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ABSTRACT: The algorithm described in this paper discovers one or more motifs in a
collection of DNA or protein sequences by using the technique of expectation maximization
to fit a two-component finite mixture model to the set of sequences. Multiple motifs are
found by fitting a two-component finite mixture model to the data, probabilistically erasing
the occurrences of the motif thus found, and repeating the process to find successive motifs.
The algorithm requires only a set of sequences and a number specifying the width of the
motifs as input. It returns a model of each motif and a threshold which together can be used
as a Bayes-optimal classifier for searching for occurrences of the motif in other databases.
The algorithm estimates how many times each motif occurs in the input dataset and outputs
an alignment of the occurrences of the motif. The algorithm is capable of discovering
several different motifs with differing numbers of occurrences in a single dataset. Motifs
are discovered by treating the set of sequences as though they were created by a stochastic
process which can be modelled as a mixture of two densities, one of which generated the
occurrences of the motif, and the other the rest of the positions in the sequences. Expec-
tation maximization is used to estimate the parameters of the two densities and the mixing
parameter.

KEYWORDS: Unsupervised learning, expectation maximization, mixture model,
consensus pattern, motif, biopolymer, binding site.
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1 Introduction

Finding a cluster of numerous similar subsequences in a set of biopolymer sequences
is evidence that the subsequences occur not by chance but because they share some
biological function. For example, the shared biological function which accounts
for the similarity of a subset of subsequences might be a common protein binding
site or splice junction in the case of DNA sequences, or the active sites of related
enzymes in the case of protein sequences. This paper describes an algorithm called
MM which, given a dataset of possibly related biopolymer sequences, estimates
the parameters of a probabilistic model which could have generated the dataset.
The probabilistic model is a two-component finite mixture model. One component
describes a set of similar subsequences of fixed width (the “motif”), while the
other component describes all other positions in the sequences (the “background”).
Fitting the model includes estimating the relative frequency of motif occurrences.
This estimate can be used to select the threshold for a Bayes-optimal classifier for
finding occurrences of the motif in other databases.

The MM algorithm is an extension of the expectation maximization technique
for fitting finite mixture models developed by Aitkin and Rubin [1985]. It is
related to the algorithm based on expectation maximization described by Lawrence
and Reilly [1990], but it relaxes the assumption that each sequence in the dataset
contains one occurrence of the motif. In other words, MM solves an unsupervised
learning problem: it is intended to be useful for discovering new motifs in datasets
that may or may not contain motifs, treating each subsequence of width

�
in the

dataset as an unlabeled sample. On the other hand, the algorithm of Lawrence and
Reilly [1990] treats each sequence as a labeled sample, and solves a supervised
learning problem.

MM is also related to the algorithm described in [Bailey and Elkan, 1993].
Unlike that algorithm, MM estimates cluster size (number of occurrences of the
motif) at the same time it is learning models of the motif and the background. This
removes the need for the user of the algorithm to know in advance the number of
times the motif occurs in the dataset. This makes it possible to search for motifs in
datasets about which very little is known.

The MM algorithm has been implemented as an option to the MEME software
for discovering multiple motifs in biopolymer sequences [Bailey and Elkan, 1993].
MM can therefore be used to discover multiple motifs in a dataset. Briefly, this is
done by repeatedly applying MM to the dataset and then probabilistically erasing
all occurrences of the discovered motif. Because MM estimates the number of
occurrences of each motif, MEME using MM is able to find motifs with different
numbers of occurrences in a single dataset. This increases the usefulness of MEME
as a tool for exploring datasets that contain more than one motif.

The rest of this paper is organized as follows. Section 2 describes the finite
mixture model used by MM, and Section 3 gives the analysis needed to apply
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the expectation maximization idea to this type of model. Section 4 describes the
implementation of MM in the context of MEME. Section 5 presents experimental
results of using the MM algorithm to discover motifs in several DNA and protein
datasets. Finally, Section 6 concludes the paper by discussing the strengths and
limitations of the MM algorithm.

2 The finite mixture model

The MM algorithm searches for maximum likelihood estimates of the parameters of
a finite mixture model which could have generated a given dataset of biopolymer
sequences. We will refer to the dataset as ���
	�� 1 � � 2 � �
�
� ����� , where � is the
number of sequences in the dataset. The sequences ��� are assumed to be over
some fixed alphabet, say � � 	�� 1 � � 2 � ���
� � ����� , which is given as input to the
algorithm. The mixture model used by MM does not actually model the dataset
directly. Instead, the dataset is broken up conceptually into all � (overlapping)
subsequences of length

�
which it contains. This new dataset will be referred to as� ��	 � 1 � � 2 � �
�
� � ��� � . MM learns a finite mixture model which models the new

dataset. Although this model does not, strictly speaking, model the original dataset,
in practice it is a good approximation, especially when care is taken to ensure that
the model does not predict that two overlapping subsequences in the new dataset
both were generated by the motif. This is done by enforcing a constraint on the
estimated probabilities of overlapping subsequences being motif occurrences. How
this constraint is enforced is discussed later.

The model for the new dataset consists of two components which model the
motif and background (non-motif) subsequences respectively. The motif model
used by MM says that each position in a subsequence which is an occurrence of the
motif is generated by an independent random variable describing a multinomial trial
with parameter � �!�"	#� � 1 � �
�
� � �$�%�&� . That is, the probability of letter �(' appearing
in position ) in the motif is �$�*' . The parameters � �*' for )�� 1 � �
�
� � � and +,�
1 � �
��� �.- must be estimated from the data. The background model says that each
position in a subsequence which is not part of a motif occurrence is generated
independently, by a multinomial trial random variable with a common parameter� 0 �/	�� 01 � ���
� � � 0 ��� . In other words, MM assumes that a sequence of length

�
generated by the background model is a sequence of

�
independent samples from

a single background distribution. The overall model for the new dataset which MM
uses is that the motif model (with probability 0 1) or the background model (with
probability 0 2 � 1 120 1) is chosen by nature and then a sequence of length

�
is

generated according to the probability distribution governing the model chosen. In
summary, the parameters for the overall model of the data assumed by MM are the
mixing parameter 03�4	50 1 � 0 2 � , vectors of letter frequencies for the motif model6

1 �7	�� 1 � � 2 � �
�
� � �98:� , and a single vector of letter frequencies for the background
model

6
2 �;� 0.
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In order to find more than one motif in a dataset, a value called an “erasing
factor” is associated with each letter in the dataset. These values are all initially set
to 1 to indicate that no erasing has occurred. After MM converges to a motif, the
erasing factors are all adjusted downward towards 0 in proportion to the probability
that each character is part of an occurrence of the motif just found. The erasing
factors are used by MM in the reestimation of

6
and effectively remove occurrences

of motifs already found from the dataset. This method of finding multiple motifs is
discussed in more detail in [Bailey and Elkan, 1993].

The motif discovered by MM can be used to search for motif occurrences in
other datasets. It can be used directly to estimate the conditional probability of
any subsequence of length

�
given the motif. It can also be used to compute the

likelihood ratio for testing whether the subsequence was generated by the motif or
the background components of the model. This can be done by using the estimated
values of the parameter

6
to create a log-odds matrix of the type referred to as

a “specificity matrix” by Hertz et al. [1990]. The estimated value of the mixing
parameter, 0 , can be used to calculate the optimum threshold for using the log-odds
matrix as a classifier. In addition, the log-odds matrix can be used as a profile
(without gaps) [Gribskov et al., 1990] of the motif in the other applications of
profile analysis.

3 Expectation maximization in finite mixture models

The MM algorithm uses expectation maximization (EM) to discover motifs in
datasets of sequences. The next two sections describe how EM can be applied
to the problem at hand and how the likelihoods of the motifs found are calculated.

