribution approximating the posterior
P (hT1 |vT1 ). But as we have seen earlier in the chapter, the inference problem is harder than that of a
typical undirected graphical model, because even computing the probability P (h

(j)
t = 1| everything

else) involves evaluating the exact ratio of two RBM partition functions.

3.7 Model Definition

Consider an arbitrary factorial distribution P ′(h). The statement h ∼ P ′(h) means that h is sampled
from the factorial distribution P ′(h), so each h(j) is set to 1 with probability P ′(h(j) = 1), and 0
otherwise. We let the statement h ← P ′(h) mean that each h(j) is independently set to the real value
P ′(h(j) = 1), so this is a “mean-field” update (Peterson and Anderson, 1987; Wainwright and Jordan,
2003). Observe that the distribution P (ht|vt, ht−1) can be represented by the vector sigmoid(Wvt +
W ′ht−1 + bh) when P is a TRBM.
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The RTRBM P̂ (vT1 , h
T
1 ) is given by an equation of the same structure as a TRBM:

P̂ (vT1 , h
T
1 ) =

T∏
t=1

∑
h′t

P̂ (vt, h
′
t|ht−1)P̂ (ht|vt, ht−1)

=

T∏
t=1

P̂ (vt|ht−1)P̂ (ht|vt, ht−1) (3.16)

Alg. 2 draws a sample from the simplified TRBM with a forward pass that samples the conditional
RBM at every timestep where step 2 requires sampling from the marginals of a Boltzmann Machine (by
integrating out ht), which involves running a Markov chain.

RTRBMs and TRBMs are parameterized in the same way, so P and P̂ have identical parameters,
which are W,W ′, bv, bh, and h0. Then the following algorithm defines the distribution of the RRTBM:

Algorithm 3 Sampling from the RTRBM
1: for 1 ≤ t ≤ T do
2: sample vt ∼ P (vt|ht−1)
3: set ht ← P (ht|vt, ht−1)
4: end for
5: output (vT1 , h

T
1 )

We can infer that P̂ (vt|ht−1) = P (vt|ht−1) because of step 2 in Algorithm 3, which is also con-
sistent with the equation given in figure 3.3 where h′t is integrated out. The only difference between
Algorithm 2 and Algorithm 3 is in step 3. The difference may seem minor, since the operations
ht ∼ P (ht|vt, ht−1) and ht ← P (ht|vt, ht−1) are superficially similar. However, this difference signif-
icantly alters the inference and learning procedures of the RTRBM.

3.8 Inference in RTRBMs

RTRBMs allow for trivial posterior inference (i.e., computing P̂ (hT1 |vT1 )), which might be surprising in
light of its similarity to the TRBM whose posterior inference is completely intractable. The reason infer-
ence is easy is similar to the reason inference in square ICAs is easy (Bell and Sejnowski, 1995): there
is a unique and easily computable value of the hidden variables that has a nonzero posterior probability.
Suppose, for example, that the value of v1 is given, which means that v1 was produced at the end of step
2 in Algorithm 3. Since step 3, the deterministic operation h1 ← P (h1|v1, h0), has been executed, the
only value h1 can take is the value assigned by the operation · ← P (h1|v1, h0). Any other value for h1
is never produced by a generative process that outputs v1 and thus has posterior probability 0. In ad-
dition, by executing this operation, we can recover h1. Thus, P̂ (h1|v1) = δsigmoid(Wv1+bh+W ′h0)(h1).
Note that h1’s value is unaffected by vT2 .

Once h1 is known, we can consider the generative process that produced v2. As before, since v2
was produced at the end of step 2, then the fact that step 3 has been executed implies that h2 is given by
h2 ← P (h2|v2, h1) (recall that at this point h1 is known with absolute certainty). If the same reasoning
is repeated t times, then all of ht1 is uniquely determined and is easily computed when vt1 is known. There
is no need for smoothing because vt and ht−1 influence ht with such strength that the knowledge of vTt+1

cannot alter the model’s belief about ht. This is because P̂ (ht|vt, ht−1) = δsigmoid(Wvt+bh+W ′ht−1)(ht).
The resulting inference algorithm is simple:
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Algorithm 4 Inference in an RTRBM
1: for all 1 ≤ t ≤ T do
2: ht ← P (ht|vt, ht−1)
3: end for

Let h(v)T1 denote the output of the inference algorithm on input vT1 , in which case the posterior is
described by

P̂ (hT1 |vT1 ) = δh(v)T1
(hT1 ) (3.17)

Inference is simple in the RTRBM because future observations have no influence on the posterior of
a given hidden state. However, this simplicity makes the true posterior of RTRBM less expressive than
the true posterior of the TRBM because the latter is affected by future observations. However, it is not
a major disadvantage in practice, because it is very difficult to incorporate future observations into the
TRBM’s posterior.

3.9 Learning in RTRBMs

Learning in RTRBMs may seem easy once inference is solved, since the main difficulty in learning
TRBMs is the inference problem. However, it is not sufficient to infer the hidden states of the RTRBM
for learning because the equation ∇log P̂ (vT1 ) = EhT1 ∼P̂ (hT1 |vT1 )

[
∇log P̂ (vT1 , h

T
1 )
]

is not meaningful:

the gradient ∇log P̂ (vT1 , h
T
1 ) is undefined because δsigmoid(W ′ht−1+bh+WT vt)(ht) is not a continuous

function of the parameters. Thus, the gradient has to be computed differently.
Notice that the RTRBMs log probability satisfies log P̂ (vT1 ) =

∑T
t=1 log P̂ (vt|vt−11 ), so we could

try computing the sum ∇
∑T

t=1 log P̂ (vt|vt−11 ). The key observation that makes the computation feasi-
ble is the equation

P̂ (vt|vt−11 ) = P̂ (vt|h(v)t−1) (3.18)

where h(v)t−1 is the value computed by the RTRBM inference algorithm with inputs vt1 at time t. This
equation holds because

P̂ (vt|vt−11 ) =

∫
h′t−1

P̂ (vt|h′t−1)P̂ (h′t−1|vt−11 )dh′t−1 = P̂ (vt|h(v)t−1) (3.19)

as the posterior distribution P̂ (h′t−1|v
t−1
1 ) = δh(v)t−1

(h′t−1) is a point-mass at h(v)t−1, which follows
from eq. 3.17.

The equality P̂ (vt|vt−11 ) = P̂ (vt|h(v)t−1) lets us define a recurrent neural network whose parame-
ters are identical to those of the RTRBM, and whose cost function is equal to the log likelihood of the
RTRBM. This is useful because it is easy to compute gradients with respect to the RNN’s parameters
using BPTT. The RNN has a pair of variables at each timestep, {(vt, rt)}Tt=1, where vt are the input
variables and rt are the RNN’s hidden variables (all of which are deterministic). The hiddens rT1 are
computed by the equation

rt = sigmoid(Wvt + bh +W ′rt−1) (3.20)

This definition was chosen so that the equation rT1 = h(v)T1 would hold. The RNN attempts to
probabilistically predict the next timestep from its history using the marginal distribution of the RBM
P̂ (vt+1|rt), so its objective function at time t is defined to be log P̂ (vt+1|rt), where P̂ depends on the
RNN’s parameters in the same way it depends on the RTRBMs parameters (the two sets of parameters
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being identical). Thus the RTRBM is an RNN generative model (sec. 2.5.2). This is a valid definition
of an RNN whose cumulative objective for the sequence vT1 is

L =
T∑
t=1

log P̂ (vt|rt−1) (3.21)

But since rt as computed in equation 3.20 on input vT1 is identical to h(v)t, the equality log P̂ (vt|rt−1) =
log P̂ (vt|vt−11 ) holds. Substituting this identity into eq. 3.21 yields

L =
T∑
t=1

log P̂ (vt|rt−1) =
T∑
t=1

log P̂ (vt|vt−11 ) = log P̂ (vT1 ) (3.22)

which is the log probability of the corresponding RTRBM.
This means that∇L = ∇ log P̂ (vT1 ) can be computed with the backpropagation through time algo-

rithm (Rumelhart et al., 1986), where the contribution of the gradient from each timestep is computed
with Contrastive Divergence.

3.10 Details of Backpropagation Through Time

We now describe the application of the backpropagation through time algorithm to the RTRBM. It
maintains a term ∂L/∂rt which is computed from ∂L/∂rt+1 and ∂ log P̂ (vt+1|rt)/∂rt using the chain
rule, by the equation

∂L/∂rt = W ′
>

(rt+1 � (1− rt+1)� ∂L/∂rt+1) +W ′>∂ log P̂ (vt|rt−1)/∂bh (3.23)

where a � b denotes component-wise multiplication, the term rt � (1 − rt) arises from the derivative
of the logistic function sigmoid′(x) = sigmoid(x) � (1 − sigmoid(x)), and ∂ log P̂ (vt+1|rt)/∂bh is
computed by CD. Once ∂L/∂rt is computed for all t, the gradients of the parameters can be computed
using the following equations:

∂L

∂W ′
=

T∑
t=2

(
rt � (1− rt)�

∂L

∂rt

)
r>t−1 (3.24)

∂L

∂W
=

T−1∑
t=1

(
W ′
>

(rt+1 � (1− rt+1)�
∂L

∂rt+1
)

)
v>t +

T∑
t=1

∂ log P̂ (vt|rt−1)
∂W

(3.25)

The first summation in eq. 3.25 corresponds to the use of W for computing rt, and the second sum-
mation arises from the use of W as RBM parameters for log P̂ (vt|rt−1), so each ∂ log P̂ (vt+1|rt)/∂W
term is computed with CD. Computing ∂L/∂rt is done most conveniently with a single backward pass
through the sequence. It is also seen that the gradient of the RTRBM would be computed exactly if CD
were replaced with the derivatives of the RBM’s log probability.

3.11 Experiments

We report the results of experiments comparing an RTRBM to a TRBM. The results presented in the
first half of this chapter, were obtained using TRBMs that had several delay-taps, which means that each
hidden unit could directly observe several previous timesteps. To demonstrate that the RTRBM learns
to use the hidden units to store information, we did not use delay-taps for the RTRBM nor the TRBM,
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which causes the results to be worse (but not much) than the results of both Taylor et al. (2007) and
the first half of this chapter. If delay-taps are allowed, then there is little benefit from the hidden-to-
hidden connections, when modelling data with only short-term direct dependencies, which makes the
comparison between the RTRBM and the TRBM uninteresting.

In all experiments, the RTRBM and the TRBM had the same number of hidden units, their pa-
rameters were initialized in the same manner, and they were trained for the same number of weight
updates. When sampling from the TRBM, we would use the sampling procedure of the RTRBM using
the TRBMs parameters to eliminate the additional noise from its hidden units. If this is not done, the
samples produced by the TRBM are noiser and are less visually appealing, which arguably suggses that
they are of poorer quality (although their noise might be properly representing uncertainty).

3.11.1 Videos of bouncing balls

We used a dataset consisting of videos of 3 balls bouncing in a box. The videos are of length 100
and of resolution 30×30. Each training example is synthetically generated, so no training sequence is
seen twice by the model, which means that overfitting is not an issues with our models. The task is to
learn to generate videos at the pixel level. This problem is high-dimensional, having 900 dimensions per
timestep, and the RTRBM and the TRBM are given no prior knowledge about the nature of the task (e.g.,
by convolutional weight matrices). Both the RTRBM and the TRBM had 400 hidden units. Samples
from these models are provided as videos 1,2 (RTRBM) and videos 3,4 (TRBM). A sample training se-
quence is given in video 5. All the samples can be found in www.cs.utoronto.ca/∼ilya/pubs/2008/rtrbm vid.tar.gz.
The real values in the videos are the conditional probabilities of the pixels (Sutskever and Hinton, 2007).
The RTRBMs samples are noticeably better than those of the TRBM. A difference between these sam-
ples is that the balls produced by the TRBM move in a random walk, while those produced by the
RTRBM move in a noticeably persistent direction. An examination of the visible-to-hidden connections
of the RTRBM reveals a number of hidden units that are not connected to any visible units. These
units have the most active hidden to hidden connections, which is likely used to propagate information
through time. In particular, these units are the only units that do not have a strong self connection (i.e.,
Wi,i is not large; see figure 3.4). No such separation of units is found in the TRBM and all its hidden
units have large visible to hidden connections. We can also use the TRBM and the RTRBM to predict
the next timestep of the sequence in order to acquire some quantitative measure of the model’s perfor-
mance. The mean squared prediction error per pixel per timestep is 0.007 for the RTRBM and is 0.04
for the TRBM.

3.11.2 Motion capture data

We used a dataset that represents human motion capture data by sequences of joint angles, translations,
and rotations of the base of the spine. The data was preprocessed to be invariant to isometries (Taylor
et al., 2007). The total number of timesteps in the dataset set was 3826, from which the model learned
on subsequences of length 50. Each timestep has 49 dimensions, and both models have 200 hidden
units. The data is real-valued, so the TRBM and the RTRBM were adapted to have Gaussian visible
variables using eq. 2.33. The samples produced by the RTRBM exhibit less sticking and foot-skate than
those produced by the TRBM. Samples from these models are provided as videos 6 and 7 (RTRBM),
and videos 8 and 9 (TRBM), and video 10 is a sample training sequence. Part of the Gaussian noise
was removed in a manner described by Sutskever and Hinton (2007) in both models. The mean squared
prediction error per dimension per timestep for the RTRBM is 0.42 and is 0.47 for the TRBM.
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Figure 3.4: This figure shows the receptive fields of the first 36 hidden units of the RTRBM on the
left, and the corresponding hidden-to-hidden weights between these units on the right: the ith row on
the right corresponds to the ith receptive field on the left, when counted left-to-right. Hidden units 18
and 19 exhibit unusually strong hidden-to-hidden connections; they are also the ones with the weakest
visible-hidden connections, which effectively makes them belong to another hidden layer.

3.11.3 Details of the learning procedures

Each problem was trained for 100,000 weight updates, with a momentum of 0.9. The the gradient was
divided by the length of the sequence. The weights are updated after computing the gradient on a single
sequence. The learning starts with CD10 for the first 1000 weight updates, which is then switched to
CD25. The visible-to-hidden weights, W , were initialized with static CD5 (without using the (R)TRBM
learning rules) on 30 sequences (which resulted in 30 weight updates) with learning rate of 0.01 and
momentum 0.9. These weights were then given to the (R)TRBM learning procedure, where the learning
rate was linearly reduced towards 0. The weights W ′ and the biases were initialized with a sample from
spherical Gaussian of standard-deviation 0.005. For the bouncing balls problem the initial learning rate
was 0.01, and for the motion capture data it was 0.005.

3.12 Conclusions

In this chapter we introduced the RTRBM, a probabilistic model as powerful as the intractable TRBM
that has an exact inference and an almost exact learning procedure. The main disadvantage of the
RTRBM is that it is a recurrent neural network, which is relatively difficult to train. However, this
disadvantage is common to many other probabilistic sequence models, and it can be partially alleviated
using techniques such as the long short term memory RNN (Hochreiter and Schmidhuber, 1997), as
well as with the initialization techniques that are described in Chap. 7.



Chapter 4

Training RNNs with Hessian-Free
Optimization

In this chapter, we show that recent advances in the Hessian-free (HF) optimization approach of Martens
(2010) together with a novel damping scheme can successfully train RNNs on problems with pathologi-
cal long range temporal dependencies. Prior to the work described in this chapter, standard RNNs (with
the exception of the LSTM) were widely believed to impossible to train on such problems.

4.1 Motivation

Recently, a carefully designed and improved version of the Hessian-Free (HF) optimization approach,
which is a practical large scale implementation of Newton’s method, was successfully applied to learn-
ing deep neural networks from random initializations (Martens, 2010), which was considered to be in-
feasible with other optimization approaches until very recently (Glorot and Bengio, 2010, and Chap. 7).

We were inspired by the success of the HF approach on deep neural networks and were com-
pelled to revisit the basic problem of RNN training. Our results show that HF, augmented with a novel
“structural-damping” which we develop, can effectively train RNNs on the long-term dependency prob-
lems (adapted directly from Hochreiter and Schmidhuber (1997)) that span over 100 timesteps, thus
overcoming the main objection made against using RNNs. From there we go on to address the question
of whether these advances generalize to real-world sequence modeling problems by considering both a
high-dimensional motion video prediction task, a MIDI-music modeling task, and a speech modelling
task. We find that RNNs trained using our method are highly effective on these tasks and significantly
outperform similarly sized LSTMs.

Other contributions we make include the development of the aforementioned structural damping
scheme which, as we demonstrate through experiments, significantly improves the robustness of the HF
optimizer in the setting of RNN training, and a new interpretation of the generalized Gauss-Newton
matrix of Schraudolph (2002) which forms a key component of the HF approach of Martens (2010).

4.2 Hessian-Free Optimization

Hessian-Free optimization is concerned with the minimization of an objective f : RN → R, with
respect toN -dimensional input vector θ. Its operation is viewed as the iterative minimization of simpler
sub-objectives based on local approximations to f(θ). Specifically, given a parameter setting θn, the

38
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next one, θn+1, is found by partially optimizing the sub-objective

qθn(θ) ≡Mθn(θ) + λRθn(θ), (4.1)

In this equation, Mθn(θ) is a θn-dependent “local” quadratic approximation to f(θ) given by

Mθn(θ) = f(θn) + f ′(θn)>δn +
δ>n Cnδn

2
, (4.2)

where Cn is an approximation to the curvature of f at θn, the term δn is given by δn = θ − θn, and
Rθn(θ) is a damping function that penalizes the solution according to the difference between θ and θn,
thus encouraging θ to remain close to θn. The use of a damping function is generally necessary because
the accuracy of the local approximation Mθn(θ) degrades as θ moves further from θn.