3.1 The MM algorithm

The MM algorithm does maximum likelihood estimation: its objective is to discover
those values of the parameters of the overall model which maximize the likelihood
of the data. To do this, the expectation maximization algorithm for finite mixture
models of Aitkin and Rubin [1985] is used. This iterative procedure finds values for0<�=	50 1 � 0 2 � and

6 �=	 6 1 � 6 2 � which (locally) maximize the likelihood of the data
given the model.

A finite mixture model assumes that data� �>	 � 1 � � 2 � �
�
� � ��� � � where � is the number of samples

arises from two or more groups with known distributional forms but different,
unknown parameters. Expectation maximization (EM) can be used to find maximum
likelihood estimates of the unknown parameters6 �>	 6 1 � 6 2 � �
��� � 6@? � � where A is the number of groups
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of the distributions, as well as the mixing parameters0B�>	C0 1 � 0 2 � �
�
� � 0 ? � � where 0 � is the relative size of the ) th group, and?D �FE 1

0G�H� 1 � 0I�KJ 0 �
The EM algorithm makes use of the concept of missing data. In this case, the

missing data is the the knowledge of which group each sample in the data came
from. The following notation is useful:L � 	 L 1 � L 2 � �
��� � LM� � � where � is the number of samplesL �"� 	 L � 1 � L � 2 � �
�
� � L � ? � � where A is the number of groupsL �N' � O

1 if
� � from group +

0 otherwise.

The variable
L � gives the group membership for the ) th sample. In other words,

if
L �*'P� 1, then

� � has the distribution QR	 � �.S 6 'T� . The values of the
L �*' are

unknown, and are treated by EM as missing information to be estimated along with
the parameters

6
and 0 of the mixture model.

The definition of
L

makes it clear that the prior probability that a particularL �*'!� 1 is just 0U' , V 	 L �*' � 1 S 6 � 0&�W�;0 ' � 1 X2)YX2� � (1)

For a given ) , all
L �N' are 0 except for one so the conditional densities of the data and

of the missing data can be written as

QR	 � �.S L � � 6 � 0&�/� ?Z'CE 1

Q[	 � �.S 6 '@�]\(^ _ and (2)

QR	 L � S 6 � 0&�/� ?Z'CE 1

0 \9^ _' � (3)

By the definition of conditional probability and (2) and (3), we can write the joint
density of a sample and its missing information asQ[	 � � � L �`S 6 � 0&��� Q[	 � �.S L � � 6 � 0&�aQ[	 L �.S 6 � 0&�� ?Z'CE 1 b Q[	 � �`S 6 'T�c0U'.d \(^ _ � (4)

By the assumption of independent samples
�

, the joint density of the data and all
the missing information is

Q[	 � � L S 6 � 0&�e� �Z�fE 1

QR	 � � � L �cS 6 � 0&� (5)

� �Z�fE 1

?Z']E 1 b Q[	 � � S 6 ' �c0 ' d \(^ _ � (6)

5



The likelihood of the model parameters
6

and 0 given the joint distribution of the
data

�
and the missing data

L
is defined as- 	 6 � 0MS � � L �e� Q[	 � � L S 6 � 0g� � (7)

The log of the likelihood (log likelihood) is therefore

log - 	 6 � 0MS � � L �h� �D �fE 1

?D'CE 1

L �*' log 	iQR	 � � S 6 ' �`0 ' � � (8)

The EM algorithm iteratively maximizes the expected log likelihood over the
conditional distribution of the missing data

L
, given (a) the observed data

�
, and

(b) current estimates of parameters
6

and 0 .
The E-step of EM finds the expected value of the log likelihood (8) over the

values of the missing data
L

, given the observed data
�

, and the current parameter
values

6 � 6Uj 0 k and 0B�l0 j 0 k . Since the expected value of a sum of random variables
is the sum of their individual expectations, we have

Ej \gm nKo prq 0 s o t.q 0 s k b log - 	 6 � 0MS � � L ��du� Ej \gm nKo pvq 0 s o t.q 0 s k b
�D �fE 1

?D'CE 1

L �*' log 	iQ[	 � �.S 6 '.�`0�'��#d
� �D �FE 1

?D']E 1
Ej \gm nKo p q 0 s o t q 0 s k b L �*' log 	iQ[	 � �.S 6 '.�`0�'��#d

� �D �FE 1

?D']E 1
E b L �*'9S � � 6 j 0 k � 0 j 0 k d log 	iQ[	 � �.S 6 'T�c0U'T� �

(9)

The expected value of
L �*' can be found using the definition of expected value,

Bayes’ rule, and the definitions (1) and (2). Defining
L j 0 k�*' � E b L �*'9S � � 6Uj 0 k � 0 j 0 k d , we

have L j 0 k�*' � E b L �*'US � � 6 j 0 k � 0 j 0 k d� 1 w V 	 L �*'!� 1 S � � � 6 j 0 k � 0 j 0 k �Hx 0 w V 	 L �*'�� 0 S � � � 6 j 0 k � 0 j 0 k �� QR	 � �.S L �N'!� 1 � 6Uj 0 k � 0 j 0 k � V 	 L �*'�� 1 S 6�j 0 k � 0 j 0 k �Q[	 � �.S 6 j 0 k � 0 j 0 k �� Q[	 � �.S 6 j 0 k' �c0 j 0 k'y ? z E 1 Q[	 � �.S 6 j 0 kz �c0 j 0 kz � ){� 1 � �
�
� � � � +|� 1 � ���
� � A � (10)

Substituting
L j 0 k�N' into equation (9) and rearranging we have} b log - 	 6 � 0MS � � L ��du� �D �fE 1

?D'CE 1

L j 0 k�*' log 	iQR	 � �.S 6 'T�`0�'��
� �D �fE 1

?D'CE 1

L j 0 k�*' log Q[	 � � S 6 ' �Hx �D �fE 1

?D']E 1

L j 0 k�*' log 0 ' � (11)
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The M-step of EM maximizes (11) over
6

and 0 in order to find the next estimates
for them, say

6�j 1 k and 0 j 1 k . The maximization over 0 involves only the second term
in (11): 0 j 1 k' � argmaxt

�D �fE 1

?D'CE 1

L j 0 k�*' log 0 '
which has the solution

0 j 1 k' � �D �fE 1

L j 0 k�*'� � +|� 1 � ���
� � A � (12)

We can maximize over
6

by maximizing the first term in (11) separately over each6 ' . To solve 6 j 1 k' � argmaxpi_
�D �fE 1

L j 0 k�N' log QR	 � �.S 6 'T� � +|� 1 � �
�
� � A (13)

we need to know the form of Q[	 � � S 6 ' � . The MM algorithm assumes that the mixture
contains two classes ( AB� 2) and the distributions for class 1 (the motif) and class 2
(the background) are

Q[	 � �.S 6 1 ��� 8Z'CE 1

�Zz E 1

�[~ j z o nH^ _ k' z � and (14)

Q[	 � � S 6 2 ��� 8Z'CE 1

�Zz E 1

� ~ j z o nH^ _ k0

z � (15)

where
� �*' is the letter in the + th position of sample

� � , and �g	C� � ��� is an indicator
function which is 1 if and only if ���;� z . That is,

�g	C� � ����� O
1 if ���;� z
0 otherwise

For ��� 1 � �
�
� �.- , let

�
0

z � �D �fE 1

8D']E 1

L j 0 k� 2 �g	C� � � �*'T� and (16)

� ' z � �D �fE 1

} � L j 0 k� 1 �&	5� � � �*'T� � for +|� 1 � �
�
� � � � (17)

Then �
0

z
is the expected number of times letter � z appears in positions generated by

the background model in the data, and � ' z � +�� 1 � �
�
� � � is the expected number
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of times letter � z appears at position + in occurrences of the motif in the data.1 We
reestimate

6
1 by substituting (14) into the right-hand side of (13) yielding6 j 1 k � 	 ˆ� 0 � ˆ� 1 � �
�
� � ˆ�(8|�

� argmaxp
�D �FE 1

L j 0 k� 1 log �� 8Z'CE 1

�Zz E 1

� ~ j z o nH^ _ k' z ��
� argmaxp

�D �FE 1

L j 0 k� 1 8D'CE 1

�Dz E 1

�g	C� � � �*'T� log ��' z
� argmaxp

8D']E 1

�Dz E 1

log � ' z �D �fE 1

L j 0 k� 1 �&	5� � � �N' �
� argmaxp

8D']E 1

�Dz E 1

� ' z log ��' z � (18)

So,

ˆ�
' z � � ' zy � z E 1
� ' z � +�� 0 � �
�
� � � and ��� 1 � �
��� �.- � (19)

Estimating the parameters of a multinomial random variable by maximum like-
lihood is subject to boundary problems. If any letter frequency ˆ� �*' ever becomes
0, as is prone to happen in small datasets, its value can never change. Following
Brown et al. [1993] and Lawrence et al. [1993], the equations above for ˆ� �*' are
replaced by

ˆ�$�*' � � �*'�x3�G'y � z E 1
� � z xP� � )�� 0 � �
��� � � � +|� 1 � ���
� ��-�� ��� �Dz E 1

� z � (20)

This turns out to be equivalent to using the Bayes estimate for the value of
6

under squared-error loss (SEL) [Santner and Duffy, 1989] assuming that the prior
distribution of each

6 ' , V 	 6 'T� , is the so called Dirichlet distribution with parameter�H��� 	#� 1 � �
�
� � ����� . The value of �H� must be chosen by the user depending on
what information is available about the distribution of

6 ' for motifs and for the
background. The choice of � � will be discussed in Section 4.

1The factor ��� in the calculation of the motif counts is the “erasing factor” for that position in
the data. Erasing is mentioned in the introduction and further described in the next section. The
erasing factors vary between 1 and 0 and are set to 1 initially. After each pass, they are reduced by
a factor between 0 and 1 representing the probability that the position is contained in an occurrence
of the motif found on that pass. The counts for the background are not scaled by the erasing factors
to make the values of the log likelihood function comparable among passes.
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3.2 Computing the expected likelihood of a model

The log likelihood reported in this paper is actually the expected log likelihood over
the conditional distribution of the missing data Z,

} b log - 	 6 � 0MS � � L ��du� �D �fE 1

2D'CE 1

L j 0 k�*' log Q[	 � � S 6 ' �Hx �D �fE 1

2D']E 1

L j 0 k�*' log 0 ' � (21)

We can also compute the log likelihood of a particular model given just the data as

log - 	 6 � 0MS � �/� log QR	 � S 6 � 0&�� log

�Z�fE 1

Q[	 � �.S 6 � 0&�
� log

�Z�fE 1

2D'CE 1

Q[	 � �.S 6 'T�c0U' � (22)

These two values are not the same since, in general,

- 	 6 � 0MS � � L ��� - 	 6 � 0MS � � �
This can be seen from the fact that

log - 	 6 � 0MS � � L ��� �D �FE 1

2D'CE 1

L �*' log 	iQR	 � � S 6 ' �`0 ' �
X �D �FE 1

2D'CE 1

log 	iQR	 � �.S 6 'T�c0U'T�
X �D �FE 1

log
2D'CE 1

Q[	 � �.S 6 '@�`0U'
� log - 	 6 � 0MS � � �

So,
} b log - 	 6 � 0MS � � L ��d will tend to underestimate log - 	 6 � 0{S � � . In practice,

however, they tend to be close. At any rate, since MM maximizes (21), this is
what is calculated and output by the implementation of the MM algorithm which is
described in Section 4. The remainder of the current section will show that (21) for
a model ( ˆ6 � ˆ0 ) discovered by running MM to convergence can be approximated as

} b log - 	 ˆ6 � ˆ0MS � � L �#d�� � b
�Dz E 1

	 ˆ0 1

8D']E 1

ˆ�
' z log ˆ��' z x ˆ0 2
� ˆ� 0

z
log ˆ� 0

z �Hx 2D']E 1

ˆ0U' log ˆ0�'`d �
The values reported as log likelihood in this paper were computed using this ap-
proximation.
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To make the derivation of the above approximation clearer, we separate the
right-hand side of} b log - 	 6 � 0MS � � L �#d"� �D �fE 1

2D'CE 1

L j 0 k�*' log Q[	 � �.S 6 'T�Hx �D �FE 1

2D']E 1

L j 0 k�*' log 0U' (23)

into two terms

- p 	 6 � 0&��� �D �fE 1

2D']E 1

L j 0 k�*' log Q[	 � � S 6 ' � and (24)

- t 	C0&��� �D �fE 1

2D']E 1

L j 0 k�*' log 0�' � (25)

We further split (24) into separate terms corresponding to the motif and background
components

- p 1 	 6 � 0&�/� �D �FE 1

L j 0 k� 1 log QR	 � �.S 6 1 � and (26)

- p 2 	 6 � 0&�/� �D �FE 1

L j 0 k� 2 log QR	 � � S 6 2 � � (27)

Substituting the known form for the motif component QR	 � �.S 6 1 � ,
QR	 � �.S 6 1 �/� 8Z']E 1

�Zz E 1

�[~ j z o nH^ _ k' z (28)

into (26) we have

- p 1 	 6 � 0&�
� �D �fE 1

L j 0 k� 1 log Q[	 � �.S 6 1 �
� �D �fE 1

L j 0 k� 1 log 	 8Z']E 1

�Zz E 1

�R~ j z o n�^ _ k' z �
� �D �fE 1

L j 0 k� 1 8D']E 1

�Dz E 1

log 	#� ~ j z o n�^ _ k' z �
� �D �fE 1

L j 0 k� 1 8D']E 1

�Dz E 1

�&	5� � � �N' � log � ' z
� �Dz E 1

8D'CE 1

log �
' z �D �FE 1

L j 0 k� 1 �g	C� � � �*'T� � (29)

Recall that the expected counts for letters in the positions of the motif are� ' z � �D �fE 1

} � L j 0 k� 1 �&	5� � � �N'@� � for +|� 1 � �
�
� � � . (30)
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Assuming for the moment the “erasing factors”
} � for )K� 1 � �
�
� � � are all equal to

1, we can substitute for
L �N' in (29) yielding

- p 1 	 6 � 0&�/� �Dz E 1

8D']E 1

� ' z log �
' z � (31)

Now we recall that
6 �>	#� 0 � � 1 � �
�
� � � 8 � is reestimated as

ˆ��' z � � ' zy � z E 1
� ' z for +�� 0 � �
�
� � � and �|� 1 � �
�
� �.- � (32)

(The approximation is due to the fact that the actual formula for updating
6

includes
the pseudo-counts �G' . These tend to be small in practice, so the approximation
should be close to the actual value.) We can write (31), evaluated at the model
discovered by MM, ( ˆ6 � ˆ0R� � as

- p 1 	 ˆ6 � ˆ0R�
� �Dz E 1

8D']E 1 � ' ˆ�
' z log ˆ�
' z � (33)

where

� ' � �Dz E 1

� ' z for +|� 0 � ���
� � � � (34)

Recalling how 0 is reestimated,

0 j 1 k' � �D �fE 1

L j 0 k�*'� � +|� 1 � 2 � (35)

we can rewrite � ' as

� ' � �Dz E 1

�D �fE 1

L j 0 k� 1 �&	5� � � �N'@�
� �D �FE 1

L j 0 k� 1 �Dz E 1

�g	C� � � �*' �
� �D �FE 1

L j 0 k� 1
� �H0 j 1 k1� �H0 j 0 k1 for +�� 1 � ���
� � � � (36)

(The last approximation should be very close since MM has converged.) We can
now write (33) entirely in terms of ˆ6 ��	 6 j 0 k1 � 6 j 0 k2 � and ˆ0B�>	C0 j 0 k1 � 0 j 0 k2 � as

- p 1 	 ˆ6 � ˆ0g�/� � ˆ0 1

�Dz E 1

8D'CE 1

ˆ� ' z log ˆ� ' z � (37)
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How the “erasing factors” used in the calculation of the counts � �*' in (30) are updated
is discussed in Section 4. Anticipating that discussion somewhat, the assumption
that all

} ��� 1 is correct while the first motif in a dataset is being discovered
using MM. As each motif is discovered, the values of the

} � corresponding to
occurrences of motifs found so far are reduced towards 0, effectively erasing the
motif occurrences from the dataset. This will cause the value calculated for - p 1 	 6 � 0&�
be somewhat lower than the true value for the second and later motifs found in a
given dataset. This effect should be very small, however, unless two very similar
motifs are found. This is exactly what the erasing factors are intended to prevent
from happening, so this problem is minimal in practice.