In standard Hessian-free optimization (or ‘truncated-Newton’, as it is also known), Mθn is chosen
to be the same quadratic as the one optimized in Newton’s method: the full 2nd-order Taylor series
approximation to f , which is obtained by taking Cn = f ′′(θn) in eq. 4.2, and the damping function
Rθn(θ) is chosen to be ‖δn‖2/2. Unlike with quasi-Newton approaches like L-BFGS there is no low-
rank or diagonal approximation involved, and as a consequence, fully optimizing the sub-objective qθn
can require a matrix inversion or some similarly expensive operation. The HF approach circumvents this
problem by performing a much cheaper partial optimization of qθn using the linear conjugate gradient
algorithm (CG).

CG is a non-stationary iterative algorithm for minimizing quadratic functions of the form φ(z) =
z>Bz/2 + b>z given an arbitrary starting point z = z0. It is invoked within HF approaches by setting
the initial vector z0 to δn−1, the linear term b to−f ′(θn), and the curvature matrix B to Cn +λI . While
CG will in general require N steps to converge, it has very strong partial convergence properties and in
practice tends to make substantial progress on the optimization of qθn in a number of iterations far less
than N . Moreover, CG does not require direct access to the curvature matrix B, and instead only needs
a black-box function which can compute matrix-vector products Bv for arbitrary v. Fortunately, there
is an efficient, general and numerically-stable algorithm for computing the Hessian-vector products
(Nocedal and Wright, 1999, ch. 7) which was first applied to machine learning models like RNNs by
Pearlmutter (1994).

By utilizing the complete curvature information given by B, CG running within HF can take large
steps in directions of low reduction and curvature which are effectively invisible to gradient descent
while respecting the constraints imposed by the directions of high curvature.

Although the HF approach has been known and studied for decades within the optimization litera-
ture, the shortcomings of existing versions of the approach made them impractical or even completely
ineffective for neural network training (Martens, 2010). The version of HF developed by Martens (2010)
makes a series of important modifications and design choices to the basic approach, which include
(among others): using the positive semi-definite Gauss-Newton curvature matrix in place of the possi-
bly indefinite Hessian, using a quadratic damping function for Rθn(θ) = ‖δn‖2/2 with the damping
parameter λ adjusted by Levenberg-Marquardt style heuristics (More, 1978), using a criterion based di-
rectly on the value of qθn in order to terminate CG (as opposed to the usual residual-error ‖Bz − b‖2/2
based criterion), and computing the curvature-matrix products Bv using mini-batches (as opposed to the
whole training set) and the gradients with much larger mini-batches.

In applying HF to RNNs we deviate from the approach of Martens (2010) in two significant ways.
First, we use a different damping function for R (developed in section 4.2.3), which we found improves
the overall robustness of the HF algorithm on RNNs by more accurately identifying regions where Mθn

is likely to deviate significantly from f . Second, we do not use diagonal preconditioning because we
found that it gave no substantive benefit for RNNs, the likely explanation for this being that RNNs do
not exhibit obvious “axis-aligned” parameter scaling issues.
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Algorithm 5 The Hessian-free optimization method (simplified version)
1: for each n, assign curvature and gradient mini-batches {Un} and {Vn} (resp.)
2: δ0 ← 0
3: initialize λ
4: for all n = 1, 2, . . . do
5: define the function to compute the matrix-vector product Bv as 1

|Un|
∑

(x,y)∈Un Gf ((x, y); θn)v+
λv

6: compute b = − 1
|Vn|

∑
(x,y)∈Vn f

′((x, y); θn)

7: find δn by partially minimizing z>Bz/2 + b>z via CG with z0 = δn−1
8: adjust λ using standard Levenburg-Marquardt heuristics (see More (1978))
9: compute α via a standard back-tracking line search (see Nocedal and Wright (1999))

10: θn+1 ← θn + αδn
11: end for

4.2.1 The Levenberg-Marquardt Heuristic

The Levenberg-Marquardt heuristic (e.g., More (1978)) updates λ by monitoring the accuracy of the
quadratic approximation. Specifically, given a parameter setting θn and a parameter update δn computed
by CG with damping λI , the reduction ratio ρ is defined as

ρ =
f(θn + δn)− f(θn)

qθn(δn)
(4.3)

Once ρ is calculated, λ is updated as follows (possibly with slightly different constants):

1. If ρ > 3/4 then λ← 2/3λ

2. If ρ < 1/4 then λ← 3/2λ

Thus the Levenberg-Marquardt heuristic reduces λ if the quadratic approximation qθn accurately pre-
dicts the reduction in the objective, and increases λ otherwise.

4.2.2 Multiplication by the Generalized Gauss-Newton Matrix

We now define the aforementioned Gauss-Newton matrix Gf , discuss its properties, and describe the
algorithm for computing the curvature matrix-vector product Gfv (which was first applied to neural
networks by Schraudolph (2002), extending the work of Pearlmutter (1994)). We will use the notation
from sec. 2.5 which describes the forward pass of an RNN:

1: input: v
2: for t from 1 to T do
3: ut ←Whvvt +Whhht−1 + bh
4: ht ← e(ut)
5: ot ←Wohht + bo
6: zt ← g(ot)
7: end for
8: output: z

where an index-less variable (e.g., o) is the concatenation of its values through time (e.g., concat(o1, . . . , oT )).
The Gauss-Newton matrix for a single training example (v, y) is given by

Gf ≡ J>o,θ(L◦g)′′Jo,θ

∣∣∣
θ=θn

(4.4)
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where the Jo,θ is the Jacobian of o w.r.t. θ, and (L◦g)′′ is the Hessian of the function L(g(o); y) with re-
spect to o. To compute the curvature matrix-vector product Gfv we first compute Jo,θv = Ro products
using the “R{}-method” given in Pearlmutter (1994) and sec. 2.3. Next, we run standard backpropaga-
tion through time with the vector (L◦g)′′Jo,θv which accomplishes the multiplication by J>o,θ:

J>o,θ((L◦g)′′Jo,θv)
∣∣∣
θ=θn

= (J>o,θ(L◦g)′′Jo,θ)
∣∣∣
θ=θn

v = Gfv

If o and the hidden state sequence h is precomputed then the total cost of this operation is the same as a
standard forward pass and back-propagation through time operation — i.e., it is essentially linear in the
number of parameters.

A very important property of the Gauss-Newton matrix is that it is positive semi-definite when
(L◦g)′′ is, which happens precisely when L(z(o); y) is convex w.r.t. o. The usual view of the Gauss-
Newton matrix is that it is simply a positive semi-definite approximation to the Hessian. There is
an alternative view, which is usually seen in the context of non-linear least-squares problems, which
we now extended to encompass Schraudolph’s generalized Gauss-Newton formulation. Consider the
approximation f̃ of f obtained by “linearizing” the the network up to the activations of the output units
o, after which the final nonlinearity g and the usual error function are applied. To be precise, we replace
o(θ) with o(θn) + Jo,θ|θ=θn δn (recall δn ≡ θ − θn), where Jo,θ is the Jacobian of o w.r.t. to θ, giving
raise to the approximation

f̃θn(θ) = L
(
g( o(θn) + Jo,θ|θ=θn δn ) ; y

)
(4.5)

Because the function Jo,θδn is affine in θ, it follows that f̃ is convex when L ◦ g is (since it will be
the composition of a convex and an affine function), and so its Hessian will be positive semi-definite.
A sufficient condition for L ◦ g being convex is when the output non-linearity function g ‘matches’
L (Schraudolph, 2002), as is the case when g is the logistic function and L the cross-entropy error.
Note that the choice to linearize up to o is arbitrary in a sense, and we could instead linearize up to z
(for example), as long as L is convex w.r.t. z.1 However, it makes sense to linearize as close to the
parameters θ as possible to achieve the most faithful approximation to f , as linearizing at θ recovers the
original function f .

In the case of non-linear least-squares, once we linearize the network, L ◦ g is simply squared L2

norm and so f̃ is already quadratic in θ. However, in the more general setting we only require that
L ◦ g be convex and twice differentiable. To obtain a (convex) quadratic we can simply compute the
2nd-order Taylor series approximation of f̃ .

The gradient of f̃(θ) is given by

∇oL(g(o(θn) + Jo,θ|θ=θn δn); y) Jo,θ|θ=θn (4.6)

The 1st-order term in the quadratic approximation of f̃ centered at θn is the gradient of f̃ as computed
above, evaluated at θ = θn (i.e. at δn = 0), and is

∇oL(g(o(θn)); y) Jo,θ|θ=θn

which is equal to the gradient of the exact f evaluated at θ = θn. Thus the 1st-order terms of the
quadratic approximations to f and f̂ are identical.

1It is also possible to linearize up to L, which causes the Gauss-Newton matrix to be equal to the Empirical Fisher In-
formation |Un|−1∑

(x,y)∈Un

[
∇f ′((x, y), θn)∇f ′((x, y), θn)>

]
, but this matrix was shown to yield inferior performance

(Martens, 2010)
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Computing the Hessian of f̃ we obtain:

J>o,θ

∣∣∣
θ=θn

(L◦g)′′
(
o(θn) + Jo,θ|θ=θn δn

)
Jo,θ|θ=θn

The 2nd-order term of the Taylor-series approximation of f̃ is this quantity evaluated at θ = θn, i.e.,
at δn = 0. Unlike the first-order term, it is not the same as the corresponding term in the Taylor series
of f , but is in fact the Gauss-Newton matrix Gf of f . Thus we showed that the quadratic model of f
which uses the Gauss-Newton matrix in place of the Hessian is in fact the Taylor-series approximation
to f̃ .

Martens (2010) found that using the Gauss-Newton matrix Gf instead of H within the quadratic
model for f was highly preferable for several reasons. Firstly, because H is in general indefinite, the
sub-objective qθn may not even be bounded below when B = H + λI. In particular, infinite reduction
will be possible along any directions of negative curvature that have a non-zero inner product with the
gradient. While this problem can be remedied by choosing λ to be larger in magnitude than the most-
negative eigenvalue of H, there is no efficient way to compute this in general, and moreover, using large
values of λ can have a highly detrimental effect on the performance of HF as it effectively masks out
the important low curvature directions. Secondly, Martens (2010) made the qualitative observation that,
even when putting the issues of negative curvature aside, the parameter updates produced by using Gf

in place of H performed much better in practice in the context of neural network learning.

4.2.3 Structural Damping

While we have found that applying the HF approach of Martens (2010) to RNNs achieves robust perfor-
mance for most of the pathological long-term dependency problems (section 4.3) without any significant
modification, for truly robust performance on all of these problems for 100 timesteps and beyond we
found that is was necessary to incorporate an additional idea which we call “structural damping” (named
so because it is a damping strategy that makes use of the specific structure of the objective function).

In general, 2nd-order optimization algorithms, and HF in particular, perform poorly when the
quadratic approximationMθn becomes highly inaccurate as δn approaches the optimum of the quadratic
sub-objective qθn . Damping, which is critical to the success of HF, encourages the optimal point to be
close to δn = 0, where the quadratic approximation becomes exact but trivial. The basic damping strat-
egy used by Martens (2010) is the classic Tikhonov regularization, which penalizes δn by λR(δn) for
R(δn) = 1

2‖δn‖
2. This is accomplished by adding λI to the curvature matrix B.

Our initial experience training RNNs with HF on long-term dependency tasks was that when λ
was small there would be a rapid decrease in the accuracy of the quadratic approximation Mθn as δn
was driven by CG towards the optimum of qθn . This would cause the Levenburg-Marquardt heuristics to
(rightly) compensate by adjusting λ to be much larger. Unfortunately, we found that such a scenario was
associated with poor training outcomes on the more difficult long-term dependency tasks of Hochreiter
and Schmidhuber (1997). In particular, we saw that the parameters seemed to approach a bad local
minimum where little-to-no long-term information was being propagated through the hidden states.

One way to explain this observation is that for large values of λ any Tikhonov-damped 2nd-order
optimization approach (such as HF) will behave similarly to a 1st-order approach2 and crucial low-
curvature directions whose associated curvature is significantly smaller than λwill be effectively masked-
out. Martens (2010) found that the Tikhonov damping strategy was very effective for training deep
auto-encoders, presumably because during any point in the optimization, there was a value of λ which
would allow Mθn to remain an accurate approximation of f (at qθn’s optimum) without being so high

2it can be easily shown that as λ→∞, minimizing qθn is equivalent to a small step of gradient descent.
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as to reduce the method to mostly 1st-order approach. Unfortunately our experience seems to indicate
that is less the case with RNNs.

Our hypothesis is that for certain small changes in θ there can be large and highly non-linear changes
in the hidden state sequence h (given that Whh is applied iteratively to potentially hundreds of temporal
‘layers’) and these will not be accurately approximated by Mθn . Furthermore, preventing these large
changes may also be helpful in situations where, while the changes do not negatively impact the objec-
tive, they nonetheless cause damage to the beneficial initial hidden-hidden dynamics determined by the
random initial parameters. The most obvious example is when the hidden-output connections are weak
and the hidden-hidden dynamics are not being strongly used. In such situations, the optimizer may be
too aggressive and make a change to the parameters which cause the dynamics to become trivial, or
completely chaotic. In some sense, we would prefer the RNN to behave a bit like an echo-state-network
(Jaeger and Haas, 2004) during the initial stages of optimization. These ideas motivate the development
of a damping function R that can penalize directions in parameter space that despite not being large in
magnitude, can nonetheless lead to large changes in the hidden-state sequence. With such a damping
scheme we can penalize said directions without requiring λ to be so high as to prevent the strong pursuit
of other low-curvature directions whose effect on f are modeled more accurately. To this end we define
the “structural damping function” as

Rθn(θ) =
1

2
‖δn‖2 + µSθn(θ) (4.7)

where µ > 0 is a weighting constant and Sθn(θ) is a function which quantifies change in the hidden
units as a function of the change in parameters. Recalling that h(θ) is the hidden state sequnece of an
RNN with parameters θ, the function S is given by

Sθn(θ) ≡ D( h(θ) ; h(θn) ),

where D is a distance function similar to the loss L. Note that we still include the usual Tikhonov term
within this new damping function and so just as before, if λ becomes too high, all of the low curvature
directions become essentially “masked out”. However, with the inclusion of the µSθn(θ) term we hope
that the quadratic model will tend to be more accurate at its optimum even for smaller values of λ.
Fortunately this is what we observed in practice, along with improved performance on the pathological
long-term dependency problems.

When the damping functionRθn(θ) is given by ‖δn‖2/2, the function qθn is a quadratic with respect
to δn and thus CG can be directly applied with B = Gf + λI in order to minimize it. However, CG will
not work with the structural damping function because S is not generally quadratic in θ. Thus, just as
we approximated f by the quadratic function M , so too must we approximate S.

One option is to use the standard Taylor-series approximation:

S(θn) + (θ − θn)>
∂S

∂θ

∣∣∣∣
θ=θn

+
1

2
(θ − θn)>HS(θ − θn)

where HS is the Hessian of S at θn. Note that because D is a distance function, D(h(θ), h(θn)) is
minimized at θ = θn with value 0. This implies that

D(h(θ), h(θn)) = 0 and
∂D(h(θ), h(θn))

∂h(θ)
= 0

Using these facts we can eliminate the constant and linear terms from the quadratic approximation
of S since S(θn) = D(h(θn), h(θn)) = 0 and

∂S

∂θ

∣∣∣∣
θ=θn

=
∂D(h(θ), h(θn))

∂θ

∣∣∣∣
θ=θn

=
∂D(h(θ), h(θn))

∂h(θ)

∂h(θ)

∂θ

∣∣∣∣
θ=θn

= 0
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The fact that the gradient of the damping term is zero is important since otherwise including it with qθn
would result in a biased optimization process that could no longer be said to be optimizing the objective
f .

Moreover, just as we did when creating a quadratic approximation of f , we may use the Gauss-
Newton matrix GS of S in place of the true Hessian. In particular, we define:

GS ≡ J>x,θ(D◦e)′′Jx,θ
∣∣∣
θ=θn

where Jx,θ is the Jacobian of x(θ) w.r.t. θ (recall sec. 2.5: hi = e(ui) and (D◦e)′′ is the Hessian of
D(e(x);h(θn)) w.r.t. x). This matrix will be positive semi-definite if the distance function D matches
the non-linearity e in the same way that we required L to match g in order to obtain the Gauss-Newton
matrix for f .

And just as withGf we may view the Gauss-Newton matrix for S as resulting from the Taylor-series
approximation of the following convex approximation S̃ to S

S̃ = D( e(x(θn) + Jx,θ|θ=θnδn) ; h(θn) )

What remains is to find an efficient method for computing the contribution of the Gauss-Newton
matrix for S to the usual curvature matrix-vector product to be used within the HF optimizer. While
it almost certainly would require a significant amount of additional work to compute both Gfv and
λµGSv separately, it turns out that we can compute their sum Gfv+ λµGSv = (Gf + λµGS)v, which
is what we actually need, for essentially the same cost as just computing Gfv by itself.

We can formally include λµS as part of the objective, treating h = e(x) as an additional output of
the network so that we linearize up to x in addition to o. This gives the combined Gauss-Newton matrix:

J>(o,x),θ

∣∣∣
θ=θn

(
L ◦ g 0

0 D ◦ e

)′′
J(o,x),θ

∣∣
θ=θn

Because the linearized prediction of x is already computed as an intermediate step when computing
the linearized prediction of o, the required multiplication by the Jacobian J(o,x),θ|θ=θn requires no extra
work. Moreover, as long as we perform backpropagation starting from both o and x together (as we
would when applying reverse-mode automatic differentiation) the required multiplication by the trans-
pose Jacobian term does not either. The only extra computation required will be the multiplication by
(D ◦ e)′′, but this is very cheap compared to the weight-matrix multiplication.

Equivalently, we may just straightforwardly apply Pearlmutter’s technique for computing Hessian-
vector products directly to any code which computes f̃+λµS̃, and as long as said code does not perform
an unnecessary double computation of x, the result will require essentially no more work than if it were
just applied to f̃ . And of course said code can itself be generated by applying the R-operator to the
augmented objective f + λµS, stopping short of linearizing past x (see Appendix).