We can compute the value of - p 2 	 ˆ6 � ˆ0&� in a completely analogous fashion. When
we substitute the known form of the background component

QR	 � �.S 6 2 �/� 8Z']E 1

�Zz E 1

�[~ j z o nH^ _ k0

z
(38)

into (27) we have

- p 2 	 6 � 0g�/� �D �fE 1

L j 0 k� 2 log Q[	 � �.S 6 2 �
� �D �fE 1

L j 0 k� 2 log 	 8Z']E 1

�Zz E 1

�R~ j z o n�^ _ k0

z �
� �D �fE 1

L j 0 k� 2 8D']E 1

�Dz E 1

log 	#� ~ j z o n�^ _ k0

z �
� �D �fE 1

L j 0 k� 2 8D']E 1

�Dz E 1

�&	5� � � �*' � log � 0

z
� �Dz E 1

log � 0

z 8D'CE 1

�D �FE 1

L j 0 k� 2 �g	C� � � �*'T� � (39)

We recall the expected counts for letters in the background component are

�
0

z � �D �fE 1

8D']E 1

L j 0 k� 2 �g	C� � � �*'T� (40)

so, using (32) and (34) we have

- p 2 	 ˆ6 � ˆ0&�/� �Dz E 1

�
0

z
log ˆ� 0

z
� �Dz E 1 � 0

ˆ� 0

z
log ˆ� 0

z � (41)
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We note that

� 0 � �Dz E 1

�
0

z
� �Dz E 1

�D �fE 1

8D']E 1

L j 0 k� 2 �&	5� � � �N'@�
� �D �fE 1

8D']E 1

L j 0 k� 2 �Dz E 1

�&	5� � � �*' �
� �D �fE 1

8D']E 1

L j 0 k� 2
� � �D �fE 1

L j 0 k� 2� � �H0 j 1 k2� � �H0 j 0 k2 (42)

so

- p 2 	 ˆ6 � ˆ0&��� � � ˆ0 2

�Dz E 1

ˆ� 0

z
log ˆ� 0

z � (43)

The value of - t 	 ˆ0g� is easy to calculate from the definition of 0 j 1 k given in (35).
Once again assuming that because MM has converged 0 j 0 k �l0 j 1 k , we can write

- t 	 ˆ0[�/� �D �fE 1

2D'CE 1

L j 0 k�N'
� 2D']E 1

log 0 j 0 k' �D �fE 1

L j 0 k�N'
� 2D']E 1

log 0 j 0 k' ��0 j 1 k'
� 2D']E 1

��0 j 0 k' log 0 j 0 k'
� � 2D']E 1

ˆ0�' log ˆ0U' (44)

All of this algebra enables us to write the desired result} b log - 	 ˆ6 � ˆ0MS � � L �#d"� - p 	 ˆ6 � ˆ0R�Hx - t 	 ˆ0&�� - p 1 	 ˆ6 � ˆ0g�Hx - p 2 	 ˆ6 � ˆ0&�Hx - t 	 ˆ0&�
13



� �Dz E 1

	#� ˆ0 1

8D']E 1

ˆ� ' z log ˆ� ' z x � � ˆ0 2
ˆ� 0

z
log ˆ� 0

z �Hx�� 2D'CE 1

ˆ0 ' log ˆ0 '
� � b

�Dz E 1

	 ˆ0 1

8D']E 1

ˆ�
' z log ˆ��' z x ˆ0 2
� ˆ� 0

z
log ˆ� 0

z �Hx 2D']E 1

ˆ0U' log ˆ0�'`d �
If we had been smart and let 0 0 be the prior probability of the background

component, and let 0 1 be the prior on the motif component, we could have written

} b log - 	 ˆ6 � ˆ0�S � � L �#d�� � 1D']E 0

	 ˆ0�' log ˆ0U'Yx �Dz E 1

8D �fE 1

ˆ0U' ˆ� j ��� ' k z log ˆ� j �i� ' k z � �
4 Implementation of MM

The MM algorithm is implemented as an option to the MEME+ software for dis-
covering multiple motifs in biopolymer sequences. MEME+ is based on the MEME
program described in [Bailey and Elkan, 1993]. The next three sections describe
the MEME+ algorithm, its output, and how starting points for MM are selected. The
last section also discusses the execution time required by MEME+.

4.1 The MEME+ algorithm

The MEME+ algorithm is shown in Figure 1. Recall that � is the number of
overlapping length-

�
subsequences in the entire dataset and � is the number of

sequences in the dataset. Motifs of width
�

are searched for in the outer loop of
the algorithm. Within that loop, various values of 0 j 0 k are tried. The limits on 0 j 0 k
correspond to there being as few as   � occurrences of a motif to as many as one half
of the (non-overlapping) subsequences in the dataset being motif occurrences. The
sampling of 0 j 0 k is done in a geometrically increasing series because experiments
showed that starting points where 0 j 0 k was within a factor of 2 of the correct value
were usually sufficient for MM to converge (results not shown.) In the innermost
loop, MEME+ uses ¡¢�¤£*¥ ? j 1 ¦I§ k£N¥ ? j 1 ¦ t k actually occurring subsequences to derive values

for
6Uj 0 k (see Section 4.4). The best starting point (as determined by the heuristic

described in [Bailey and Elkan, 1993]) is then used with MM to discover a motif.
The motif is then probabilistically “erased” (see [Bailey and Elkan, 1993]) and the
outer loop repeats to find the next motif.

The implementation of the MM algorithm is straightforward. Let ¨ � � for )��
1 � �
��� � � be the lengths of the individual sequences in the dataset � . The motif
and background models are stored as an array of letter frequency vectors

6 �� 0 � �
�
� � � 8 . The overlapping length-
�

subsequences in the dataset are numbered
left-to-right and top-to-bottom from 1 to � . The

L j 0 kz
1 for ��� 1 � �
�
� � � are stored

in an array ©
�*' where )ª� 1 � �
�
� � � and +�� 1 � �
�
� � ¨f� with ©
�*' holding the value of
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procedure MEME+ (� (dataset of sequences)�
(width of motifs to search for)� V � �Y� } � (number of distinct motifs to search for) )

for )�� 1 to � V � �Y� } � do
for 0 j 0 k = « �� to 1

2 8 by ¬ 2 do
for +|� 1 to ¡ do

Randomly (w/o replacement) select a subsequence
� '

from dataset � .
Derive

6�j 0 k from subsequence
� ' .

Estimate goodness of (
6�j 0 k , 0 j 0 k ) as starting point for MM.

end
Run MM to convergence from best starting point found above.

end
Print best motif found above: ˆ6 , ˆ0 .
“Erase” occurrences of best motif found above.

end
end

Figure 1: The MEME+ algorithm.
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L j 0 kz
1 corresponding to the subsequence starting in column + of sequence � � in the

dataset. MM repeatedly applies the E-step and the M-step of EM to update
6
, 0 and© until the change in

6
(euclidean distance) falls below a user-specified threshold (by

default 10 ¦ 6) or a user-specified maximum number of iterations (by default 1000)
is reached.