The result of applying either of these techniques is given as Algorithm 6 (see appendix) for specific
choices of neural activation functions and error functions. Note that the required modification to the
usual algorithm for computing the curvature matrix-vector product is simple and elegant and requires
virtually no additional computation. However, it does require the extended storage of the Rui’s, which
could otherwise be discarded immediately after they are used to compute Rhi.

While we have derived the method of ‘structural damping’ specifically for the hidden unit inputs x
in the RNN model, it is easy to see that the idea and derivation generalize to any intermediate quantity
x in any parameterized function we wish to learn. Moreover, the required modification to the associated
matrix-vector product algorithm for computing the damped Gauss-Newton matrix would similarly be
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Figure 4.1: For each problem, the plots in the top row show the mean, min, and max number of
minibatches processed (y-axis) required to solve the problem for various values of T (x-axis), where
a minibatch is a set of 1000 sequences of length T that may be used for evaluating the gradient or a
curvature matrix-vector product. A run using over 50,000 minibatches is considered a failure. The
failure rates are shown in the bottom row. The red plots correspond to regular damping and the green
plots to structural damping.

to add λµ(D◦e)′′Rx to R{∂k̃/∂x} (see Algorithm 6) where D is the distance function that penalizes
change in z and k̃ is the damped objective.

Because S is a highly non-linear function of δn it could be the case that the quadratic model will
occasionally underestimate (or overestimate) the amount of change, perhaps severely. One might even
be tempted to think that this technique would be useless, since if the linear model for the hidden units h
is accurate for a particular δn then we would not need to penalize change in h, and if it is not accurate
then structural damping may not help because it uses the same linearized model for h. While we cannot
completely overcome these objections, we can argue why they might not be too important in practice.
Firstly, even when the hidden states (which are high-dimensional vectors) are not accurately predicted
by the model it could still be the case that the overall measure of their change, which is only a scalar,
still will be. Secondly, while the amount of change may be over or underestimated for any particular
training case, we are averaging our computations over many (usually 1000s) training cases and thus
there may be some cancellation. Thirdly, while a large value for the quadratic approximation of S is not
a necessary condition for the linear model of h to be inaccurate, it is at least a sufficient condition.

4.3 Experiments

In our first set of experiments we trained RNNs, using our HF-based approach, on various pathological
synthetic problems that for a long time were widely believed to be hopelessly impossible for gradient
descent Hochreiter et al. (2001). These problems were taken directly from the original LSTM paper of
Hochreiter and Schmidhuber (1997).

In our second set of experiments we trained both RNNs (using HF) and LSTMs (using backprop-
through-time) on more realistic high-dimensional time-series prediction tasks. In doing so we examine
the hypothesis that the specialized LSTM approach, while being effective at tasks where the main dif-
ficulty is the need for long-term memorization and recall, may not be fully exploiting the power of
recurrent computation in RNNs, and that our more general HF approach can do better.
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Figure 4.2: An illustration of the addition problem, a typical problem with pathological long-term de-
pendencies. The target is the sum of the marked numbers and is independent of the unmarked ones. The
ellipsis “. . .” represents a large number of timesteps.

4.3.1 Pathological synthetic problems

In this section, we train RNNs on seven problems that exhibit pathological long-term dependencies. All
of these problems have a similar form, where the inputs are long sequences whose start (and possibly
middle) are relevant, and the goal is to output a particular function of the relevant inputs at the final
few time-steps. The irrelevant part of the sequence is usually random, which makes the problem harder.
A typical problem is illustrated in figure 4.2. The difficulty of these problems increases with T (the
sequence length), since longer sequences exhibit longer range dependencies. Problems 1-6 are taken
from Hochreiter and Schmidhuber (1997), so we will move their description to the appendix.

In our experiments, we trained RNNs with 100 hidden units using HF, with and without structural
damping, on problems 1-7 for T = 30, 50, 100, 200. Our goal is to determine the amount of work the
optimizer requires to train the RNN to solve each problem. To decide if the optimizer has succeeded we
use the same criterion as Hochreiter and Schmidhuber (1997).

The addition problem: In this problem, the input to the RNN is a sequence of random numbers, and
its target output, which is located at the end of the sequence, is the sum of the two “marked” numbers.
The marked numbers are far from the sequence’s end, their position varies, and they are distant from
each other. We refer to Hochreiter and Schmidhuber (1997) for a formal description of the addition
problem, and to fig. 4.2 for an intuitive illustration.

This problem and others like it are challenging not only because of their obvious long-term depen-
dencies, but also because the RNN’s hidden state, which is exposed to both the relevant and irrelevant
inputs in the same manner (since they share the same input unit vt), must learn to accurately remember
one and ignore the other. These two conditions are so contradictory as to appear unimplementable by a
standard RNN, which, unlike an LSTM, does not have a built-in means to protect its hidden state from
irrelevant inputs. Yet, as we will see, our methods can solve this and related tasks for T as large as 200.

The multiplication problem: The multiplication problem is precisely analogous to the addition
problem except for the different operation.

The Xor problem: This problem is similar to the addition problem, but the noisy inputs are binary
and the operation is the Xor. This task is difficult for both our method and for LSTMs (Hochreiter
and Schmidhuber, 1997, sec. 5.6) because the RNN cannot obtain a partial solution by discovering a
relationship between one of the marked inputs and the target.

The temporal order problem: See Hochreiter and Schmidhuber (1997), task 6a.
The 3-bit temporal order problem: See Hochreiter and Schmidhuber (1997), task 6b.
The random permutation problem: See Hochreiter and Schmidhuber (1997), task 2b.
Noiseless memorization: The goal of this problem is to learn to memorize and reproduce long

sequences of bits. The input sequence starts with a string of 5 bits followed by T occurrences of a
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constant input. There is a target in every timestep, which is constant, except in the last 5 timesteps,
which are the original 5 bits. There is also a special input in the 5th timestep before last signaling that
the output needs to be presented. We also experimented with a harder variant of this problem, where the
goal is to memorize and sequentially reproduce 10 random integers from {1, . . . , 5} which contain over
20 bits of information.

4.3.2 Results and discussion

The results from our experiments with the pathological synthetic problems are shown in figure 4.1.
From these it is clear that the HF algorithm is capable of training RNNs to solve problems with very
long-term dependencies. Moreover, the inclusion of structural damping adds some additional speed and
robustness (especially in the 5 and 20 bit memorization tasks, where it appears to be required when
the minimal time-lag is larger than 50 steps). For some random seeds the exploding/vanishing gradient
problem seemed to be too extreme for the HF optimizer to handle and the parameters would converge
to a bad local minimum (these are reported as failures in figure 4.1). This is a problem that can likely be
addressed with a more careful random initialization than the one we used.

It should be noted that the total amount of computation required by our HF approach in order to suc-
cessfully train an RNN is considerably higher than what is required to train the LSTM using its special-
ized variant of stochastic gradient descent. However, the LSTM architecture was designed specifically
so that long-term memorization and recall can occur naturally via the “memory units”, so representa-
tionally it is a model ideally suited for such tasks. In contrast, the problem of training a standard RNN to
succeed at these tasks using only its general-purpose units, which lack the convenient “gating neurons”
(a type of 3-way neural connection), is a much harder one, so the extra computation required by the HF
approach seems justified.

4.3.3 The effect of structural damping

While structural damping was only slightly beneficial for problems 1-6, it was essential for the 5-bit and
20-bit memorization problems. We believe this is the case partly because of the additional work the hid-
den state is required to do. Specifically, to succeed on the 5-bit memorization problem, it is not enough
for the hidden state to simply carry all the information about the input (which, incidentally, is trivial
to arrange with an ESN-like initialization that forces the hidden state to be different for every (input,
timestep) pair due to the noiseless nature of the problem). In addition to carrying the information about
the input, the hidden state must also change rapidly and precisely, when making the predictions in the
end of the sequence, to enable the hidden-to-output connections to read them out. Rapidly changing hid-
den states can be seen in the video in www.cs.utoronto.ca/˜ilya/2011/HF-RNN_video.
zip, which shows the evolution of the hidden state sequences as learning progresses for 6 inputs of this
problem. Dynamics of this kind, where the hidden state changes on its own, without being driven to
do so by the inputs, are likely less important for problems 1-6, because all these problems make their
important prediction in precisely one timestep per sequence.

4.3.4 Natural problems

For these problems, the output sequence is equal to the input sequence shifted forward by one time-step,
so the goal of training is to have the model predict the next timestep by either minimizing the squared
error, a KL-divergence, or by maximizing the log likelihood. We trained an RNN with HF and an
LSTM with backpropagation-through-time (verified for correctness by numerical differentiation). The
RNN had 300 hidden units, and the LSTM had 30 “memory blocks” (each of which has 10 “memory

www.cs.utoronto.ca/~ilya/2011/HF-RNN_video.zip
www.cs.utoronto.ca/~ilya/2011/HF-RNN_video.zip
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Dataset (measure) RNN+HF LSTM+GD
Bouncing balls (error) 22 35
MIDI (log-likelihood) -569 -683
Speech (error) 22 41

Table 4.1: Average test-set performance for HF-trained RNN and the LSTM on the three natural
sequence modeling problems.

cells”); this results in nearly identically-sized parameterizations for both models (the LSTM had slightly
more). Full details of the datasets and of the training are given in the supplementary material.

Bouncing ball motion video prediction: The bouncing balls problem consists of synthetic low-
resolution (15×15) videos of three balls bouncing in a box. We trained the models on sequences of
length 30.

Music prediction: We downloaded a large number of MIDI files and converted each into a “piano-
roll”. A piano-roll is a sequence of 128-dimensional binary vectors, each describing the set of notes
played in the current timestep (which is 0.05 seconds long). The models were trained on sequences of
length 200 to model the significant long-term dependencies exhibited by music.

Speech prediction: We used a speech recognition dataset to obtain sequences of 39-dimensional
vectors representing the underlying speech signal, and used sequences of length 100.

Results

Results are shown in Table 4.1. The HF-trained RNNs outperform the LSTMs trained with gradient
descent by a large margin, and the results are similar when rerun.

Appendix

4.4 Details of the Pathological Synthetic Problems

We begin by describing the experimental setup that was used in all the pathological problems. In every
experiment, the RNN had 100 hidden units and a little over 10,000 parameters. It was initialized with
a sparse initialization (Martens, 2010): each weight matrix (Whv, Whh, and Who) is sparsely initialized
so that each unit is connected to 15 other units. The nonzero connections ofWhh, ofWho, and the biases
are sampled independently from a Gaussian with mean 0 and variance 1

15 , while the nonzero connections
of Whv are independently sampled from a Gaussian with mean 0 and a variance of 1. These constants
were chosen so that the initial gradient would not vanish or explode too strongly for the optimizer to
cope with. The occasional failures for some random seeds of the HF approach on a few of the harder
synthetic problems was likely due to a deficiency in this initialization scheme.

The gradient was computed on 10,000 sequences, of which 1,000 were used to evaluate the curvature
matrix-vector products (except for the 5-bit version of problem 7, where there are only 32 possible
distinct sequences, so the gradient and the curvature matrix-vector products were computed using all
the data). Every HF iteration used a fresh set of sequences and the test set also consists of 10,000
sequences. We allowed for at most 300 steps of CG at each run of HF, but we would stop the CG run
sooner if the magnitude of the reduction in the objective function on the curvature minibatch is less than
90% of its maximum during the CG run. The damping coefficient λ was initialized to 0.1 if structural
damping was used in which case µ was set to 1/30, and to 0.3 otherwise.
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The criteria for success and failure we used were taken directly from Hochreiter and Schmidhuber
(1997). In particular, a run is defined to be successful if less than 1% of the test sequences are misclassi-
fied. While the notion of sequence misclassification is trivially defined for binary or discrete problems,
for continuous problems (such as the addition or the multiplication problem), we say that a sequence is
misclassified if the absolute prediction error exceeds 0.04.

In some of the problems, the inputs or the outputs are symbols. Input symbols are simply represented
with their 1-of-N encoding. To predict a symbol, the RNN uses the softmax output nonlinearity with the
cross entropy loss function, whose composition is “matching” and therefore the Gauss-Newton matrix
can be used.

In the following subsections, we let U [a, b] denote a uniformly random real number from the interval
[a, b] and i[a, b] denote a uniformly random integer from the same interval. The descriptions also assume
that a desired problem length T has been selected.

4.4.1 The addition, multiplication, and XOR problem

The addition problem is described in Figure 2 of the chapter. The inputs consist of sequences of random
numbers, and the target output, which is located in the end of the sequence, is the sum of the two
“marked” numbers. The marked numbers are far from the sequence’s end, their position varies, and
they are distant from each other.

To generate a single training sequence for the addition problem, let the length of the sequence T ′ be
a sample from i[T, 11T/10] (so that T ′ > T ). Let I and J be the positions of the marked inputs, which
are drawn from i[1, T ′/10] and let i[T ′/10, T ′/2]. The input x will consist of the pairs (u, v) where the
ut’s are independently drawn from U [0, 1] and the “markers” u′t will be 0, except at t = I and J , where
u′I = u′J = 1. Finally, let the target output at time T ′ be the normalized sum (uI + uJ)/2. Thus the ut
component of the input vt = (ut, u

′
t) is irrelevant when t is not I or J .

The multiplication and the XOR problem are completely analogous.

4.4.2 The temporal order problem

In this task (Hochreiter and Schmidhuber, 1997, task 6a), the input sequences consist of random symbols
in {1, 2, ..., 6} which are represented with 1-of-6 encodings. All of the inputs are irrelevant and are the
encodings of randomly chosen integers in {3, 4, 5, 6} except for 2 special ones which are encodings of
randomly chosen integers in {1, 2}. The target output is a 1-of-4 encoding of the ordered-pair of the
two special symbols.

Formally, let I and J be the positions of the special inputs which are drawn from i[T/10, 2T/10]
and i[5T/10, 6T/10] respectively. We let c1, . . . , cT be independent draws from i[3, 6], and let a, b, the
special symbols, be independently drawn from i[1, 2]. Let ej denote the 1-of-6 encoding of j. Then we
set the input vt to ect for t 6= I or J , and set vI to ea and vJ to eb. The target output at time T is the pair
(a, b) which is represented with a 1-of-4 encoding (because there are four possibilities for (a, b)).

4.4.3 The 3-bit temporal order problem

This problem is similar to the above, except that there are 3 special symbols in the input sequence, and
thus 8 possible outputs (Hochreiter and Schmidhuber, 1997, task 6b).

The formal setup is nearly identical to the previous one. The positions I , J , and K of the three
special symbols are drawn from i[T/10, 2T/10], i[3T/10, 4T/10], and i[6T/10, 7T/10], respectively.
The values of the special symbols a, b, c are independently drawn from i[1, 2]. Finally, vI = ea, vJ =
eb, vK = ec, and the target is (a, b, c) represented with a 1-of-8 encoding.
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4.4.4 The random permutation problem

The inputs consist of sequences of symbols from {1, . . . , 100}. The first and the last symbol are iden-
tical and their value is drawn from i[1, 2], while the rest of the symbols are independently drawn from
i[3, 100]. At each timestep, the target output is equal to the input symbol of the next timestep, and
as a result only the first and the last symbol are predictable. This problem is difficult not only for its
long-term dependencies, but also because the loss incurred at the last timestep (the one we use to mea-
sure success) is small compared to the loss associated with the other timesteps, which may cause the
optimizer to focus on an incorrect aspect of the problem.

In this task, we initialized λ to 0.1 · T because there are many more outputs which make the scale
of the objective is considerably larger.

4.4.5 Noiseless memorization

In this problem, the input sequence starts with a string of 5 bits followed by T occurrences of a constant
input. The target output is constant up until the last 5 timesteps, which are the original 5 input bits.
There is also a special input in the 5th-last timestep signaling that the output needs to be presented.

In the following, inputs and the outputs are represented by 1-of-K vector encodings but for brevity
we describe them as symbols. More formally, let v1, . . . , vT+10 be the input symbols and y1, . . . , yT+10

be the target symbols. The sequence begins with v1, . . . , v5 which are drawn from i[1, 2] and are thus
binary. The subsequent inputs are constant except at t = T + 5, which is a “trigger” symbol (set to
4) which signals that the memorized symbols should be produced as output. The target outputs are
obtained by setting yj = 3 for j ≤ T + 5, and yj+T+5 = vj for 1 ≤ j ≤ 5. In particular, most of the
predictions (up to timestep T + 5) are irrelevant.

We straightforwardly adapt the problem of memorizing 10 symbols from {1, . . . , 5}.

4.5 Details of the Natural Problems

In all these problems, the output sequence is equal to the input sequence shifted forward by one time-
step, so the goal of training is to have the model predict the next timestep by either minimizing the
squared error, a KL-divergence, or by maximizing the log likelihood.

We now describe the details of the natural datasets and the settings of the optimizer used.

4.5.1 The bouncing balls problem

This dataset consists of synthetically generated videos of three balls bouncing in a box. Given that the
sequences can be perfectly predicted using only a small number of previous timesteps, we trained both
models on sequences of length 30. The resolution of the videos is 18×18.

The pixels are real values between 0 and 1, so the RNN and the LSTM are trained to minimize the
per-pixel KL divergence

∑
i qi log qi/pi + (1 − qi) log (1− qi)/(1− pi), where qi is the ith pixel and

pi is the ith prediction (which is the output of the sigmoid function). This also is the per-sequence error
measure we reported in Table 1 in the chapter.

For training of the RNN with the HF approach we used 4 ·104 sequences for computing the gradient
and 4 · 103 for computing the curvature matrix-vector products. We stopped training after a total of
100 · 106 sequences (not necessarily distinct) had been processed. In this experiment, µ was set to 1.0
and λ was initialized to 1.