The E-step updates the © array using Equation (10) and the mapping just de-
scribed between

L � 1 and ©��N' . It sets

©
�*'!� 09Q[	����N'IS 6 1 �0(QR	#���*'­S 6 1 �Hx®	 1 1¯0&�°QR	#���*'IS 6 2 � �
where ���*' is the length-

�
subsequence starting at column + in sequence ��� . The ©
�*'

values for each sequence are then normalized to sum to at most 1 over any window
of size

�
. This is done following the algorithm given in Bailey and Elkan [1993]

to enforce the constraint thatz`± 8 ¦ 1D']E z ©
�*'²X 1 � for )�� 1 � �
�
� � � and ��� 1 � �
�
� � ¨f��1 �
This is done because otherwise there is a strong tendency for MM to converge to
motif models which generate repeated strings of one or two letters like “AAAAAA”
or “ATATAT”. This tendency arises because the overlapping substrings in the new
dataset are not independent. MM breaks up the actual sequences into overlapping
subsequences of length

�
, which causes any repetitive sequence in the original

dataset to give rise to many overlapping substrings in the new dataset which are
highly similar to each other. To avoid this problem, an ad hoc normalization
procedure reduces the values of ©
�*' of substrings which were adjacent in the original
dataset so that, in any window of length

�
in a sequence, the sum of the ©
�*' values

for the substrings starting in that window is less than or equal to 1.
The M-step reestimates 0 and

6
using Equations (12) and (20), respectively. The

pseudo-counts 	�� 1 � �
�
� � ����� are set to �{³&� � ){� 1 � �
��� �.- , where � is a user specified
parameter to MEME and ³g� is the average frequency of letter ��� in the dataset.

4.2 Output of MEME+

MEME+ outputs the value of the log likelihood function (Equation 11) and the
relative entropy per column, ´ }�µ �T¶ ¨ , of each motif found. We define ´ }�µ �T¶ ¨ as

´ }�µ �T¶ ¨{� 1� �D �FE 1

8D']E 1

ˆ� �*' log
ˆ�$�*'
ˆ� 0 ' �´ }�µ �T¶ ¨ gives a measure of the “crispness” of a motif.

The output of MEME+ includes a log-odds matrix ·¸Q&¹ � and a threshold valueº
for each motif found. Together these form a Bayes-optimal classifier [Duda and
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Hart, 1973] for the “zero-one” loss function. The log-odds matrix has - rows
and

�
columns and is calculated as ·.Qg¹ � �*'�� log 	 ˆ�$�N' µ ˆ� 0 'T� for )�� 1 � �
��� � � and+|� 1 � �
�
� �.- . The threshold t is set to

º � log 	c	 1 1�0 1 � µ 0 1 � . To use ·.Qg¹ � and
º

as a
classifier with a new dataset, each (overlapping) subsequence »¼�¾½v» 1 � » 2 � �
��� � » �U¿
is given a score ·U	#»[��� y 8']E 1

y ��FE 1 �&	#) � »G'.�]·.Qg¹ � �N' . It can be shown that ·�	�»[�|�
log 	�Q[	�»�S 6 1 � µ QR	#»KS 6 2 �`� . Bayesian decision theory says to classify sample » as being
an occurrence of the motif only if·U	#»[�/À log 	 V 	CÁ.� � �9AÃÂ ¶ Ä �[ÅG� µ V 	#Æ ¶ º )#���`�� log 	c	 1 1,0 1 � µ 0 1 �� º �
The threshold for any other loss function can easily be found by scaling

º
. The scaled

threshold should be
º x log 	�Â 12 12Â 22 � µ 	#Â 21 12Â 11 � , where Â@�N' is the loss incurred

for deciding class ) when the correct class is + , and class 1 is the motif, class 2 the
background.

4.3 Finding good starting points for MM

Initial values for
6

1 are selected by choosing values which are “close” to actually
occurring subsequences in the dataset. A subsequence »��>	�» 1 � » 2 � �
�
� � »&8|� in the
dataset is converted to

6 j 0 k
1 �=	#� 1 � � 2 � ���
� � �98|� column-by-column. In column ) of

subsequence » , if »��{���­' , then we set �$�*'Ç�>Æ and �$� z �7	 1 1,Æ�� µ 	 - 1 1 � � �È�
1 � �
��� �.-!� �3É�®+ . The value for Æ is chosen so that the relative entropy of � � with
respect to the uniform distribution over all letters of the alphabet will be fraction Ê
of its maximum, where Ê is a user-supplied value (default = 0.1). That is, we set�Dz E 1

�$� z log
�$� zQ � 	 - 1 1 ��	 1 13Æ��- 1 1

log
1 13ÆQR	 - 1 1 � x�Æ log

Æ Q (45)

� 	 1 13Æ�� log
1 1ËÆQ[	 - 1 1 � x3Æ log

Æ Q (46)

� 	 1 13Æ�� log
1 13Æ- 1 1

1 log Q�x�Æ log Æ (47)

equal to 1�Ê log 	iQ&� where QÈ� 1
µ - and 1�Ê log 	iQ&� is the maximum relative entropy

of any distribution relative to the uniform distribution. This equation is solved
numerically (binary search) for the value of Æ which satisfies it.

The MM algorithm is not guaranteed to find the maximum likelihood estimates
of the paramters of the model, only a local maximum. Running MM from different
starting points (i.e., different initial values for the model parameters

6
) can yield

different solutions with varying likelihood values. It is usually necessary to run MM
from several starting points, and pick the solution with the highest likelihood value.
It is difficult to know when to stop.

17



In the case of biopolymer motifs,
6

has very high dimension and the likelihood
surface tends to be complex and have many local maxima. This makes the task of
selecting starting points for MM especially important. MEME adopts the approach
of deriving starting points from the actual subsequences of the dataset. The basic
MEME approach is to convert each subsequence in the dataset into a starting point6

which is “close” to it. MM is then run for just one iteration on each such tentative
starting point, and MM is then run to convergence from the starting point with the
highest likelihood after one iteration.

Trying the starting points derived from all the subsequences in the dataset results
in an algorithm whose execution time is Ì�	c	���ÍÎ� 2 � �W�ÏÌ�	�� 2 � � where � is the
number of sequences in the dataset, Í is their average length,

�
is the width of the

motif, and � is the number of overlapping length-
�

subsequences. If the dataset
contains several occurrences of the motif, intuition says that it is unnecessary to try
all of the subsequences as starting points. Just sampling a fraction of them will,
with high probability, result in finding an actual occurrence of the motif.

To make this intuition more concrete, let � be the number of occurrences of the
motif in the dataset. How many subsequences from the dataset must we (randomly)
sample to insure that we sample an actual occurrence with probability 0 XÑÐ3� 1?
If we randomly select (without replacement) ¡ positions in the dataset (out of a
possible �Ò�Ï�Ò	�Í 1 � �!�>��Í positions), the probability that we do not select
at least one occurrence isV 	 no occurrence chosen ��X>	 1 1 � µ ����ÓË�l	 1 1,0&�#Ó
To make the probability that we choose at least one occurrence be JÔÐ , we can
choose ¡ so that 	 1 1,0&� Ó X 1 1ÕÐ
which happens when ¡ÖJ ¨ ¶ AR	 1 13ÐK�¨ ¶ AR	 1 1,0&� �

So we sample min 	�� � ¡�� starting points from the dataset where ¡=�
£N¥ ? j 1 ¦�§$k£*¥ ? j 1 ¦ t k ,0 X®Ð¯� 1. For a given 0 , the number of samples we need to take does not depend
on the size of the dataset above some minimum dataset size such that �7J×¡ .
This gives considerable time savings for large datasets and for large values of 0 .
However, since MEME+ runs MM with several different values of 0 (including very
small ones), its execution time is still approximately Ì�	c	#�ØÍÎ� 2 � � .
5 Experimental Results

We studied the performance of MEME+ on a number of datasets with different
characteristics. The datasets are summarized in Table 1. Three of the datasets
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consist of protein sequences and three consist of DNA sequences. Three contain a
single known motif. One contains two known motifs, each of which occurs once
in each sequence. One contains three known motifs, each of which occurs multiple
times per sequence. And one contains two motifs each of which occurs in only
about half of the sequences.

The protein datasets, lipocalin, hth, and farn, are described in [Lawrence et
al., 1993] and were used to test the Gibbs sampling algorithm described there. We
reiterate briefly here. The lipocalin proteins bind small, hydrophobic ligands for
a wide range of biological purposes. The dataset contains the five most divergent
lipocalins with known 3D structure. The positions of the two motifs in each of the
sequences in the lipocalin dataset are known from structural comparisons. The hth
proteins contain occurrences of DNA-binding structures involved in gene regulation.
The correct locations of occurrences of the motif are known from x-ray and nuclear
magnetic resonance structures, or from substitution mutation experiments, or both.
The farn dataset contains isoprenyl-protein transferases, essential components of
the cytoplasmic signal transduction networks. No direct structural information is
known for the proteins in the dataset, so we used the starting positions for the three
motifs reported by Lawrence et al. [1993]. These starting positions agreed with
the results of earlier sequence analysis work [Boguski et al., 1992a], [Boguski et
al., 1992b].

The three DNA datasets, crp, lexa and crplexa, are described in [Bailey and
Elkan, 1993] and were used to test MEME there. They contain DNA sequences
from E. coli. The crp dataset contains known binding sites for CRP [Lawrence and
Reilly, 1990], and a few sites which have been identified by similarity to the known
motif. The lexa dataset sequences contain known binding sites for LexA [Hertz et
al., 1990], and some that have been identified by similarity to known sites. The
crplexa dataset contains all the sequences in the crp and lexa datasets.

To analyze the the output of MEME+, we used the motifs found during a single
run of MEME+ to classify the dataset from which they were learned and measured
the Â(¹ � ��¨r¨ defined as

º Q µ Q and QÃÂ­¹ � )#· ) ¶ � defined as
º Q µ 	 º Q:xP�IQg� . Here, Q is the

number of known occurrences of a motif in the dataset (“positives”),
º Q is the

number of correctly classified positives (“true positives”), and �GQ is the number of
non-occurrences classified as occurences (“false positives”). These statistics can be
used as estimates of the true precision and recall of the motif learned by MEME+ if
it were used to find occurrences of the motif in a different dataset.2

2Each discovered motif was compared with each motif known to occur in the dataset. Ù.Ú`ÛCÜ
ÝfÝ
and Þ9Ù.ÚcÛCßià`ßiá.â are relative to the “closest” known motif where “closest” means highest Ù.ÚcÛCÜ
ÝfÝ . The
comparison between each discovered motif and each known motif was done once for each possible
shifting of the known motif a fixed number of positions, ß , ã ß#ã@ä�åaæ�ç 2è . MEME+ was thus credited
with finding a motif even if the predicted occurrences were displaced a small, fixed amount.
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dataset type number of sequence
�

motif sites
name sequences length (avg) name proven total

lipocalin protein 5 182 16 lipA 5 5
lipB 5 5

hth protein 30 239 18 hth 30 30
farn protein 5 380 12 farnA none 30

farnB none 26
farnL none 28

crp DNA 18 105 20 crp 18 24
lexa DNA 16 200 20 lexa 11 21
crplexa DNA 34 150 20 crp 18 25

lexa 11 21

Table 1: Overview of the contents of the datasets. Proven sites are those which
have been shown to be occurrences of the motif by laboratory experiment (i.e.,
footprinting, mutagenesis or structural analysis). Total sites include the proven sites
as well as sites that have been reported in the literature but whose identification was
based primarily on sequence similarity with known sites (i.e., “putative” sites).

5.1 MEME+ discovers multiple motifs

MEME+ was run on each of the datasets in Table 1 for 5 passes with
�

set to the
value in the table, sampling probability Ð,� � 99, and prior parameter �,� 0 � 01.
All of the known motifs were found during the first pass(es) of MEME+. Table 2
summarizes the output of MEME+ on the datasets and shows the analysis of the
motifs found. On the left of the table the log likelihood of the mixture model, the
relative entropy per column of the motif model and · ) º ¹�·�� º Q�xP�GQ for each pass
of MEME+ is shown. On the right, the name of known motif (if any) corresponding
to the motif output by MEME+ how much the MEME+ motif was shifted relative to
the known motif, and the recall and precision statistics are shown.

With the exception of the lipocalin dataset, MEME+ finds all the known motifs
with recall and precision over 0 � 6 on its first passes. Many of the motifs found
have much higher recall and precision, as can be seen in the table. The first motif
found in the lipocalin dataset actually seems to be a combination of the two known
motifs. This is why the second pass found a relatively poor version of the other
known motif. Here, MEME+ is merging two known motifs into one, but is still able
to find both. The farnB motif found on pass 2 with dataset farn has somewhat low
recall (0.615), but pass 4 picks up the remainder of the known occurences of farnB.
Here MEME+ is splitting a known motif into two sub-motifs, but the first sub-motif
would probably be a good probe nevertheless. A similar splitting of a motif occurs
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Output of MEME+ Analysis of discovered motifs

dataset pass log likelihood ´ }�µ �T¶ ¨ · ) º ¹�· motif shift Â(¹ � ��¨v¨ Q�Â(¹ � )#· ) ¶ �
lipocalin 1 -55013 1.740 14 lipA 0 1.000 0.357

2 -55057 1.880 10 lipB -2 0.400 0.200
3 -55103 2.348 7 none
4 -55129 2.822 4 none
5 -55157 2.458 4 none

hth 1 -496332 1.205 49 hth 0 0.933 0.571
2 -496537 0.850 61 none
3 -496575 0.907 56 none
4 -496641 0.997 36 none
5 -496629 1.480 20 none

farn 1 -92518 1.862 25 farnL 0 0.917 0.880
2 -92585 2.070 19 farnB -1 0.615 0.842
3 -92569 1.461 34 farnA 0 0.733 0.647
4 -92717 1.897 14 farnB -1 0.192 0.357
5 -92704 2.194 11 none

crp 1 -60547 0.681 21 crp 1 0.792 0.905
2 -60589 0.633 15 none
3 -60597 0.844 8 none
4 -60601 0.703 11 none
5 -60600 0.982 6 none

lexa 1 -109155 0.873 26 lexa -2 0.842 0.615
2 -109302 0.594 26 lexa 1 0.211 0.154
3 -109307 0.667 19 none
4 -109304 0.865 13 none
5 -109318 0.782 12 none

crplexa 1 -169923 0.949 23 lexa 0 0.842 0.696
2 -170048 0.600 34 crp -1 0.667 0.471
3 -170065 0.623 24 none
4 -170080 0.579 30 lexa 3 0.316 0.200
5 -170062 0.901 11 none

Table 2: MEME+ was run with for 5 passes on each of the datasets in described
in Table 1. The left columns in this table show the log likelihood, ´ }�µ �T¶ ¨ and
number of occurrences of the motif (“sites”) discovered by MEME+ during each
pass. log likelihood values closer to zero indicate motifs which are more statistically
significant. The right columns show how the discovered motifs match the known
motifs in the datasets. The name of the known motif most closely matched by
the motif output by MEME+ is shown, along with any “phase shift”. The Â­¹ � ��¨r¨
and Q�Â(¹ � )�·$) ¶ � scores of each discovered motif when it is used as a probe for the
occurrences of the known motif in the dataset are also shown. MEME+ found good
representations of all the known motifs in each of the datasets and provided a good
thresholds for using the motifs as a probes.
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with the lexa motif.
In actual use with datasets containing unknown motifs, the right-hand side of

Table 2 would not be available to the researcher. The value of the log likelihood
function seems to be a good indicator of when a “real” (i.e., biologically significant)
motif has been discovered by MEME+. This conclusion is based on the observation
that the motifs found by MEME+ that correspond to known motifs tend to have much
higher likelihoods than the motifs found on other passes. When one or more passes
of MEME+ find motifs with likelihoods far higher than the other passes, this may
be good evidence that those motifs are significant. (All the known motifs found
by MEME+ seem to be significant by this criterion. The one marginal case is the
crp motif in dataset crplexa.) In actual practice, therefore, it is a good idea to run
MEME+ for several more passes than the number of anticipated motifs in the dataset.
The log likelihood of the motifs found in later passes may give an idea of what the
log likelihood of a “random” motif would be in the dataset at hand.