The LSTM was trained with stochastic gradient descent with a learning rate of 0.001 and a momen-
tum of 0.9 for a total of 105 weight updates, where each gradient was computed as the average over a
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Figure 4.3: Top: An example of a training sequence from the MIDI music dataset. The sequence is 200
timestep long, and each timestep is a 128-dimensional binary vector. Typical sequences from this dataset
exhibit a substantial amount of nontrivial long range temporal dependencies. Bottom:An example of a
training sequence from the speech dataset. The sequence is 100 timestep long, and each timestep is a
39-dimensional real valued vector.

minibatch of 50 training sequences. It was initialized with an analogous sparse initialization, where the
nonzero entries were sampled independently from a Gaussian with mean 0 and variance 0.01. We also
added 3.0 to the biases of the “forget gates” which we found was beneficial to the optimization.

4.5.2 The MIDI dataset

To construct this dataset we downloaded 3364 MIDI files from an online database and created a training
set consisting of 100,000 sequences of length 200, where each timestep corresponds to the set of tones
present in a 0.05-second long interval (represented as a 128-dimensional binary vector). Thus each
sequence corresponds to exactly 10 seconds of music. We increased the size of the dataset by trans-
lating the tones in each sequence by an offset sampled from i[−10, 10]. Figure 4.3(b) depicts a typical
sequence from this dataset.

Due to the binary nature of the data, we trained the RNN and LSTM to maximize the log probability
of the sequences using the cross-entropy objective

∑
i ti log pi + (1 − ti) log(1 − pi), where ti ranges

over the dimensions of the timestep and pi is the set of predictions. For training of the RNN with the HF
approach we used 2 · 104 sequences for computing the gradient and 2 · 103 for computing the curvature
matrix-vector products. We stopped training after a total of 60 · 106 sequences had been processed. We
initialized λ to 100 and set µ to 0.1. The LSTM was trained for 5 ·104 gradient steps with a learning rate
of 0.001, where each gradient minibatch was computed on 50 sequences, and was otherwise equivalent
to the previous LSTM.

4.5.3 The speech dataset

We used the TIMIT dataset (Triefenbach et al., 2010) to construct the speech timeseries. The training
sequences are 100 timesteps long, where each timestep is a 39-dimensional vector of the Mel-frequency
cepstral coefficients (MFCC) representation of the signal (see fig. 4.3(a) for an example sequence). As
the data is real-valued, we trained the RNN and LSTM to minimize the squared error.

For training of the RNN with the HF approach we used 2 ·104 sequences for computing the gradient
and 2·103 for computing the curvature matrix-vector products. We stopped training after a total of 3·106
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had been processed. We initialized λ to 50 and set µ to 0.1. The LSTM was trained for 105 gradient
steps with a learning rate of 0.001, where each gradient minibatch was computed on 50 sequences, and
was initialized as in the other experiments.

4.6 Pseudo-code for the Damped Gauss-Newton Vector Product

Algorithm 6 Computation of the matrix-vector product of the structurally-damped Gauss-Newton ma-
trix with the vector v, for the case when e is the tanh non-linearity, g the logistic sigmoid, D and L are
the corresponding matching loss functions. The notation reflects the “convex approximation” interpre-
tation of the GN matrix so that we are applying the R-operator to the forwards-backwards pass through
the linearized and structurally damped objective k̃, and the desired matrix-vector product is given by
R∂k̃
∂θ . All derivatives are implicitly evaluated at θ = θn. The previously defined parameter symbols

Woh, Whv, Whh, bh, bo, h0 will correspond to the parameter vector θn if they have no super-script and
to the input parameter vector v if they have the ‘v’ superscript. The Rx notation follows Pearlmutter
(1994), and for the purposes of reading the pseudo-code can be interpreted as merely defining a new
symbol. We assume that intermediate quantities of the network (e.g., hi) have already been computed
(from θn). The operator � is coordinate-wise multiplication. Line 13 (underlined) is responsible for
structural damping.

1: for i = 1 to T do
2: Rui ← bvh +W v

hvvi +W v
hhhi−1 +WhhRhi−1

3: Rhi ← (1 + hi)� (1− hi)� Rui
4: Roi ← bvp +W v

ohhi +WohRhi
5: Rzi ← zi � (1− zi)� Roi
6: end for
7: R∂k̃

∂θ ← 0

8: R ∂k̃
∂tT+1

← 0
9: for i = T down to 0 do

10: R ∂k̃
∂oi
← Rzi

11: R ∂k̃
∂hi
←W>hhR ∂k̃

∂ti+1
+W>ohR ∂k̃

∂oi

12: R ∂k̃
∂ui
← (1 + hi)� (1− hi)� R ∂k̃

∂hi

13: R ∂k̃
∂ui
← R ∂k̃

∂ui
+ λµ(1 + hi)� (1− hi)� Rui

14: R ∂k̃
∂Woh

← R ∂k̃
∂Woh

+ Rzih
>
i

15: R ∂k̃
∂Whh

← R ∂k̃
∂Whh

+ R ∂k̃
∂ti+1

h>i

16: R ∂k̃
∂Whv

← R ∂k̃
∂Whv

+ R ∂k̃
∂ui
v>i

17: R ∂k̃
∂bh
← R ∂k̃

∂bh
+ R ∂k̃

∂ui

18: R ∂k̃
∂bp
← R ∂k̃

∂bp
+ Rzi

19: end for



Chapter 5

Language Modelling with RNNs

5.1 Introduction

In this chapter, we use Hessian-Free optimization to train large RNNs on the problem of predicting the
next character in natural text. It is an important problem, because better language models improve the
compression of text files (Rissanen and Langdon, 1979), the quality of speech recognition (Dahl et al.,
2012) and machine translation (Papineni et al., 2002), and make it easier for people with physical dis-
abilities to interact with computers (Ward et al., 2000). More speculatively, achieving the asymptotic
limit in text compression requires an understanding that is “equivalent to intelligence” (Hutter, 2006).
Good compression can be achieved by exploiting simple regularities such as the vocabulary and the syn-
tax of the relevant languages and the shallow associations exemplified by the fact that the word “milk”
often occurs soon after the word “cow”, but beyond a certain point any improvement in performance
must result from a deeper understanding of the text’s meaning.

Prior to our work, Recurrent Neural Networks were applied to work-level language modelling and
trained using truncated backpropagation through time (Mikolov et al., 2010, 2011, 2009). They achieved
real improvements over state-of-the-art word-level language models, which were substantial when the
RNNs were averaged with an N -gram word-level language model.

Although standard RNNs are very expressive, we found that achieving competitive results on character-
level language modeling required the development of a different type of RNN that was better suited to
our application. This new “MRNN” architecture uses multiplicative connections to allow the current
input character to determine the hidden-to-hidden weight matrix. We trained MRNNs on over a hun-
dred megabytes of text for several days, using 8 Graphics Processing Units in parallel, to perform
significantly better than one of the best word-agnostic character-level language models: the sequence
memoizer (Wood et al., 2009; Gasthaus et al., 2010), which is a hierarchical nonparametric Bayesian
method.

While our method performs at the state of the art for pure character-level models, its compression
performance falls short of the best models which have explicit knowledge of words, the most powerful
of these being PAQ8hp12 (Mahoney, 2005). PAQ is a mixture model of a large number of well-chosen
context models whose mixing proportions are computed by a neural network. Its weights are a function
of the current context and its predictions are further combined with a neural-network like model. Unlike
standard compression techniques, some of PAQ’s context models not only consider contiguous contexts
but also contexts with “gaps”, allowing it to capture some types of longer range structures cheaply.
More significantly, PAQ is not word-agnostic, because it uses a combination of character-level and
word-level models. PAQ also preprocesses the data with a dictionary of common English words which
we disabled, because it gave PAQ an unfair advantage over models that do not use such task-specific
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(and indeed, English-specific) explicit prior knowledge. The numerous mixture components of PAQ
were chosen because they improved performance on a development set, so in this respect PAQ is similar
in model complexity to the winning entry of the Netflix prize (Bell et al., 2007).

Finally, language models can be used to “generate” language, and to our surprise, the text generated
by the MRNNs we trained exhibited a significant amount of interesting and high-level linguistic struc-
ture, featuring a large vocabulary, a considerable amount of grammatical structure, and a wide variety of
highly plausible proper names that were not in the training set. Mastering the vocabulary of English did
not seem to be a problem for the MRNN: it generated very few uncapitalized non-words, and those that
it did generate were often very plausible, like “homosomalist” or “un-ameliary”. Of particular interest
was the fact that the MRNN learned to balance parentheses and quotes over long distances (e.g., 30
characters). A character-level N -gram language model could only do this by modeling 31-grams, and
neither Memoizer nor PAQ are representationally capable of balancing parentheses because of their need
for exact context matches. In contrast, the MRNN’s nonlinear dynamics enables it to extract higher level
“knowledge” from the text, and there are no obvious limits to its representational power because of the
ability of its hidden states to perform general computation.

5.2 The Multiplicative RNN

Having applied a modestly-sized standard RNN architecture to the character-level language modeling
problem (where the target output at each time step is defined as the the input character at the next time-
step), we found the performance somewhat unsatisfactory, and that while increasing the dimensionality
of the hidden state did help, the per-parameter gain in test performance was not sufficient to allow the
method to be both practical and competitive with state-of-the-art approaches. We address this problem
by proposing a new RNN architecture called the Multiplicative RNN (MRNN) which we will argue is
better suited to the language modeling task.

5.2.1 The Tensor RNN

The dynamics of the RNN’s hidden states depend on the hidden-to-hidden matrix and on the inputs. In
a standard RNN (as defined in sec. 2.5) the current input vt is first transformed via the visible-to-hidden
weight matrix Whv and then contributes additively to the input for the current hidden state. A more
powerful way for the current input character to affect the hidden state dynamics would be to determine
the entire hidden-to-hidden matrix (which defines the non-linear dynamics) in addition to providing an
additive bias.

One motivation for this approach came from viewing an RNN as a model of an unbounded tree in
which each node is a hidden state vector and each edge is labelled by a character that determines how
the parent node gives rise to the child node. This view emphasizes the resemblance of an RNN to a
Markov model that stores familiar strings of characters in a tree, and it also makes it clear that the RNN
tree is potentially much more powerful than the Markov model because the distributed representation
of a node allows different nodes to share knowledge. For example, the character string “ing” is quite
probable after “fix” and also quite probable after “break”. If the hidden state vectors that represent the
two histories “fix” and “break” share a common representation of the fact that this could be the stem
of a verb, then this common representation can be acted upon by the character “i” to produce a hidden
state that predicts an “n”. For this to be a good prediction we require the conjunction of the verb-stem
representation in the previous hidden state and the character “i”. One or other of these alone does not
provide half as much evidence for predicting an “n”: it is their conjunction that is important. This
strongly suggests that we need a multiplicative interaction. To achieve this goal we modify the RNN so
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Figure 5.1: An illustration of the significance of the multiplicative connections (the product is depicted
by a triangle). The presence of the multiplicative connections enables the RNN to be sensitive to con-
junctions of context and character, allowing different contexts to respond in a qualitatively different
manner to the same input character. Even though standard RNNs can also be sensitive to the conjunc-
tion of the hidden state and the input, it is more natural with multiplicative connections.

that its hidden-to-hidden weight matrix is a (learned) function of the current input vt:

ht = tanh
(
Whvvt +W

(vt)
hh ht−1 + bh

)
(5.1)

ot = Wohht + bo (5.2)

These are identical to the equations in sec. 2.5, except thatWhh is replaced withW (vt)
hh , so each character

to specifies a different hidden-to-hidden weight matrix.
It is natural to define W (vt)

hh using a tensor. If we store M matrices, W (1)
hh , . . . ,W

(M)
hh , where M is

the number of dimensions of vt, we could define W (vt)
hh by the equation

W
(vt)
hh =

M∑
m=1

v
(m)
t W

(m)
hh (5.3)

where v(m)
t is the m-th coordinate of vt. When the input vt is a 1-of-M encoding of a character, it is

easily seen that every character has an associated weight matrix and W (vt)
hh is the matrix assigned to the

character represented by vt. 1

5.2.2 The Multiplicative RNN

The above scheme, while appealing, has a major drawback: fully general 3-way tensors are not practical
because of their size. In particular, if we want to use RNNs with a large number of hidden units (say,
1000) and if the dimensionality of vt is even moderately large, then the storage required for the tensor
W

(vt)
hh becomes prohibitive.

It turns out we can remedy the above problem by factoring the tensor W (v)
hh (Taylor and Hinton,

2009). This is done by introducing the three matrices Wfv, Whf , and Wfh, and reparameterizing the
matrix W (vt)

hh by the equation

W
(vt)
hh ≡Whf · diag(Wfvvt) ·Wfh (5.4)

1The above model, applied to discrete inputs represented with their 1-of-M encodings, is the nonlinear version of the
Observable Operator Model (Jaeger, 2000) whose linear nature makes it closely related to an HMM in terms of expressive
power.
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Figure 5.2: The Multiplicative Recurrent Neural Network “gates” the recurrent weight matrix with the
input symbol. Each triangle symbol represents a factor that applies a learned linear filter at each of its
two inputs. The product of the outputs of these two linear filters is then sent, via weighted connections,
to all the units connected to the output of the triangle. Consequently every input vector can synthesize
its own hidden-to-hidden weight matrix by determining the gains on all of the factors, each of which
represents a rank one hidden-to-hidden weight matrix defined by the outer-product of its incoming and
outgoing weight-vectors to the hidden units. The synthesized weight matrices share “structure” because
they are all formed by blending the same set of rank one matrices. In contrast, an unconstrained tensor
model provides each input with a completely separate weight matrix.

where diag(v) is a diagonal matrix whose diagonal is given by v. If the dimensionality of the vector
Wfvvt, denoted by F , is sufficiently large, then the factorization is as expressive as the original tensor.
Smaller values of F require fewer parameters while hopefully retaining a significant fraction of the
tensor’s expressive power.

The Multiplicative RNN (MRNN) is the result of factorizing the Tensor RNN by expanding eq. 5.4
within eq. 5.1. The MRNN computes the hidden state sequence (h1, . . . , hT ), an additional “factor state
sequence” (f1, . . . , fT ), and the output sequence (o1, . . . , oT ) by iterating the equations

ft = diag(Wfvvt) ·Wfhht−1 (5.5)

ht = tanh(Whfft +Whvvt) (5.6)

ot = Wohht + bo (5.7)

which implement the neural network in fig. 5.2. The tensor factorization of eq. 5.4 has the interpretation
of an additional layer of multiplicative units between each pair of consecutive layers (i.e., the triangles
in fig. 5.2), so the MRNN actually has two steps of nonlinear processing in its hidden states for every
input timestep. Each of the multiplicative units outputs the value ft of eq. 5.5 which is the product of
the outputs of the two linear filters connecting the multiplicative unit to the previous hidden states and
to the inputs.

We experimentally verified the advantage of the MRNN over the RNN when the two have the same
number of parameters. We trained an RNN with 500 hidden units and an MRNN with 350 hidden units
and 350 factors (so the RNN has slightly more parameters) on the “machine learning” dataset (dataset 3
in the experimental section). After extensive training, the MRNN achieved 1.56 bits per character and
the RNN achieved 1.65 bits per character on the test set.

5.3 The Objective Function

The goal of character-level language modeling is to predict the next character in a sequence. More
formally, given a training sequence (v1, . . . , vT ), the RNN uses the sequence of its output vectors
(o1, . . . , oT ) to obtain a sequence of predictive distributions P (vt+1|v≤t) = softmax(ot), where the
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softmax distribution is defined by P (softmax(ot) = j) = exp(o
(j)
t )/

∑
k exp(o

(k)
t ). The language mod-

eling objective is to maximize the total log probability of the training sequence
∑T−1

t=0 logP (vt+1|v≤t),
which implies that the RNN learns a probability distribution over sequences. Even though the hidden
units are deterministic, we can sample from an MRNN stochastically because the states of its output
units define the conditional distribution P (vt+1|v≤t). We can sample from this conditional distribution
to get the next character in a generated string and provide it as the next input to the RNN. This means
that the RNN is a directed non-Markov model and, in this respect, it resembles the sequence memoizer
(Wood et al., 2009). This point is also discussed in sec. 2.5.2.

5.4 Experiments

The goal of our experiments is to demonstrate that the MRNN, when trained by HF, learns high-quality
language models. We demonstrate this by comparing the MRNN to the sequence memoizer and to PAQ
on three real-world language datasets. After splitting each dataset into a training and test set, we trained
a large MRNN, a sequence memoizer2, and PAQ, and report the bits per character (bpc) each model
achieves on the test set.

Owing to its nonparametric nature and the nature of the data-structures it uses, the sequence mem-
oizer is very memory intensive, so it can only be applied to training datasets of roughly 130MB or less
on a machine with 32GB of RAM. In contrast, the MRNN can be applied to datasets of unlimited size
although it typically requires considerably more total FLOPS to achieve good performance (but, unlike
the memoizer, it is easily parallelized). However, to make the experimental comparison fair, we train
the MRNN, the memoizer, and PAQ on datasets of the same size.

5.4.1 Datasets

We now describe the datasets. Each dataset is a long string of characters from an 86-character alphabet
of about 100MB that includes digits and punctuation, together with a special symbol which indicates
that the character in the original text was not one of the other 85 characters in our alphabet. The last 10
million characters of each dataset are used as a test set.

1. The first dataset is a sequence of characters from the English Wikipedia. We removed the XML
and the Wikipedia markup to clean the dataset. We randomly permuted its articles before partitioning it
into a train and a test set.

2. The second dataset is a collection of articles from the New York Times (Sandhaus, 2008).
3. The third dataset is a corpus of machine learning papers. To construct this dataset we down-

loaded every NIPS and JMLR paper, and converted them to plain text using the pdftotext utility. We
then translated a large number of special characters to their ascii equivalents (including non-ascii punc-
tuation, greek letters, and the “fi” and “if” symbols), and removed most of the unstructured text by using
only sentences consisting of at least 70% alphanumeric characters. Finally, we randomly permuted the
papers.

The first two corpora are subsets of larger corpora (over 1GB large).

5.4.2 Training details

To compute the exact gradient of the log probability of the training set (eq. 5.3), the MRNN needs
to process the entire training set sequentially and store the hidden state sequence in order to apply

2Which has no hyper-parameters and strictly speaking is not ’trained’ but rather conditioned on the training set.
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DATA SET MEMOIZER PAQ MRNN MRNN
(FULL SET)

WIKI 1.66 1.51 1.60 (1.53) 1.55 (1.54)
NYT 1.49 1.38 1.48 (1.44) 1.47 (1.46)
ML 1.33 1.22 1.31 (1.27)

Table 5.1: This table shows the test bits per character for each experiment, with the training bits in
brackets (where available). The MRNN achieves lower bits per character than the sequence memoizer
but higher than PAQ on each of the three datasets. The MRNN (full set) column refers to MRNNs
trained on the larger (1GB) training corpora (except for the ML dataset which is not a subset of a larger
corpus). Note, also, that the improvement resulting from larger dataset is modest, implying that the an
MRNN with 1500 units and factors is fairly well-trained with 100MB of text.

backpropagation-through-time. This is infeasible due to the size of the training set but it is also unnec-
essary: training the MRNN on many shorter sequences is just as effective, provided they are several
hundred characters or more long. If the sequences are too short, we fail to utilize the ability of the HF
optimizer to capture long-term dependencies spanning hundreds of timesteps.

An advantage of using a large number of relatively short sequences over using a single long sequence
is that the former is much easier to parallelize. This is essential, since our preliminary experiments sug-
gested that HF applied to MRNNs works best when the gradient is computed using millions of characters
and the curvature-matrix vector products are computed using hundreds of thousands of characters. Us-
ing a highly parallel system (consisting of 8 high-end GPUs with 4GB of RAM each), we computed
the gradient on 160·300=48000 sequences of length 250, of which 8·300=2400 sequences were used
to compute the curvature-matrix vector products that are needed for the HF optimizer (Martens and
Sutskever, 2011) (so each GPU processes 300 sequences at a time).

The first few characters of any sequence are much harder to predict because they do not have a suf-
ficiently large context, so it is not beneficial to have the MRNN spend neural resources predicting these
characters. We take this effect into account by having the MRNN predict only the last 200 timesteps of
the 250-long training sequences, thus providing every prediction with at least 50 characters of context.

The Hessian-Free optimizer (Martens, 2010) and its RNN-specialized variant (Martens and Sutskever,
2011) have a small number of meta-parameters that must be specified. We imposed a maximum of 150
steps to be used by each run of CG within HF, set the structural damping coefficient µ to 0.1, and initial-
ized λ to 10 (see Chapter 4 for a description of these meta-parameters). Our HF implementation uses
a different subset of the training data at every iteration, so at a coarse temporal scale it is essentially
online. In this setup, training lasted roughly 5 days for each dataset.

We found that a total of 120·150 weight updates was sufficient to adequately train an MRNN. More
specifically, we used 120 steps of HF, with each of these steps using a maximum of 150 conjugate
gradient iterations to approach the minimum of the quadratic Gauss-Newton-based approximation to
the objective function, which remains fixed during the conjugate gradient iterations. The small number
of weight updates, each requiring a massive amount of computation, makes the HF optimizer much
easier to parallelize than stochastic gradient descent.

In all our experiments we use MRNNs with 1500 hidden units and 1500 factors, giving them
4,900,000 parameters. The MRNNs were initialized with sparse connections: each unit starts out with
15 nonzero connections to other units (Martens and Sutskever (2011) and Chap. 4). Note that if we
unroll the MRNN in time (as in fig. 5.2) we obtain a neural network with 500 layers of size 1500 if we
view the multiplicative units ft as layers. This is among the deepest neural network ever trained.
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5.4.3 Results

The main experimental results are shown in table 5.1. We see that the MRNN predicts the test set more
accurately than the sequence memoizer but less accurately than the dictionary-free PAQ on the three
datasets.

5.4.4 Debagging

It is easy to convert a sentence into a bag of words, but it is much harder to convert a bag of words into
a meaningful sentence. We name the latter the debagging problem. We perform an experiment where
a character-level language model evaluates every possible ordering of the words in the bag, and returns
and the ordering it deems best. To make the experiment tractable, we only considered bags of 7 words,
giving a search space of size 5040.

For our experiment, we used the MRNN and the memoizer3 to debag 500 bags of randomly chosen
words from “Ana Karenina”. We use 11 words for each bag, where the first two and the last two words
are used as context to aid debagging the middle seven words.

We say that the model correctly debags a sentence if the correct ordering is assigned the highest log
probability. We found that the wikipedia-trained MRNN recovered the correct ordering 34% of the time,
and the wikipedia-trained memoizer did so 27% of the time. Given that the problem is “word-level”,
utilizing large character contexts is essential to achieve good performance.

5.5 Qualitative experiments

In this section we qualitatively investigate the nature of the models learned by the MRNN.

5.5.1 Samples from the models

The simplest qualitative experiment is to inspect the samples generated by the three MRNNs. The most
salient characteristic of the samples is the richness of their vocabularies. Further inspection reveals that
the text is mostly grammatical, and that parentheses are usually balanced over many characters. The
unusual artifacts in the generated text, such as consecutive commas or quotes, are the result of the data
preprocessing and are frequently found in the training set.

Samples from the Wikipedia model

We now present a sample from the Wikipedia model. We use ? to indicate the “unknown” character. The
sample below was obtained by running the MRNN less than 10 times and selecting the most intriguing
sample. The MRNN was initialized with the phrase “The meaning of life is”:

The meaning of life is the tradition of the ancient human reproduction: it is less favorable to the good boy for
when to remove her bigger. In the show’s agreement unanimously resurfaced. The wild pasteured with consistent
street forests were incorporated by the 15th century BE. In 1996 the primary rapford undergoes an effort that the
reserve conditioning, written into Jewish cities, sleepers to incorporate the .St Eurasia that activates the population.
Mar??a Nationale, Kelli, Zedlat-Dukastoe, Florendon, Ptu’s thought is. To adapt in most parts of North America,
the dynamic fairy Dan please believes, the free speech are much related to the serpents envisioned as they are
considered the duo versus

3We were unable to modify the implementation of PAQ to make debagging feasible.
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Samples from the NYT model

Below is a sample from the model trained on the full NYT dataset, where the MRNN was initialized
with a single space. The spaces surrounding the punctuation are an artifact of the preprocessing.

while he was giving attention to the second advantage of school building a 2-for-2 stool killed by the Cultures
saddled with a half-suit defending the Bharatiya Fernall ’s office . Ms . Claire Parters will also have a history
temple for him to raise jobs until naked Prodiena to paint baseball partners , provided people to ride both of
Manhattan in 1978 , but what was largely directed to China in 1946 , focusing on the trademark period is the
sailboat yesterday and comments on whom they obtain overheard within the 120th anniversary , where many civil
rights defined , officials said early that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was monitoring New
York City ’s most armed forces accused of remaining law and order to the Japanese history .

Samples from the ML model

Finally, we generate text from an MRNN trained on the ML corpus conditioned on the string “Recur-
rent”. This MRNN is also able to balance parentheses (e.g., the second line of the sample):

Recurrent network with the Stiefel information for logistic regression methods Along with either of the algo-
rithms previously (two or more skewprecision) is more similar to the model with the same average mismatched
graph. Though this task is to be studied under the reward transform, such as (c) and (C) from the training set,
based on target activities for articles a ? 2(6) and (4.3). The PHDPic (PDB) matrix of cav’va using the three rel-
evant information contains for tieming measurements. Moreover, because of the therap tor, the aim is to improve
the score to the best patch randomly, but for each initially four data sets. As shown in Figure 11, it is more than
100 steps, we used ?? \to \infty with 1000 samples) of problem varying \gamma.

5.5.2 Structured sentence completion

In this section, we investigate the MRNN’s response in various situations by sampling from the MRNN’s
distribution conditioned on a prefix. The goal is to see whether the MRNN is able to generate “plausible”
continuations to the initial strings. In our first experiment, we use the Wikipedia MRNN to complete
the string “England, Spain, France, Germany,”:

England, Spain, France, Germany, and Massachusetts.
England, Spain, France, Germany, cars, and direct schools
England, Spain, France, Germany, , or New Orleans and Uganda.
England, Spain, France, Germany, , Westchester,

Jet State, Springfield, Athleaves and Sorvinhee
In the above completions, the MRNN correctly interpreted the string to be a list of locations, so the

generated text was also a part of a list.
Next, we performed a similar experiment using the ML model and the pair of strings “(ABC et al”

and “ABC et al”. The system has never seen the string “(ABC et al” in its training set (simply because
there is no machine learning author named ABC, and its capitalization is particularly uncommon for a
citation), so the MRNN needed to generalize over an entirely new author name:

(ABC et al., 2003), ?13?, and for a supervised Mann-¡Whitnaguing
(ABC et al., 2002), based on Lebanon and Haussler, 1995b)
ABC et al. (2003b), or Penalization of Information
ABC et al. (2008) can be evaluated and motivated by

providing optimal estimate
This example shows that the MRNN is sensitive to the initial bracket before “ABC”, illustrating its

representational power. The above effect is extremely robust. In contrast, both N -gram models and the
sequence memoizer cannot make such predictions unless these exact strings (e.g., “(ABC et al., 2003)”)
occur in the training set, which cannot be counted on. In fact, any method which is based on precise
context matches is fundamentally incapable of utilizing long contexts, because the probability that a
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long context occurs more than once is vanishingly small. We experimentally verified that neither the
sequence memoizer nor PAQ are sensitive to the initial bracket.

5.6 Discussion

Modeling language at the character level seems unnecessarily difficult because we already know that
morphemes are the appropriate units for making semantic and syntactic predictions. Converting large
databases into sequences of morphemes, however, is non-trivial compared with treating them as charac-
ter strings. Also, learning which character strings make words is a relatively easy task compared with
discovering the subtleties of semantic and syntactic structure.

All our experiments show that an MRNN finds it easy to learn words. With the exception of proper
names, the generated text contains very few non-words. At the same time, the MRNN also assigns
probability to (and occasionally generates) plausible words that do not appear in the training set (e.g.,
“cryptoliation”, “homosomalist”, or “un-ameliary”). This is a desirable property, which enabled the
MRNN to gracefully deal with real words that it nonetheless did not see in the training set. Predicting
the next word by making a sequence of character predictions avoids having to use a huge softmax over
all known words and this is so advantageous that some word-level language models actually make up
binary “spellings” of words so that they can predict them one bit at a time (Mnih and Hinton, 2009).

MRNNs already learn surprisingly good language models using only 1500 hidden units, and unlike
other approaches such as the sequence memoizer and PAQ, they are easy to extend along various di-
mensions. If we could train much bigger MRNNs with millions of units and billions of connections, it
is possible that brute force alone would be sufficient to achieve an even higher standard of performance.
But this will of course require considerably more computational power.



Chapter 6

Learning Control Laws with Recurrent
Neural Networks

6.1 Introduction

Control is the problem of computing motor commands that produce a desired motion. A controller that
can rapidly generate motion is useful for building robots, so designing such controllers is an important
problem. In this chapter we show how to use Hessian-Free optimization (Martens, 2010) to learn Recur-
rent Neural Networks that can control simulated arms in conditions of delayed feedback, disturbances,
and actuator noise. To successfully reach a target under these conditions, the RNN controller needs to
estimate the ongoing disturbance and look into the future to account for the delayed feedback. Learning
RNN controllers is also interesting from a neuroscience perspective (Todorov, 2004; Scott, 2004) — the
way in which neural circuits compute optimal sensorimotor control is not well-understood, and it is not
clear how other promising engineering approaches to control (such as online trajectory optimization)
might be implemented neurally.

A simple way to control noiseless plants1 that are easy to simulate and whose derivatives are read-
ily available is to directly optimize the command sequence, which is stored in a table, to produce a
satisfactory motion (also known as “trajectory optimization”). Such methods, for example the itera-
tive Linear Quadratic Regulator (iLQR; Li and Todorov, 2004), are effective when applicable, but are
generally difficult to apply for two reasons. First, plants often have contact forces and that makes them
non-differentiable. Second, realistic plants cannot be optimally controlled with a precomputed sequence
of commands due to the unpredictable events that occur during the motion. For example, a plant may
have actuator and/or sensor noise, unpredictable disturbances (e.g., one of the arm’s joints develops fric-
tion due to an unexpected temperature change; the arm picks up an object, thus altering the movement
dynamics; or an opponent pushes on the arm), and delayed feedback (i.e., if the system is to operate
very quickly, it may observe the plant’s state with some delay, which is especially relevant to neural
systems). In these situations, the controller must use feedback, memory, and foresight to identify and
then counteract the unpredictable disturbance. The delayed feedback in particular complicates planning
because a controller cannot rely on the current observation alone when choosing an action: such a con-
troller would realize that it missed the target only after the fact. To be accurate the controller needs to
infer that the target has been reached before it has observed that it is so.

The above issues can be partially addressed by online trajectory optimization (OTO), which uses
an iLQR-like method to recompute the sequence of commands after every timestep of the simulation,

1A plant is a general term denoting any system that can be influenced via control commands.
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allowing OTO to react to a disturbance by replanning at each timestep. It is a highly effective method that
operates well in all regions of the state space for which a detailed model of the plant exists. However, the
method has several weaknesses. For example, it ignores disturbances when it recomputes trajectories,
which causes it to undercompensate. If an OTO method needs to use a robotic arm to lift a heavy object,
it will use too little force unless it explicitly models the forces created by the object.

In this chapter we describe a method that, for a given known differentiable plant, produces a Re-
current Neural Network controller that uses feedback to bring the plant to any state in the presence of
the obstacles mentioned above. Our method derives its strength from the RNN’s ability to represent a
controller that estimates and counteracts a disturbance on the fly, and takes the delayed feedback into
account. Like iLQR, we rely on second order nonlinear optimization, but we aim to learn a globally
applicable policy. Although optimizing global policies is considerably more challenging than optimiz-
ing individual trajectories, RNNs have several advantages over trajectory-optimization methods. Key
advantages are flexibility and the ability to specify more general notions of optimality. For example, it is
trivial to formulate an RNN control objective that includes delayed feedback and disturbances spanning
long periods of time, allowing the RNN (at least in principle) to compute optimal trajectories in these
situations. In contrast, there is no obvious way to use such objectives in a trajectory optimization setting.
Another aspect of the RNN’s flexibility is the ease of incorporating sensory information. For example,
it is straightforward to connect an RNN controller to the output of a neural network that performs visual
perception and to adapt the control with visual cues.

RNN controllers are extremely difficult to optimize because at their heart lies a difficult RNN opti-
mization problem (Bengio et al., 1994), which is reflected by the absence of successful RNN controllers
in the literature. We have chosen to engage this difficult problem because of the recent advance in RNN
training methods that was described in Chapter 4. So while previous work on RNN controllers was not
particularly successful, we suspected that HF would be powerful enough to optimize RNN controllers.
And indeed, we found the HF optimizer of Martens and Sutskever (2011) to be capable of learning
controllers that work in the presence of unknown disturbances and delays. We relied on a new variant
of HF called Augmented-HF (or AHF) which was found to be more robust and had a significantly lower
rate of optimization failure.

As far as we are aware, our work is the first that successfully incorporates disturbances and delayed
feedback into the control objective. Indeed, while approaches like online trajectory optimization can
deal with disturbances, their trajectories will likely not be optimal, because their objective does not take
the disturbances into consideration, and are fundamentally incapable of correctly dealing with delayed
feedback. As a result, they may use excessive force when recovering from a disturbance, and oscillate
around the target because of the delayed feedback. In contrast, by incorporating the delayed feedback
and the disturbances into the control objective, our approach implicitly approximates the best possible
trajectories subject to delayed feedback and disturbances.

6.2 Augmented Hessian-Free Optimization

This work applies Hessian-Free optimization to the problem of learning recurrent neural networks that
are robust controllers, so we briefly review Hessian-Free optimization (Martens, 2010). HF is funda-
mentally based on the repeated optimization of rich local quadratic approximations

q(x) =
x>Ax

2
− b>x (6.1)

to the nonlinear objective f . It is distinct from other second order methods, such as L-BFGS, because
it uses a very high-rank curvature matrix which is accessible only via a function that multiplies it by
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vectors. HF then optimizes this quadratic using linear conjugate gradient (CG), which is a powerful
method for minimizing quadratics that exploits directions of low curvature. CG is powerful because it
maintains the global minimizer of q over the i-th Krylov subspace

Ki(A, b) ≡ span{b, Ab,A2b, . . . , Ai−1b} (6.2)

at the i-th iteration, which immediately implies that CG converges in at most N iterations (where N is
the number of problem dimensions). CG’s agressive pursuit of low-curvature directions is beneficial,
because it contributes to the global optimization of our problems and causes the solutions to be of
higher quality. Overall, the effectiveness of CG and a rich curvature make HF an extremely powerful
optimization technique.