In no case did MEME+ find a motif with both perfect recall and precision. A
natural question is whether this is due to the algorithm failing to find the motif with
the highest log likelihood (i.e., getting stuck at a local optimum), or whether the the
known motif actually has lower log likelihood (under the assumptions of the model
used by MEME+) than the motif found. Table 3 shows that the motifs discovered
by MEME+ often have significantly higher log likelihood than the known motifs.
In particular, the partial merging of the two motifs in dataset lipocalin mentioned
above yields a merged motif with higher log likelihood than known motif lipA, and
the “remainder” motif also has higher log likelihood than motif lipB. In only one
case did the discovered motif have significantly lower log likelihood. This was
the aforementioned farnB motif in dataset farn. Since the known farnB has much
higher likelihood than the discovered one, it is clear that MEME+ got stuck at a local
optimum in this case.

5.2 Sensitivity to prior

The “size” of the prior on
6

1, ��� , is a user-specified parameter to the MEME+
algorithm. It is therefore of interest if the choice of �H� is important to the performance
of MEME+. To ascertain this, MEME+ was run on the biological datasets in Table 1
with all input parameters held constant except for � � . These tests showed that
MEME+ is extremely insensitive to the value chosen for ��� in the range 0 to 0.001.
Outside of this range several things can happen. Referring to Figures 2 and 3, several
patterns can be discerned when ���ÃÀ � 001. When a single known motif is present in
the dataset, as in the hth crp and lexa datasets, Â(¹ � ��¨v¨ tends to increase monotonically
with � � at the same time that QÃÂ­¹ � )#· ) ¶ � decreases. This is not surprising, since large
values of �H� tend to “blur”

6
1 by increasing the size of the pseudo-counts added

to each cell when
6

1 is updated during EM. This blurring effect will tend to make
the motif more general which increases Â(¹ � ��¨r¨ and decreases QÃÂ(¹ � )#· ) ¶ � . When two
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dataset pass motif log likelihood of log likelihood of difference
known motif (k) discovered motif (d) 	#Å�1,�Ã�

lipocalin 1 lipA -55090 -55013 77
2 lipB -55092 -55057 35

hth 1 hth -496346 -496332 14
farn 1 farnL -92525 -92518 7

2 farnB -92517 -92585 -68
3 farnA -92566 -92569 -3

crp 1 crp -60590 -60547 43
lexa 1 lexa -109147 -109155 -8
crplexa 1 lexa -169918 -169923 -5

2 crp -170116 -170048 68

Table 3: A comparison of the log likelihood of known motifs and motifs found by
MEME+ shows that MEME+ usually finds motifs whose statistical significance is
at least as high as the known motifs. In only one case– the farnB motif in datatset
farn– does MEME+ fail to discover a motif whose log likelihood is close to or
significantly higher than that of the known motif.

or more motifs are present in the dataset, the value of Â(¹ � ��¨v¨ of one or all of the
discovered motifs tends to decrease with ��� when �H�&À 0 � 001, while Q�Â(¹ � )#· ) ¶ � tends
to decrease for all the discovered motifs. The decrease in Â(¹ � ��¨v¨ for some discovered
motifs is probably the result of two or more known motifs getting partially merged
into one as � � gets large. The lipocalin dataset was somewhat of an anomaly. For
one value of � � , MEME+ gets stuck in a local optimum and finds a very good version
of the lipB motif. For some large values of � � the Â(¹ � ��¨r¨ of the lipB motif improves
as well. These effects can be ascribed to the small number (5 each) of occurences
of each of the known motifs in the dataset.

The conclusion is that for many datasets, very low values of �H� (i.e., �H��� 0 � 001)
are sufficient to ensure that MEME+ finds the motifs present.

5.3 Sensitivity to noise

One form of “noise” to which MEME+ may be subjected is sequences in the dataset
which do not contain the motif. This is bound to occur when new datasets are
being studied to see if they contain any new motifs. It is extremely desirable that
MEME+ be able to find any motif which may be present even though a large number
of superfluous sequences may have been included in the dataset presented to it.
Related to this problem is the fact that the motif occurrences may be short compared
to the length of the sequences in the dataset. The longer the sequences, the more

23



0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall lipA
recall lipB

0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall hth

lipocalin hth

0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall farnA
recall farnB
recall farnL

0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall crp

farn crp

0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall lexa

0

0.2

0.4

0.6

0.8

1

1.2

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

r
e
c
a
l
l

prior

recall crp
recall lexa

lexa crplexa

Figure 2: The value of the Â(¹ � ��¨r¨ statistic for motifs found by MEME+ run with
different values for the size of the prior on

6
1, ��� , shows that Â(¹ � ��¨v¨ remains relatively

constant for values of �H� between 10 ¦ 7 and 10 ¦ 2. It can be concluded that MEME+
is insensitive to the size of �H� as long as it is small.
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Figure 3: The value of the QÃÂ­¹ � )#· ) ¶ � statistic for motifs found by MEME+ run with
different values for the size of the prior on

6
1, �H� , shows that QÃÂ(¹ � )#· ) ¶ � , like Â­¹ � ��¨r¨

is unaffected by �H� if ÁT¹ º �U��� � 01.

25



difficult it will be for MEME+ to discover the relevant motif occurrences. In this
sense, all non-motif-occurrence positions in the dataset can be thought of as noise.

To study this problem further, we created additional datasets by adding pseudo-
random sequences to the crp and lexa datasets. The added sequences had the same
average frequencies of the four letters A, C, G and T, but were generated at random.
Figure 4 shows that MEME+ had no difficulty finding the lexa motif even when 80
pseudo-random sequences of length 200 were added to the lexa dataset. This is
quite impressive performance considering that the there are only 11 proven and 21
total (proven + putative) sites of length 16 in the lexa dataset. On the other hand,
the 24 total sites in the crp dataset appear to be harder to find. The Â­¹ � ��¨r¨ andQ�Â(¹ � )#· ) ¶ � of the discovered motif was lowered somewhat when up to 20 sequences
of 105 pseudo-random bases were added. When more random sequences were
added, MEME+ sometimes found the known motif, but sometimes did not, as can
be seen in the figure. The explanation for this can be found in Table 4 which shows
that the known crp motif has lower log likelihood than even the discovered motifs
which had very poor Â(¹ � ��¨v¨ and QÃÂ(¹ � )#· ) ¶ � . The lexa motifs discovered in the noisy
datasets have likelihood very close to that of the known motif.

It can be concluded that MEME+ can tolerate an enormous amount of noise
for some motifs, but weaker motifs require less noise in the dataset to ensure that
MEME+ will be successful.

5.4 Sensitivity to subsampling

The user selectable parameter to MEME+ which determines the number of starting
points tried with MM, Ð , affects the speed and accuracy of MEME+. A series of runs
of MEME+ on the six datasets described earlier was made with varying values of Ð .
The value of � was 0 � 01 in all cases.

The effect of Ð on the speed of MEME+ can be seen in Figure 5. Reducing Ð to� 5 from 0 � 99 results in about an eight-fold speedup of MEME+ with relatively small
decrease in the accuracy of the motifs found. The accuracy of MEME+ over a wide
range of values of Ð can be seen from the high values for Â(¹ � ��¨v¨ and QÃÂ­¹ � )#· ) ¶ � in
Table 5. The motifs were usually found on the first few passes of MEME+.

6 Discussion

The MM algorithm and its implementation in MEME+ have several important advan-
tages over previously reported algorithms that perform similar tasks. This section
first explains these advantages, and then discusses several limitations of MM and
MEME+ the lifting of which would increase their usefulness for exploring collections
of DNA and protein sequences.