Augmented-HF (or AHF), like HF, is a particular flavor of truncated Newton optimization algorithm
that uses sophisticated damping strategies in order to achieve practical performance for the large and the
most challenging optimizations that appear in machine learning. Here, “damping” refers to various
modifications of the quadratic approximation q, or the optimization of it, with the intent to produce
smaller and less aggressive update proposals that are more likely to lie in regions of the parameter space
where q remains a reasonable approximation to f . Martens (2010) used the well-known approach of
adding λI to the curvature matrix (sometimes referred to as Tikhonov regularization) which encourages
updates to have a small magnitude (measure in the default parameter space), with λ being dynamically
adapted according to standard heuristics, along early truncations of the CG optimization. Later, Martens
and Sutskever (2011) and chap. 4 introduced an additional “structural damping” technique which added
terms to the curvature matrix, which encouraged updates to have a low magnitude of change in the
hidden unit activations by penalizing a quadratic approximation of this quantity. With AHF, instead
of relying on explicit modifications of the quadratic, a similar approach to Krylov Subspace Descent
(KSD; Vinyals and Povey, 2011) it taken, and direct optimization of the objective function is performed
over the Krylov subspace which contains all of the solutions that would be found by CG for any choice
of λ and any level of CG truncation. But while Krylov Subspace Descent optimizes the coefficient
over an orthonormal basis of a fixed-dimension subspace, and optimizes this with a standard non-linear
optimizer like BFGS, AHF performs greedy sequential optimization of the coefficients αi over an ever
expanding conjugate basis {c1, c2, ...} of CG’s Krylov subspace. To justify this, we note that in terms
of the optimization of the quadratic approximation q, the optimal choices for the coefficients of the
conjugate vectors do not depend on the values of the coefficients for the other vectors, and so since q
locally approximates the objective, greedy independent optimization of these coefficients ought to be
reasonably effective for the true objective, and we have found this to be true in practice. To see that the
coefficients can be independently optimized in the quadratic setting, note that
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where we have used the defining property of a conjugate basis, that c>i Acj = 0 for i 6= j.
The type of damping achieved by AHF via directly searching over Krylov subspaces generalizes

and subsumes both Tikhonov regularization and CG truncation (although not structural damping) used
in the original HF formulation, and we have found it to be more powerful than these approaches in
general. Finally, in order to allow for the “hot-starts” of CG used in the original HF formulation, a
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Figure 6.1: The figure displays the artificial limb with and its joint angles, and the center-out task with
the iLQR trajectories in the correct scale relative to the limb. The figure also presents the trajectories of
two RNNs trained on the center-out task. The four top panels show the trajectories and the command
torques of RNNs trained by AHF and the bottom by L-BFGS. Although AHF’s energy expenditure is
only slightly lower than L-BFGS’s, the trajectories and the command torques (that correspond to the
trajectory colored red) found by AHF are much nicer and closer to iLQR’s. Where applicable, blue
traces denote the shoulder joint torque/velocity, and black denotes elbow torque/velocity.

conjugate basis for “augmented” Krylov subspace optimized over using an augmented CG/Lanczos
algorithm of our own design. The name of the approach, as well as most of its complexity and per-
iteration performance advantages over Krylov Subspace Descent derive mostly from this last element.
AHF has several other important practical advantages over Krylov Subspace Descent. Most important
among these is that, unlike Krylov Subspace Descent, it does not need to store an entire basis for the
Krylov subspace in memory at any one time, and the subspace dimension need not be fixed ahead of
time.

6.3 Experiments: Tasks

In this chapter we have examined three tasks requiring control of a two-joint limb in 2D-space. The
first task (figure 6.1) is a straightforward reaching task where the controller is required to move the limb
from an initial configuration x to some desired configuration x∗ at some final time T while minimizing
energy expenditure. Here we examined the solution to a series of reaches arranged in a circle around a
central starting point; variants of this task are well known in the neuroscience motor control literature
(e.g., Scott et al., 2001), and we will call it the center-out task.

For the second task (inspired by a similar task used in monkey neurophysiology; Sergio and Kalaska,
2003), we looked at a postural task where the controller is perturbed away from one of 9 desired postures,
x∗1−9, by one of 8 constant forces applied to the limb. The controller is required to resist the ongoing
perturbation and remain close to the original starting position. Importantly, the perturbation on any
given trial is unknown to the controller and must be inferred from the observations via feedback. The
feedback is delayed – in this case the information is received 100ms (10 time steps in our simulations)
after it had occurred. This renders the task substantially more difficult because the network is required
to “plan” for the future: i.e., even if the network manages to infer the force which is being applied to
the hand in a given trial, it must then resist and push back just enough to bring the hand back to the
target without overshooting. Controllers which are less “intelligent” will tend to oscillate (or “ring”)
around the desired position since they only become aware that they have overshot the mark when the
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delayed feedback instructs them so – with a delay – and this may happen repeatedly and often leads to
instability.

For the third and most difficult task, the controller was required to move the limb from a random
starting position in the human/monkey workspace to a random target in the workspace. This task was
further complicated in the following ways: (a) Sensory feedback was delayed by 70ms (7 time steps),
(b) Constant perturbations drawn from a Gaussian distribution were applied to the shoulder and elbow
joints (c) Signal dependent Gaussian noise (i.e., noise whose magnitude grows with the magnitude of
the signal as in real neurons and muscles) was applied to the torque commands issued by the network.
We call it the disturbance-delays-noise (DDN) task. In order to successfully reach and remain at the
target the network must dynamically infer the perturbation applied to the limb from the delayed and
noisy sensory feedback. As well, it must integrate sensory information over time to tease apart whether
the perturbations from an expected trajectory are due to an external perturbation or merely caused by
motor noise.

Our plant is based on a continuous time physics model which we discretize with ∆t = 0.01s steps
and integrate with simple Euler integration. The center-out task is given 400ms, and the DDN task
600ms, while the postural task is given 1000ms (i.e., 40, 60, and 100 timesteps). Thus the motions were
all fairly brief. The objective for the center-out task measures the the squared difference between the
target and final state plus α = 10−2 · ∆t times the sum of the squares of the command torques. The
objective for the DDN task is identical to the center-out’s objective, except that α = 10−4 · ∆t. The
objective for the postural task is to minimize the squared distance between the actual and target joint
angles at each timestep (as opposed to the final state), and for the second half of each trial, to zero
the joint velocities as well (to quench oscillation). In this task we used an energy cost on the squared
commands of α = 10−6 ·∆t.

6.4 Network Details

We tried a number of configurations of network structure and nonlinearities and found a single network
type which we found had enough capacity to perform reasonably well for all the tasks described. We
used a 2-hidden layer network of fully connected tanh(·) units. There were 100 units in each layer
and each layer was fully recurrently connected within itself, though not to the other layer. In addition
to the usual connections between the network inputs and the first layer, there were “skip” connections
from the inputs to the second layer. The second layer of the network was fully connected to two linear
output units which were interpreted as the commanded joint torques at the shoulder and elbow joints,
i.e., ut = [τθ, τφ]. The network was chosen to have this size and architecture in order to enable it to
represent solutions with low energy expenditure, as we found that smaller and simpler nets had little
trouble reaching the targets, but their energy expenditure was noticeably greater.

At each timestep t the network received a (possibly delayed, depending on the task) copy of the state
of the arm coded as the shoulder (θ) and elbow (φ) joint angles and velocities, i.e., xt−τ =

[
θ, φ, θ̇, φ̇

]
,

where τ ≥ 0 is the delay in the feedback. As well, the network received a goal or desired final state, x∗,
also coded in shoulder and elbow joint angles/velocities. Thus, for example, in the reaching experiments
presented here the final desired velocity was 0. This is not necessary, and we could in principle examine
problems where the desired velocity at some time point is specifically non-zero (as in the problem of
swinging a bat to hit a baseball). While we have not examined tasks such as this, in principle our
approach should have no trouble dealing with this extension.



CHAPTER 6. LEARNING CONTROL LAWS WITH RECURRENT NEURAL NETWORKS 67

6.5 Formal Problem Statement

We now formally define the optimal control problems and the recurrent neural networks which are the
focus of this work, specifically for the center-out and the DDN tasks. The general form of the control
problems studied here is given by the equation

xt+1 = f(xt, ut � (1 + ξut ) + dt, t) + ξft

where f is the deterministic differentiable function that describes the discrete time-evolution of the plant,
xt is the the state of the plant, ut is a control command, dt is a disturbance, ξut is the command noise, and
ξft is plant noise. Also, � denotes coordinate-wise multiplication to indicate that the command noise is
multiplicative.

Next we describe a one-layer RNN controller, although we use a two-layered controller in our
experiments. In the equations below, ct is a context vector representing the RNN’s target:

vt = [xt; ct]

ht = tanh(Whvvt +Whhht−1 + bz)

ut = tanh(Whuht + bu)

The controller parameters is the concatenation of the RNN’s parameters, θ = [Whv,Whh,Whu, bh, bu],
and the loss for a single trajectory initialized at x0 is given by

Lx∗,x0(θ) =

T∑
t=0

`x∗(xt, ut, t)

In our setting, the loss function `x∗(xt, ut, t) measures the distance to the target x∗ and the energy
expenditure:

`x∗(xt, ut, t) = ‖xt − x∗‖2/2 · δt,T + α‖ut‖2/2

The objective is an average of losses with a range of starting positions, disturbances, and targets:

L(θ) = Ex∗,x0 [Lx∗,x0(θ)]

6.6 Details of the Plant

Throughout this work we have employed a 2-joint revolute arm for the plant model which is intended to
resemble the human or monkey upper limb constrained to move in the horizontal plane (Figure 6.1). We
used length, mass and inertial parameters based on those found empirically for the monkey upper limb
(Cheng and Scott, 2000). This plant has the advantage of being well known in the literature (Stroeve,
1998; Li and Todorov, 2004) and is a sensible plant on which we test our RNN controllers.

In modelling the limb dynamics, we initially attempted to use the widely known physics formulation
given by Li and Todorov (2004). However, this implementation of the physics equations appears to be
prone to a known issue (Agrawal, 1991) where the inertia matrix becomes singular in some configura-
tions of the limb, which was especially problematic when we used monkey-like limb parameters. Thus
we instead derived our own equations of motion for the limb physics.
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Figure 6.2: (a) The performance of several different optimization methods on the center-out task versus
the number of function calls is shown. The dashed line at the bottom displays iLQR’s performance
which is our gold standard. The figure shows that L-BFGS reduces the objective much faster than AHF.
However, it quickly reaches a point beyond which it cannot improve. AHF takes longer, but it comes
considerably closer to the best possible performance, which is also reflected in both figure 6.1 and the
table above. In addition, AHF is the only method that does not slow down (get a “kink”) at error of
10−2, indicating additional robustness. (b) A table with the performance of AHF, L-BFGS, and iLQR
on the centerout task.

6.7 Experiments: Description of Results

6.7.1 The center-out task

Our results on the first task (Figures 6.1,6.2) demonstrate several important things. First and foremost,
it shows that while the problem of finding a good setting of the parameters for the network such that it
can make all of the 64 reaches around the circle is much more difficult than the problem of find purely
local solutions, our approach (AHF) is able to find a solution which almost identically matches the local
solutions produced by the iterative Local Quadratic Regulator (iLQR) approach. Secondly, examining
the performance of a variety of optimization approaches, we found substantial variance in their ability
to solve this problem. We looked at the mean loss across the 64 reaches and we treat the local solutions
produced by iLQR as the gold standard (dashed black line in Figure 6.2).

We looked at the performance of standard gradient descent (GD) with a fixed learning rate tuned by
hand, and three of the 2nd order methods provided by the minFunc package: the Nonlinear Pre-
conditioned Conjugate Gradient (NPCG; pcg), the Preconditioned Hessian-Free optimizer (PHF0;
pnewton0, and the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS; lbfgs with L =
100) optimizer. We also examined the performance of the minimize.m implementation of NPCG (re-
sults not shown as we found its performance inferior to those produced by the minFunc variant).
Finally, we used the Hessian-Free optimizer with the structural damping as described by Martens and
Sutskever (2011) and the Augmented Hessian-Free (AHF) approach which is more robust than HF. In
all of the experiments presented, we used the identical network structure and network parameter initial-
izations.

Our simulations were written using the symbolic library Theano (Bergstra et al., 2010) in Python,
which made it easy to obtain the gradient and the R-operators. While not strictly necessary for solution
of the problems we study, Theano is practically essential because manual computation of the deriva-
tives for control problems are effort-intensive and error prone. In order to effectively make use of the
well known minFunc package (Schmidt, 2009) we called our Python functions using Matlab’s Mex
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Figure 6.3: The figure shows the trajectories of an RNN trained on the postural task from a single
starting position. First the limb is pushed from its starting point due to the force of the disturbance, but
it quickly returns to the target and stays still, perfectly counteracting the disturbance.

functionality. As well, the results for the center-out task demonstrate that we achieved very good results
with at least one of the minFunc optimizers, allowing us to be confident that our Matlab/Mex/Python
interface code was working properly and that minimize.m and the minFunc.m optimizers were not
disadvantaged in our setup.

Several previous works have looked at training RNNs to control simulated limbs to make reaches
(Stroeve, 1998; Huh and Todorov, 2009; Shimansky et al., 2004). However, in all of the cases we are
aware of, the authors used either a gradient descent variant (e.g., Stroeve, 1998) or a variant of NPCG
(e.g. Huh and Todorov (2009) used minimize.m), and made no attempt to compare the solutions
discovered to those attainable via local methods such as iLQR. Our results show that the choice of the
optimization algorithm is extremely important when learning control tasks with an RNN. Only L-BFGS
and AHF find solutions which are comparable to the solution discovered by iLQR, and only AHF was
ever able to find a solution with near identical loss.

A robust finding was that using any of the other optimizers, i.e., GD, NPCG, PHF0, led to much
worse behavioural performance even when the differences in the loss were not large. These optimizers
may produce a network which will grossly move to the target, but the trajectories are obviously degraded
from the optimal trajectories found by iLQR and our method. Thus, while previous research has claimed
to produce good control for reaching with RNNs, these claims have simply not been evaluated with
quantitative metrics as we have done here. As such, previous research has ignored the large gap between
the solutions possible via GD/NPCG and those possible via local methods such as iLQR.

Why should this be the case? At first glance, the center out task appears easy, perhaps even trivial
to optimize. It seems at first that all that is needed is to push on the two torque commands (for shoulder
and elbow) until the arm arrives at the desired location. Perhaps, all that is required is to push harder to
start and then less as one gets near to the target? For example, one could imagine pushing in a manner
proportional to the distance remaining to the target. What makes the problem difficult is to arrive at
the target with near-zero velocity and to do so while using as little energy as possible. In order to be
successful in this regard a controller must be smart and plan for the future. In particular the problem
requires that the controller begins with small velocities in the direction of the target, smoothly and
slowly increase the velocity until approximately the middle of the movement (depending on the plant
dynamics) and then smoothly and slowly decrease the velocity in just such a fashion that the target is
arrived at the moment the velocity hits 0. Thus, the controller must decide to start slowing the motion
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0.1 metre

Figure 6.4: (Best viewed in color) The figure shows the trajectories produced by an RNN trained with
delays and disturbances (the robust RNN) superimposed on top of the trajectories of an RNN trained
without disturbances (but with delays). The colors of the trajectory indicate the state of the disturbance:
the disturbance is inactive when the trajectory is blue, and is active when the trajectory is red. The
figure also shows the trajectories of the robust RNN on the same reaching tasks with no disturbance
whatsoever (the grey trajectories), allowing us to see the precise effect of the disturbance on the robust
RNN’s trajectory. We can see that the robust RNN takes about 7 timestep to detect and correct for the
disturbance.

down in the middle of the trajectory, when the arm is still far from the target.
The results of the center-out experiment are summarized in figure 6.2.

6.7.2 The postural task

The postural task (Figure 6.3) was already described in detail in section 3. It is different from the center-
out task in two ways. First, it has delayed feedback by 100ms or 10 timesteps, and second, the loss is
the cumulative deviation from the target (which is equal to the starting point) over the 100 timestep
of the trajectory, rather than the deviation at the last timestep. The real the objective is to identify the
disturbance and to counteract it as quickly as possible, while avoiding oscillations and “ringing” around
the target. On this task, both AHF (whose final loss is 2.2e-2) and L-BFGS (whose final loss is 2.3e-
2) learned very high-quality solutions that quickly identify the disturbance and correct for it with no
oscillations and no ringing. The postural task appears to be easier than center-out, because the RNN is
given a target at every timestep, rather than at only the last one, which greatly diminishes the importance
of long range temporal dependencies.

To solve the postural task we used batches of 72 sequences (which is the total number of starting
point/disturbance combinations). AHF required 75,000 function evaluations, while L-BFGS needed
15,000 evaluations to solve the problem.

6.7.3 The DDN task

The Delay-Disturbance-Noise (DDN) is the hardest of our tasks. In this task, the RNN has to start at
any position and reach any target within a fairly large radius (roughly the typical workspace of a human
or monkey). A random disturbance is activated in the first half of the trajectory which stays unchanged
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AHFL-BFGS

Figure 6.5: The figure shows two RNNs, trained AHF and with LBFGS on the the DDN task. Their
trajectories are shown on the center-out task. These solutions exhibit a qualitative difference that goes
beyond the numerical values of their objectives. The figure also shows that the value of the objective
does not reveal the whole story, and that AHF consistently finds solutions that are “globally” better. We
hypothesize that it is a direct consequence of its aggressive pursuit of low-curvature directions.

throughout the trajectory. The disturbance is continuous, so the RNN needs to estimate and represent
the continuous disturbance in its hidden units for many timesteps. The actuator noise makes it harder
for the RNN to estimate the disturbance because an apparent disturbance could be due to the noise. The
task’s difficulty is reflected by the relative difficulty of learning good solutions to this problem.

We ran experiments in several settings. We trained an RNN on delays alone, on delays and distur-
bances, and on delays, disturbances, and noise. The delay consist of 7 time steps, and the disturbances
were set to Normal(0,0.2) for each joint torque. We found that longer delays and larger disturbances
made the optimization problem more difficult.

Figure 6.4 shows the trajectories of an RNN trained with delays and disturbances (the robust RNN)
superimposed on the trajectories of an RNN trained with delays but without disturbances (the non-robust
RNN). The figure shows how disturbances make it impossible for the non-robust RNN to successfully
complete the motion. It also shows how a disturbance affects the trajectory of the robust RNN for
about 7 timesteps (due to the delayed feedback), after which the robust RNN identifies the disturbance
and counteracts it to successfully complete the motion. A delay is essential for the disturbance to have a
noticeable impact on the trajectories, because controllers with instant feedback can detect and counteract
a disturbance immediately, before it made a noticeable effect on the trajectory.

We compared our solutions to L-BFGS. On the full DDN task AHF was able to get an error of
9 · 10−3, while L-BFGS’s error was 2 · 10−2. For this task, we used batches of 400 starting points and
targets for both optimizers, and refreshed L-BFGS’s batch every 25 parameter updates. But just like
with the center-out problem, L-BFGS’s solutions are also qualitatively less good. Figure 6.5 shows the
trajectories of the two RNNs on the center-out task, where the difference in the solution quality is seen
clearly. To reach this performance, AHF used 100,000 function calls, while L-BFGS required 25,000
function calls, at which point it stopped making progress.

6.8 Discussion and Future Directions

Our results show that the AHF algorithm is capable of learning RNNs that can robustly control a simple
plant subject to delayed feedback, disturbances, and noise. By matching iLQR’s results on the center-out
task, we demonstrated that the proposed method is capable of implementing near-optimal trajectories
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in an RNN. As well, we expect that our method may work on more challenging plants since it is, in a
sense, equivalent to iLQR: if we optimize a fixed command sequence using HF, we recover precisely
the same trajectories as found with iLQR. This is because both iLQR and HF are second order methods
that divide by the exact Gauss-Newton matrix. However, unlike iLQR, which is only applicable to a
fixed command sequence for a single reach (it strongly relies on this fact to be able to exactly divide by
the Gauss-Newton matrix), HF can be used to optimize arbitrary functions, including RNN controllers.
And while optimizing RNN controllers with HF is substantially more challenging than applying iLQR,
both methods are based on the same principle.

The most straightforward future direction consists of applying our technique to more complex plants.
For example, we could easily apply it to 3-dimensional limbs and to arms actuated with nonlinear
realistic muscles that can contract but not expand. In addition, we could train our plant to rely on a
visual context rather than on a precise coordinate representation of the target.

In addition, we can also extend our method so that it works on unknown plants. We could learn a
neural network approximation of the plant’s forward dynamics, and use it to compute the approximate
plant derivatives while using the correct forward trajectories. In principle, this technique allows us
to apply our method to unknown and non-differentiable plants because of the differentiability of the
approximating neural network. We have preliminary success with this approach and we hope to apply
this technique to the control of a human body.



Chapter 7

Momentum Methods for Well-Initialized
RNNs

In this chapter, we show that using carefully crafted (but fairly simple) random initializations, deep
autoencoders and recurrent neural networks can be trained effectively using stochastic gradient descent,
and that these results can be significantly improved through the use of aggressive momentum-based
acceleration. For deep autoencoders we show that using any one of a variety of recently proposed
random initialization schemes, deep autoencoders can be trained to a level of performance exceeding
that reported by Hinton and Salakhutdinov (2006), and with the addition of Nesterov-type momentum,
the results can be further improved to surpass those reported by Martens (2010). For RNNs we give
a simple initialization scheme related to the one used for Echo State Networks and successfully train
them on various datasets exhibiting long trem dependencies (spanning 50-200 timesteps, depending on
the problem).

Our results suggest that previous attempts to train deep and recurrent neural networks from random
initializations failed mostly due to poor choices of their initializations, and that the curvature issues
which are present in the training objectives of deep and recurrent neural networks can be addressed
through the use of aggressive momentum-based acceleration, without the need for second-order meth-
ods.

7.1 Motivation

7.1.1 Recent results for deep neural networks

Several recent results have appeared to disagree with the commonly held belief that first-order methods
are incapable of learning deep models from random initializations. Glorot and Bengio (2010) and Mo-
hamed et al. (2012) reported little difficulty training neural networks of depth 5 and 8 respectively from
random initializations. Chapelle and Erhan (2011) used the random initialization of Glorot and Bengio
(2010) and SGD to train the 11-layer autoencoder of Hinton and Salakhutdinov (2006). They were
able to surpass the level of performance reported by Hinton and Salakhutdinov (2006) and approach the
performance reported by Martens (2010) for HF.

7.1.2 Recent results for recurrent neural networks

Echo-State Networks (ESNs; Jaeger and Haas, 2004, also described in sec. 2.8.4) are standard RNNs
that use an unusual learning procedure that only trains the hidden-to-output connections, and relies on
a carefully crafted random initialization to create random but useful hidden dynamics which remain

73



CHAPTER 7. MOMENTUM METHODS FOR WELL-INITIALIZED RNNS 74

fixed through training. Jaeger (2012b) successfully trained ESNs to very reliably achieve low test er-
rors on a number of artificial datasets exhibiting pathological long-range dependencies (Hochreiter and
Schmidhuber, 1997; Martens and Sutskever, 2011). It was far from obvious that ESNs could do well on
these tasks, as they only learn the hidden-to-output weights, leaving the output-to-hidden and hidden-
to-hidden weights fixed throughout the course of training. These results, while very impressive, are not
directly comparable to those of Martens and Sutskever (2011) and Chapter 4, due to the ESNs’ use of
much higher dimensionality for the hidden states.

Despite the surprising power of ESNs on certain very difficult artificial problems, training the hidden
dynamics still seems like a worthwhile pursuit, one that is necessary to fully exploit the theoretical
representational power of RNNs. Moreover, since the number of free-parameters of an ESN grows only
linearly with the hidden-state dimension, for rich and data-intensive sequence learning tasks that require
millions of free parameters, an ESN-based approach would require the use of an infeasibly large hidden-
state vector, although this problem could be mitigated, somewhat, by the use of a highly-optimized
implementation of sparse multiplication.

Nevertheless, there is a lot to be learned from the success of ESNs, not the least of which is a
good method for randomly initializing an RNN’s parameters. In the ESN approach, the hidden-to-
hidden weight matrices are drawn from a carefully chosen distribution. It is designed to encourage rich
hidden dynamics that can convey information about the input, and various random transformations of it,
across many time-steps. This suggests that ESN-based initializations may be useful for RNN training,
especially for problems exhibiting long-range dependencies, where training has a tendency to get stuck
in regions of the parameter space where no useful information is ever transmitted over a long range.

7.2 Momentum and Nesterov’s Accelerated Gradient

A classical technique for accelerating stochastic gradient descent is the momentum method (abbrv. M;
sec. 2.2), which accumulates a velocity vector in directions of persistent reduction in the objective (Plaut
et al., 1986). This property allows momentum to accumulate velocity in directions of low curvature that
persist across multiple iterations, leading to accelerated progress in such directions compared to gradi-
ent descent. Nesterov’s accelerated gradient (abbrv. NAG; Nesterov, 1983) is a first-order optimization
method which is proven to have a better convergence rate guarantee than gradient descent for general
convex functions with Lipshitz-continuous derivatives (O(1/T 2) versusO(1/T )). Upon close examina-
tion, Nesterov’s accelerated gradient turns out to be very similar to standard momentum, differing only
in two important aspects. Firstly, it prescribes a particular formula for the learning rate ε and momentum
constant µ, which are necessary to achieve its theoretical guarantees for smooth convex functions. How-
ever, these turn out to be far too aggressive for our nonconvex objectives (especially with a stochastic
gradient signal), and we have found that the problem of choosing ε and µ is better addressed by manual
tuning (at least until a more robust automatic system is created). The second difference, which seems
minor but turns out to be important, is the precise update mechanism for the velocity vector v.

Standard momentum is given by the following pair of equations:

vt = µvt−1 − ε∇f(θt−1) (7.1)

θt = θt−1 + vt (7.2)

where the variable ε > 0 is the learning rate, µ ∈ [0, 1] is the momentum constant (or 1 − µ is the
constant of friction), and ∇f(θt) is an unbiased estimate of the gradient at θt. The momentum constant
µ controls the “decay” of the velocity vector v, and values closer to 1 result in gradient information
persisting across more iterations which generally leads to higher velocities.
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Nesterov’s accelerated gradient is an iterative algorithm that was originally derived for non-stochastic
gradients. It is initialized by setting k = 0, a0 = 1, θ−1 = y0, y0 to an arbitrary parameter setting, z to
an arbitrary parameter setting, and ε−1 = ‖y0 − z‖/‖∇f(y0)−∇f(z)‖. It then repeatedly updates its
parameters with the following equations:

εt = 2−iεt−1 (here i is the smallest positive integer for which (7.3)

f(yt)− f(yt − 2−iεt−1∇f(yt)) ≥ 2−iεt−1
‖∇f(yt)‖2

2
)

θt = yt − εt∇f(yt) (7.4)

at+1 =

(
1 +

√
4a2t + 1

)
/2 (7.5)

yt+1 = θt + (at − 1)(θt − θt−1)/at+1 (7.6)

The above presentation is relatively opaque and could be difficult to understand, so we will rewrite these
equations in a more intuitive manner.

The learning rate εt is adapted to always be smaller than the reciprocal of the “observed” Lipshitz
coefficient of ∇f around the trajectory of the optimization. Alternatively, if the Lipshitz coefficient of
the derivative is known to be equal to L, then setting εt = 1/L for all t is sufficient to obtain the same
theoretical guarantees. This method for choosing the learning rate assumes that f is not noisy, and will
result in too-large learning rates if the objective is stochastic.

To understand the sequence at, we note that the function x →
(

1 +
√

4x2 + 1
)
/2 quickly ap-

proaches x → x + 0.5 from below as x → ∞, so at ≈ (t + 4)/2 for large t, and thus (at − 1)/at+1

(from eq. 7.6) behaves like 1− 3/(t+ 5).
Finally, if we define

vt ≡ θt − θt−1 (7.7)

µt ≡ (at − 1)/at+1 (7.8)

then the combination of eqs. 7.6 and 7.8 implies:

yt = θt−1 + µt−1vt−1 (7.9)

which can be used to rewrite eq. 7.4 as follows:

θt = θt−1 + µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (7.10)

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (7.11)

where eq. 7.11 is a consequence of eq. 7.7. Alternatively:

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (7.12)

θt = θt−1 + vt (7.13)

where µt ≈ 1 − 3/(t + 5). Nesterov (1983) shows that if f is a convex function with an L-Lipshitz
continuous derivative, then the above method satisfies the following:

f(θt)− f(θ∗) ≤ 4L‖θ−1 − θ∗‖2

(t+ 2)2
(7.14)

The quadratic dependence on the number of iterations can be intuitively understood by considering a
one-dimensional linear function, where the magnitude of the i-th step would be proportional to i. Thus,
only O(

√
N) of these steps are required to traverse N units of distance.
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Figure 7.1: Left: one step of Nesterov’s accelerated gradient and of momentum. Right: the trajectories
of GD (red), momentum (green), and Nesterov’s accelerated gradient (blue). Both methods had µ set to
0.95. The global minimum of the quadratic is in the center of the figure, at (0, 0).

When Nesterov’s accelerated gradient is presented in eqs. 7.12-7.13, the similarity to eqs. 7.1-7.2
that define the standard momentum becomes apparent. If we ignore the proposed momentum schedule
µt and the adaptive learning rate schedule, then the key difference between momentum and Nesterov’s
accelerated gradient is that momentum computes the gradient before applying the velocity, while Nes-
terov’s accelerated gradient computes the gradient after doing so.

This benign-looking difference seems to allow Nesterov’s accelerated gradient to change v in a
quicker and more responsive way, letting it behave more stably than momentum in many situations,
especially for higher values of µ. Indeed, consider the situation where the addition of µvt to θt results
in an undesirable increase in the objective f . In the case of Nesterov’s accelerated gradient, the gradient
correction to the velocity vt is computed at point θt + µvt, and if µvt is indeed a poor update,∇f(θt +
µvt) will point back towards θt more strongly than the gradient computed at θt (which is used by
momentum), thus providing a larger and more timely correction to v. See fig. 7.1(a) for a diagram which
illustrates this phenomenon geometrically. Now while each iteration of Nesterov’s accelerated gradient
may only be slightly more effective than momentum at correcting a large and inappropriate velocity,
this difference in effectiveness may compound as the algorithms iterate. To demonstrate this we applied
both Nesterov’s accelerated gradient and momentum to a two-dimensional oblong quadratic objective,
both with the same values for µ and ε (see fig. 7.1(b)). While the optimization path taken by momentum
exhibits large oscillations along the high-curvature vertical direction, Nesterov’s accelerated gradient
is able to avoid these oscillations completely, confirming the intuition that it is much more effective
than momentum at decelerating over the course of multiple iterations, and that this results in improved
stability. Also note that there is little difference in the progress of both Nesterov’s accelerated gradient
and momentum along the horizontal direction of the quadratic, due to the fact that the gradient changes
only very slowly along this direction (due to its low curvature).

We emphasize that this discussion does not prove that Nesterov’s accelerated gradient will perform
significantly better than standard momentum in all cases. However, due to its simplicity and close
resemblance to standard momentum it is very easy to implement, and may provide a significant boost in
performance, as will be evidenced in our experiments.
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name dim size objective network architecture
CURVES 784 20,000 binary cross entropy 784-400-200-100-50-25-6
MNIST 784 60,000 binary cross entropy 784-1000-500-250-30
FACES 625 103,500 squared error 625-2000-1000-500-30

Table 7.1: A description of the networks’ architectures and the sizes of the datasets.
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Figure 7.2: The figure shows the learning curves of Nesterov’s accelerated gradient (NAG; blue) and of
momentum (M; green) on the three autoencoder tasks. The µ-schedule of momentum is less aggressive
than that of Nesterov’s accelerated gradient. The “spikes” in the error correspond to the iterations at
which the momentum is increased. Similarly, the rapid decrease in the objective near the end of the
optimization is due to the reduction of both ε and µ. In these figures, the momentum experiments had
the same µ-schedule as the corresponding Nesterov’s accelerated gradient experiment, except that µwas
capped at 0.99.

7.3 Deep Autoencoders

The task of the neural network autoencoder is to reconstruct its own input subject to the constraint
that one of its hidden layers is restricted to be of low-dimension. This “bottleneck” layer acts as a
low-dimensional code for the original input, similar to other dimensionality reduction techniques like
Principle component Analysis (PCA). Hinton and Salakhutdinov (2006) trained very deep autoencoders
on several datasets (as described in table 7.1), achieving results that greatly surpassed those of PCA
both numerically and qualitatively. These autoencoders are the deepest neural networks with published
results, ranging between 7 and 11 layers. Unlike Martens (2010), we did not use L2 regularization, so
we rerun HF without L2 regularization as well.

Our main results are presented in figure 7.2 and table 7.2. The figure shows the learning curves of
the deep autoencoders on the CURVES, MNIST, and FACES datasets. We examine only the training
error in order to focus purely on the effectiveness of the optimization and to avoid the confounding factor
of overfitting. Using Nesterov’s accelerated gradient we achieved the lowest published errors for this
set of problems, including those in Martens (2010). For Nesterov’s accelerated gradient we used a more
aggressive µ-schedule than for momentum because the more aggressive schedule caused momentum to
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diverge, which further supports our claim that Nesterov’s accelerated gradient is more robust to higher
values of µ. The µ-schedule we used consists of the progression of values [0.8, 0.9, 0.95, 0.97, 0.99,
0.995, 0.997, 0.999] placed (roughly) at exponentially spaced iterations. We used fixed learning rates
of 0.005 for CURVES and MNIST and 0.0005 for FACES and did not use weight decay. For each
first-order method we used 600,000 iterations with randomly sampled minibatches of size 200. By
200,000 iterations µ reaches its maximum value of 0.999, and notably, the learning curve for Nesterov’s
accelerated gradient exhibits large spikes starting at precisely this iteration (for MNIST and FACES). It
would seem that the sudden increase in µ destabilizes the optimization temporarily, possibly due to the
“desire” of larger µ to have a wider minima.

We found it beneficial to reduce ε by a factor of 10 and µ down to 0.99 during the final 10% of
the optimization. Doing so resulted in the following improvements in performance: 0.96 to 0.079 for
CURVES, 1.20 to 0.73 for MNIST, and 10.83 to 7.52 for faces, and this effect is present for both Nes-
terov’s accelerated gradient and for momentum (see fig. 7.2). It appears that reducing these constants
allows for finer convergence to take place whereas otherwise the overly aggressive nature of the mo-
mentum method (especially with stochastic gradients) would prevent this. It may be tempting then to
use lower values of ε and µ from the outset, or to reduce them immediately when progress in reducing
the error appears to slow down. However, in our experiments we found that doing this was detrimental
in terms of the final errors we could achieve, and that despite appearing to not make much progress,
or even becoming significantly non-monotonic, the optimizers were doing something useful over these
extended periods of time at higher values of ε and µ.

A speculative explanation as to why we see this behavior is as follows. With large constants the
momentum methods are making useful progress along slow-changing directions of low-curvature even
while appearing to not reduce the error very significantly, due to their failure to converge in the more
turbulent high curvature directions. This progress takes them to new regions of the parameter space
where “finer” and more careful optimization will allow convergence in the high-curvature directions and
quickly zero-in on the nearest local solution (which because of the previous progress made in the low
curvature directions will be of superior quality). Moving to this fine convergence regime by reducing
the constants too early may make it difficult for the optimization to make significant progress along
the low-curvature directions, since first-order methods, when lacking momentum or a large learning
rate, are notoriously bad at this (which is one of the motivations for second-order methods like HF for
deep learning). Another reason why progress along low-curvature directions may be hampered in this
situation, which is particular to non-convex objectives, is that the finer and more careful optimization
may more easily get stuck in small/narrow regions of the parameter space that are highly constrained by
local high-curvature directions (appearing as small ripples or cracks in the error surface).

problem NAG M (0.99) M (0.9) SGD (3 · 106 iters) SGD (Glorot and Bengio, 2010) HF
CURVES 0.078 0.110 0.220 0.250 0.160 0.110
MNIST 0.730 0.770 0.990 1.100 0.900 0.780
FACES 7.500 8.530 10.970 14.700 NA 8.000

Table 7.2: The results on the three autoencoders for the various methods. momentum (0.99) and
momentum (0.9) refer to momentum where the value of the momentum is capped at 0.99 and 0.9,
respectively. We have conducted an experiment with SGD for 3 million iterations with a minibatch of
size 20 and a learning rate of size 0.02 or (0.002 for FACES). Even with six times more iterations SGD
failed to reach the performance of Nesterov’s accelerated gradient and momentum.