The Gibbs sampling algorithm of Lawrence et al. [1993] is the most successful
existing general algorithm for discovering motifs in sets of biosequences. MM
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Figure 4: The value of the Â(¹ � ��¨v¨ and Q�Â(¹ � )�·$) ¶ � statistics for the motifs found by
MEME+ when it was run on the crp and lexa datasets with different numbers of
random sequences added is plotted. The value of “noise” is the number of random
sequences that were added to the crp and lexa datasets. Added sequences had the
same length and average base frequencies as the sequences in the dataset to which
they were added. MEME+ finds the lexa motif even when 85% of the dataset
consists of random sequences. The ability of MEME+ to discover the crp motif
degraded significantly when more than half the dataset was random sequences,
but still found the motif occasionally with up to 77% of the dataset was random
sequences. These results show the ability of MEME+ to discover motifs in datasets
containing many sequences where the motif does not occur.
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Output of MEME+ Analysis of discovered motifs
dataset pass log likelihood motif Â(¹ � ��¨v¨ Q�Â(¹ � )�·$) ¶ � log likelihood difference
name of discovered name of known 	#Å�1,�Ã�

motif 	#ÅG� motif 	5���
crp0 1 -60547 crp 0.750 0.900 -60590 43
crp10 1 -94216 crp 0.625 0.625 -94248 32
crp20 1 -128025 crp 0.625 0.600 -128081 56
crp30 4 -162354 crp 0.125 0.136 -162389 35
crp40 2 -196324 crp 0.583 0.424 -196377 53
crp50 4 -230075 crp 0.167 0.182 -230128 53
crp60 2 -264067 crp 0.583 0.483 -264133 66
lex0 1 -109155 lexa 0.842 0.615 -109147 -8
lex10 1 -180905 lexa 0.842 0.941 -180896 -9
lex20 1 -253117 lexa 0.842 0.696 -253109 -8
lex30 1 -325043 lexa 0.842 0.615 -325036 -7
lex40 1 -396893 lexa 0.895 0.850 -396875 -18
lex50 1 -468921 lexa 0.895 0.773 -468907 -14
lex60 1 -540897 lexa 0.895 0.850 -540881 -16
lex70 1 -612605 lexa 0.842 0.941 -612602 -3
lex80 1 -684284 lexa 0.842 0.800 -684280 -4

Table 4: The results of MEME+ on datasets created by adding random sequences
to the lexa and crp datasets shows why the crp motif is hard to find. MEME+
consistently finds motifs with higher log likelihood than the known crp motif. TheÂ(¹ � ��¨v¨ and Q�Â(¹ � )#· ) ¶ � statistics for these runs of MEME+ are shown in Figure 4.
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Analysis of discovered motifs Output of MEME+

prob motif shift Â(¹ � ��¨v¨ QÃÂ­¹ � )#· ) ¶ � pass log likelihood ´ }�µ �T¶ ¨ · ) º ¹�·
0.5 lipA 0 0.600 0.429 3 -55113 2.249 6

lipB -4 0.400 0.125 1 -55027 1.497 15
0.8 lipA -5 1.000 0.357 1 -55037 1.631 13

lipB -2 0.600 0.214 1 -55037 1.631 13
0.9 lipA 0 1.000 0.357 1 -55013 1.740 13

lipB -3 0.600 0.429 2 -55084 2.284 6
0.5 hth 3 0.867 0.531 1 -496390 1.127 48
0.8 hth 0 0.900 0.614 1 -496322 1.308 43
0.9 hth 0 0.900 0.614 1 -496322 1.308 43
0.5 farnA -1 0.633 0.388 2 -92473 1.275 48

farnL -6 0.792 0.576 1 -92551 1.542 29
farnB 4 0.423 0.846 4 -92687 2.066 12

0.8 farnA -1 0.233 0.269 4 -92695 1.328 23
farnL -4 0.083 0.250 5 -92759 2.032 8
farnB -1 0.731 0.380 1 -92501 1.255 46

0.9 farnA 2 0.133 0.111 3 -92683 1.170 30
farnL 0 0.500 0.800 4 -92652 2.040 14
farnB 0 0.769 0.690 2 -92578 1.667 24

0.5 crp 2 0.667 0.727 1 -60554 0.660 19
0.8 crp 2 0.750 0.783 1 -60549 0.660 20
0.9 crp 2 0.750 0.783 1 -60549 0.660 20
0.5 lexa 0 0.947 0.947 1 -109166 1.109 17
0.8 lexa 0 0.947 0.947 1 -109166 1.109 17
0.9 lexa -2 0.842 0.615 1 -109155 0.873 25
0.5 crp -1 0.542 0.464 4 -170059 0.608 27

lexa -2 0.842 0.762 1 -169923 1.000 20
0.8 crp 1 0.583 0.538 2 -170043 0.691 21

lexa -1 0.842 0.762 1 -169922 1.002 20
0.9 crp 3 0.333 0.267 2 -170035 0.632 29

lexa 0 0.947 0.818 1 -169932 1.003 20

Table 5: The best match of each discovered motif with a known motif when MEME+
is run with different values of Ð on datafile crplexa shows a general tendency forÂ(¹ � ��¨v¨ and Q�Â(¹ � )�·$) ¶ � to improve with increasing Ð . This is to be expected since
running MEME+ with larger values Ð causes it to try more subsequences in the
dataset as starting points for MM, thus increasing the chances of finding a good
starting point. In most cases, however, MEME+ finds the known motifs well even
when Ð is 0 � 5. Running MEME+ with smaller values of Ð requires less CPU time
as can be seen in Figure 5.
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Figure 5: Speed of execution of MEME+ with different values of Ð is plotted.
MEME+ was run with each of the datasets in Table 1, whose sizes ranged from
about 1000 to about 7000 letters. The increase in speed gotten by reducing the
value of Ð can be seen, as well as the generally quadratic dependence of execution
time on the size of the dataset.

has two major advantages over this algorithm. First, MM does not require input
sequences to be classified in advance by a biologist as definitely containing the motif
that is being searched for. Instead, MM estimates from the data how many times a
motif appears. This capability is quite robust: experiments show that even when
only 20% of the sequences in a dataset contain a motif, the motif can often still be
characterized well (see Section 5.4). Second, MM uses a formal probabilistic model
of the entire input dataset, and systematically selects values for the parameters of
this model that maximize the likelihood of the model. The MM model allows us to
compare in a principled way the motif characterizations discovered by MEME+ and
characterizations obtained by other methods. In most cases, the characterizations
discovered by MEME have higher likelihood.

As pointed out by Lawrence et al. [1993] and by others, the fundamental prac-
tical difficulty in discovering motifs is the existence of many local optima in the
search space of alternative motif models. The MM algorithm, like all expectation
maximization applications, is a gradient descent method that cannot escape from
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a local optimum. The MEME+ implementation of MM uses several heuristics to
overcome the problem of local optima. These heuristics are all variations on a
common theme, and should be useful in other applications also. The theme is to
search the space of possible starting points for gradient descent systematically. By
contrast, Gibbs sampling algorithms interleave gradient search steps with random
jumps in the search space. These algorithms can spend an unpredictable number
of iterations on a “plateau” before converging, whereas MM always converges in a
predictable, relatively small number of iterations.

The focus of our current research is to overcome two significant limitations of
MM and MEME+. The first of these is that all motifs found are constrained to have
the same width, which is a parameter specified by the user. The main obstacle to
estimating motif width endogenously is that likelihood values are not comparable
for models that assume different motif widths.

The second limitation is that the number of different motifs present in a dataset is
not estimated by the algorithm. We plan to overcome this limitation by generalizing
from a two component mixture model to models with multiple components. A deep
difficulty with multiple component models is that the induced search space is of
even higher dimensionality than with two components, and local optima are even
more pesky. Our current intention is to use the results of MEME+ as starting points
for fitting models with multiple components. Doing this should have the additional
benefit of allowing similar motifs discovered in different passes of MEME+ to be
merged if overall likelihood is thereby increased.
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