Unlike the CURVES and FACES autoencoder tasks, the MNIST one did not see much benefit from
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the use of Nesterov’s accelerated gradient over momentum. Thus we cannot infer from our results that
Nesterov’s accelerated gradient will likely always do better than momentum, but it seems unlikely that
it would ever do much worse.

7.3.1 Random initializations

The above results were obtained with sigmoid neural networks that were initialized with the sparse
initialization technique (abbrv. SI) described in Martens (2010). In this scheme, for each neural unit,
15 randomly chosen incoming connection weights are initialized by a unit Gaussian draw, while the
remaining ones are set to zero. The intuitive justification is that the total amount of input to each unit
will not depend on the size of the previous layer and hence they will not as easily saturate. When
applying this method to networks with tanh units it is helpful to further rescale weights by 0.25, and
shift the biases by −0.5 (so that the average output of each unit is closer to zero).

Glorot and Bengio (2010) designed an initialization method for deep networks with tanh units. In
this scheme, each weight is drawn from

√
6/(n1 + n2) · U [−1, 1], where n1 and n2 are the number

of incoming and outgoing units for that particular weight matrix, and U [−1, 1] is the uniform distribu-
tion over the interval [−1, 1]. The scaling factor

√
6/(n1 + n2) is chosen so as to preserve variance

of the activations of the units from layer to layer. Chapelle and Erhan (2011) used this initialziation
method to achieve non-trivial performance on the CURVES and the MNIST autoencoder tasks using
SGD optimization (these are reported in table 7.2).

We conducted a number of experiments on the CURVES problem training problem, comparing
networks using tanh units against ones using sigmoids, as well as comparing SI with the variance pre-
serving initialization method (VP). We found that the tanh networks required a learning rate 8 times
smaller, or else learning would become too unstable with our aggressive µ-schedule. After 600,000
parameter updates, a tanh network initialized with SI achieved a training error of 0.086, while an iden-
tically defined tanh network initialized with VP achieved a training error of 0.098. Comparing to our
results using SI (fig. 7.3), these results suggests that tanh networks are not significantly harder or easier
to train than sigmoid networks, and that VP seems to perform worse than SI for our particular models
and the optimizers we are using.

We also investigated the performance of the optimization as a function of the scale constant used in
SI (which defaults to 1 for sigmoid units). We found that SI works reasonably well if it is rescaled by a
factor of 2, but leads to noticeable (but not severe) slow down when scaled by a factor of 3. When we
rescaled by factor of 1/2 or 5 we were unable to achieve sensible results. These findings are summarized
in fig. 7.3.

We emphasize that the above random initializations, SI and VP, require no tuning and are easy to
use with any sigmoid or tanh deep neural network, and that these results are typical for multiple random
seeds.

7.3.2 Deeper autoencoders

We conducted an experiment with an autoencoder with 17 hidden layers on the CURVES autoencoder
(versus the usual 11). The architecture was obtained by adding layers of size 200 so that the sizes of the
layers of both the decoder and the encoder are monotonic. We have used the sparse initialization and
precisely the same learning rate and µ-schedule as in our previous experiment. The deeper network has
30% more parameters, and it has achieved an error of 0.067 after 600,000 iterations (while the shallower
11-hidden layer autoencoder achieved an error of 0.078). See fig. 7.3 (rightmost figure).
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CURVES: Varying the initial scale.
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Figure 7.3: Left: An experiment comparing tanh to logistic sigmoid units. Center: The sensitivity to
the initial scale. The initial scales of 0.5 and 5 resulted in error curves that were too large to be visible
on this plot. Right: The learning curve of the 17-layer neural network.

7.4 Recurrent Neural Networks

problem Nesterov’s accelerated gradient Momentum
add T = 80 0.011 0.250
mul T = 80 0.270 0.340

mem-5 T = 200 0.025 0.180
mem-20 T = 50 0.032 0.00006

Table 7.3: Results on the RNN toy problems with the pathological long range temporal dependencies.
Every experiment was run 10 times with a different random initialization. Every single experiment
resulted in a non-trivial solution that “established communication” between the inputs and the targets
and achieved a relatively low prediction error. For each experiment, we compute the average zero-
one loss on a test set (that measures the number of incorrectly remembered bits for the memorization
problems, and the proportion of sequences whose prediction was further than 0.04 from the correct
answer, for the addition and the multiplication problems).

7.4.1 The initialization

In Chapter 4 we found that a good initialization is essential for achieving nontrivial performance on the
various artificial long-term dependency tasks from Hochreiter and Schmidhuber (1997). Without one,
no information will be conveyed by the hidden units over a long enough distance, a situation which is
unrecoverable for any local optimization method trying to train RNNs to solve these tasks.

We used an initialization inspired by the one used in ESNs for RNNs with tanh units, where the
recurrent connections are initialized with random sparse connectivity (so 15 incoming weights to each
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Figure 7.4: A diagram of the memorization and the addition problems.

unit are sampled from a unit Gaussian and the rest are set to 0), which are then rescaled so that the abso-
lute value of the largest eigenvalue of the recurrent weight matrix is equal to 1.2. We found that nearby
values of 1.1 and 1.3 resulted in less robust behavior of the optimization. The input-to-hidden connec-
tions also used the sparse initialization. However, we found that for the addition and the multiplication
problem, the best results are obtained by rescaling these connections by 0.02, while the memorization
problems worked best when the scale of these connections was set to 0.3. While learning is not sensitive
to the precise values of the scale parameters of the input-to-hidden connections, it is sensitive to their
order of magnitude.

As discussed in section 2.8.4, the value of the largest eigenvalue of the recurrent connection matrix
has a considerable influence on the dynamics of the RNN’s hidden states. If it is smaller than 1, then
the hidden state dynamics will have a tendency to move towards one of only a few attractor states,
quickly “forgetting” whatever input signal they may have been exposed to. In contrast, when the largest
eigenvalue is slightly greater than 1, then the RNN’s hidden state produces responses that are sufficiently
varied for different input signals, thus allowing information to be retained over many time steps. Jaeger
and Haas (2004) also prescribe the weight matrix to be sparsely connected, which causes the hidden
state to consist of multiple “loosely-coupled oscillators”. The ESN initialization was designed to work
specifically with tanh hidden units, and we indeed found that our ESN-inspired initialization worked
best with these units as well, and so we used these units in all of our experiments.

We considered four of the pathological long-term dependency problems from Hochreiter and Schmid-
huber (1997) and on which we trained RNNs with 100 tanh hidden units (as was used by Martens and
Sutskever (2011) and Chapter 4). These were the 5-bit memorization task, the 20-bit memorization task,
the addition problem, and the multiplication problem. These artificial problems were each designed to
be difficult or impossible to learn with regular RNNs using standard optimization methods, owing to the
presence of extremely long-range temporal dependencies of the target outputs on the early inputs. And
with the possible exception of the 5-bit memorization problem, they cannot be learned with an ESN that
has only 100 hidden units that do not make use of explicit temporal integration (Jaeger, 2012a).

7.4.2 The problems

The addition, multiplication, the 5-bit and the 20-bit memorization problems are presented in section
4.4. To achieve low error on each of these tasks the RNN must learn to memorize and transform some
information contained at the beginning of the sequence within its hidden state, retaining it all of the way
to the end. This is made especially difficult because there are no easier-to-learn short or medium-term
dependencies that can act as hints to help the learning see the long-term ones.

We found the RNNs to be more sensitive than feedforward neural networks to the choice schedules
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for ε and µ. The addition and the multiplication problems were particularly sensitive to the schedule
for ε. For these problems, ε was set to 3e-5 for the first 1500 iterations, 3e-4 for another 1500, 3e-3 for
another 3000, 1e-3 for another 24000 iterations, and 1e-4 for the remainder. µ was set to 0.9 for the first
4000 iterations, and then 0.98 for the remainder. Every RNN was given 50,000 iterations. These par-
ticular schedules resulted in reliable performance on both the addition and the multiplication problem,
while some other choices we tried would sometimes cause the optimization to fail to establish the nec-
essary long-term “communication” between the input units and targets. In contrast, the memorization
problems were considerably more robust to the learning rate and the momentum schedule. The only
requirement on the schedule for ε was that it needed to be reduced to around to 0.00001 fairly early on
(after 1500 iterations) in order to prevent optimization from diverging due to exploding gradients.

The results of our RNN experiments are presented in table 7.3. They show that after 50,000 pa-
rameter updates of either momentum or Nesterov’s accelerated gradient on minibatches of size 100 (or
32 for the 5-bit memorization problem), the RNN is able to achieve very low errors on these problems,
which are at a level only achievable by modeling the long-term dependencies. We did not observe a sin-
gle dramatic failure over 10 different random initializations, implying that our approach is reasonably
robust.

The numbers in the table are the average loss over 10 different random seeds. Instead of reporting
the loss being minimized (which is the squared error or cross entropy), we report an easier to interpret
zero-one loss: for the bit memorization, we report the fraction of timesteps that are predicted incorrectly.
And for the addition and the multiplication problems, we report the fraction of cases where the RNN is
wrong by more than 0.04. Our results also suggest that Nesterov’s accelerated gradient is better suited
than momentum for these problems.

7.5 Discussion

This chapter demonstrates that momentum methods, especially Nesterov’s accelerated gradient, can
be configured to reach levels of performance that were previously believed to be attainable only with
powerful second-order methods such as HF. In particular, these results make it seem that the work in
Chapter 4 is no longer relevant, but it is not so because HF can train RNNs to solve harder instances of
these problems starting from initializations of lower quality. It is therefore likely that the RNN results
of this chapter could be considerably improved if RNNs are used.

The simplicity of the initializations and of momentum methods makes it easier for practitioners to
use deep and recurrent neural networks in their applications. But while the initializations are straight-
forward to implement correctly, momentum methods can be cumbersome to use because of the need to
tune the µ- and the ε-schedules.

An interesting approach for automatically choosing µ is described by O’Donoghue and Candes
(2012), who show that the momentum schedule of Nesterov’s accelerated gradient is suboptimal for
strongly convex functions. More specifically, if f is σ-strongly convex and ∇f is L-Lipshitz, then

the optimal momentum is the constant µ∗ =
1−
√
σ/L

1+
√
σ/L

, which makes Nesterov’s accelerated gradient

converge at a faster rate:

f(θt)− f(θ∗) ≤ L
(

1−
√
σ

L

)t
‖θ0 − θ∗‖2 (7.15)

To compute the optimal momentum, we need to estimate both L and σ, and while L is relatively easy to
estimate (in fact, Nesterov (1983) does precisely this), it is apparently difficult to estimate σ.

O’Donoghue and Candes (2012) observed that the sequence f(θt) is non-monotonic and that its
largest frequency component has a period proportional to

√
L/σ. This makes it possible to estimate
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√
L/σ by starting Nesterov’s accelerated gradient (with the usual momentum of eq. 7.8), and reporting

the iteration at which f(θt) increases. They also show that if Nesterov’s accelerated gradient is restarted
(i.e., vk is set to zero) every

√
L/σ iterations (approximately), then it converges at a rate similar to

that in eq. 7.15 (this is proven with a technique similar to the one in Chap. 2, footnote 3). Therefore, a
method that restarts the momentum whenever the objective f(θt) increases will attain the rate of eq. 7.15
without prior knowledge of L and σ.

This technique completely solves the problem of determining µ for continuously-differentiable con-
vex functions, so it seems plausible that it could also be used for deep and recurrent neural networks.
Unfortunately, it was difficult to determine the period of f(θt) because of the stochasticity of the mini-
batches. It also did not perform well when we eliminated the stochasticity, possibly due to the noncon-
vexity of the neural network objective, which strongly violates the assumptions of the method.

It is possible to determine the momentum parameters using automatic hyper-parameter optimization
packages such as Bayesian optimization (Snoek et al., 2012) or random search (Bergstra and Bengio,
2012). These methods can achieve very high performance, but they require multiple learning trials to
explore the space of hyper-parameter.

Our results may appear to contradict the existence of the vanishing and the exploding gradients in
RNNs, but on closer inspection it is not the case. The carefully tuned scale of our random initialization is
able to prevent the gradients from vanishing and exploding too severely at the beginning, and our careful
choices of ε and µ help the optimization avoid causing exploding and vanishing gradients to develop
to some extent. Our method is only partially successful at not causing exploding gradients: they occur
in the bit-memorization problems (which is addressed by using a very small learning rate), and we are
unable to train RNNs to solve these problems for values of T much larger than those reported in table
7.3.

Our results also illustrate the importance of momentum. An aggressive momentum schedule was
required in order to attain HF-level performance on the deep autoencoders; we were unable to reach non-
trivial performance without momentum on the addition and the multiplication problems, and were only
able to obtain the lowest error on the deep autoencoding tasks by using a very large momentum constant
(of 0.999) combined with Nesterov-type updates. This can be explained by the difficult curvature of the
deep neural networks (as suggested by Martens (2010)), which benefits from larger momentum values.



Chapter 8

Conclusions

8.1 Summary of Contributions

The goal of this thesis was to understand the nature of the difficulty of the RNN learning problem, to
develop methods that mitigate this difficulty, and to show that the RNN is a viable sequence model
that can achieve excellent performance in challenging domains: character-level language modelling and
motor control. Our training methods make it possible to train RNNs to solve tasks that have patholog-
ical long-term dependencies, which was considered completely unsolvable by RNNs prior to our work
(Bengio et al., 1994). Our final result shows that properly initialized RNNs can be trained by momentum
methods, whose simplicity makes it easier to use RNNs in applications.

Chapter 3 investigated RNN-based probabilistic sequence models. We introduced the TRBM, a
powerful RBM-inspired sequence model, and presented an approximate parameter update that could
train the TRBM to model complex and high-dimensional sequences. However, the update relied on
crude approximations that prevented it from explicitly modelling the longer-term structure of the data.
We showed that a minor modification of the TRBM yields the first RNN-RBM hybrid, which has similar
expressive power but whose parameter update is easy to compute with BPTT and CD. Although the
RTRBM was still difficult to train (because it is an RNN), its hidden units learned to store relevant
information over time, and thus allowed it to represent temporal structure considerably more faithfully
than the TRBM.

In Chapter 4, we attempted to directly address the difficulty of the RNN learning problem using
powerful second-order optimization. We showed that Hessian-free optimization with a novel “struc-
tural damping” technique can train RNNs on problems that have long-term dependencies spanning 200
timesteps. And while HF does not completely solve the RNN learning problem (since it fails as the
span of the long-term dependencies increases), it performs well if the long-term dependencies span no
more than 200 timesteps. Prior to this work, the learning problem of standard RNNs on these tasks was
believed to be completely unsolvable, although we empirically found it difficult to train RNNs on long
range dependencies that span much more than 200 timesteps.

We then sought to use the Hessian-free optimizer to train RNNs on challenging problems. Chapter
5 used HF to train RNNs on character-level language modelling. The RNN language model achieved
high performance, and learned to balance parentheses and quotes over hundreds of characters. This is
an example of a naturally-occurring long-term dependency that is impossible to model with all other
existing language model due to their inability to utilize contexts of such length.

In Chapter 6 we used HF to train RNNs to control a two-dimensional arm to solve reaching tasks.
Although controlling such an arm is easy because it is low-dimensional and fully-actuated, the problem
we considered was made difficult by the presence of the delayed feedback and unpredictable distur-
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bances that prevent simpler control methods from achieving high performance. This setting is of in-
terest because the motor cortex is believed to operate under these conditions. Delayed feedback makes
the problem difficult because a high-quality controller must use a model of the future in order to, for
instance, stop the arm at the target without overshooting. The unpredictable disturbances are similarly
difficult to handle, because a good controller must rapidly estimate and then counteract the disturbance
by observing the manner in which the arm responds to the muscle commands.

Chapter 7 demonstrated that RNNs are considerably easier to train than was previously believed,
provided they are properly initialized and are trained with a simple momentum method whose learning
parameters are well-tuned. RNNs were believed to be impossible to train with plain momentum meth-
ods, even after the results of Chapter 4 were published. This is significant because momentum methods
are relatively easy to implement, which makes it likely that RNNs (and deep neural networks) will be
used in practice more frequently.

8.2 Future Directions

There are several potential problems with RNNs that would be worthwhile to investigate.
Faster learning. A fundamental problem is the high cost of computing gradients on long sequences.

This makes it impossible to use the large number of parameter updates needed to achieve high perfor-
mance. While the computation of the gradient of a single long sequence requires the same number of
FLOPs as that of the gradients of many shorter sequences, the latter can be easily parallelized on a GPU
and is therefore much more cost-effective. Hence, it is desirable to develop methods that approximate
derivatives over long sequences quickly and efficiently.

Representational capacity. Representationally, our RNNs may have failed to represent the “seman-
tic” longer-term structure of natural text because of the relatively small size of their hidden states. Any
RNN-like method that can model the high-level long-range structure of text must have a much larger
hidden state, because natural text describes many events and entities that must be remembered if the text
is to be modelled correctly. A similar effect occurs in melodies, which tend to be repetitive in subtle
ways. Such long-range structure can be captured only with models that can remember the repetitions
and references made in a given sequence. It is therefore important to develop RNNs with much larger
hidden states that perform more computation at each timestep, in order to obtain a model that is not
obviously incapable of representing this structure.

Weights as states. We can vastly increase the hidden state of the RNN by introducing special
rapidly-changing connections and treating them as part of the state (Mikolov et al., 2010; Tieleman and
Hinton, 2009); this approach approximately squares the size of the hidden state (if the hidden-to-hidden
matrix is fully connected) and allows the RNN to remember much more information about a given
sequence. The challenge is to develop practical methods that can train such RNNs to make effective use
of their rapidly-changing connections.

The ultimate goal is to develop practical RNN models that can represent and learn the extremely
complex long-range structure of natural text, music, and other sequences. But doing so will require new
ideas.
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