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Abstract
Main memory is one of the leading hardware causes for machine
crashes in today’s datacenters. Designing, evaluating and modeling
systems that are resilient against memory errors requires a good
understanding of the underlying characteristics of errors in DRAM
in the field. While there have recently been a few first studies on
DRAM errors in production systems, these have been too limited
in either the size of the data set or the granularity of the data to
conclusively answer many of the open questions on DRAM errors.
Such questions include, for example, the prevalence of soft errors
compared to hard errors, or the analysis of typical patterns of hard
errors.

In this paper, we study data on DRAM errors collected on a
diverse range of production systems in total covering nearly 300
terabyte-years of main memory. As a first contribution, we provide
a detailed analytical study of DRAM error characteristics, includ-
ing both hard and soft errors. We find that a large fraction of DRAM
errors in the field can be attributed to hard errors and we provide a
detailed analytical study of their characteristics. As a second con-
tribution, the paper uses the results from the measurement study to
identify a number of promising directions for designing more re-
silient systems and evaluates the potential of different protection
mechanisms in the light of realistic error patterns. One of our find-
ings is that simple page retirement policies might be able to mask
a large number of DRAM errors in production systems, while sac-
rificing only a negligible fraction of the total DRAM in the system.

Categories and Subject Descriptors B.8.0 [Hardware]: Perfor-
mance and Reliability

General Terms Reliability, Measurement

1. Introduction
Recent studies point to main memory as one of the leading hard-
ware causes for machine crashes and component replacements in
today’s datacenters [13, 18, 20]. As the amount of DRAM in
servers keeps growing and chip densities increase, DRAM errors
might pose an even larger threat to the reliability of future genera-
tions of systems.
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As a testament to the importance of the problem, most server
systems provide some form of protection against memory errors.
Most commonly this is done at the hardware level through the use
of DIMMs with error correcting codes (ECC). ECC DIMMs either
provide single-bit error correction and double-bit error detection
(SEC-DED); or use more complex codes in the chipkill family [4]
that allow a system to tolerate an entire chip failure at the cost
of somewhat reduced performance and increased energy usage.
In addition, some systems employ protection mechanisms at the
operating system level. For example, Solaris tries to identify and
then retire pages with hard errors [3, 20]. Researchers have also
explored other avenues, such as virtualized and flexible ECC at the
software level [24].

The effectiveness of different approaches for protecting against
memory errors and the most promising directions for designing fu-
ture systems that are resilient in the face of increased DRAM error
rates depend greatly on the nature of memory errors. For example,
SEC-DED based ECC is most effective for protecting against tran-
sient random errors, such as soft errors caused by alpha particles or
cosmic rays. On the other hand, mechanisms based on page retire-
ment have potential only for protecting against hard errors, which
are due to device defects and hence tend to be repeatable. In gen-
eral, any realistic evaluation of system reliability relies on accurate
assumptions about the underlying error process, including the rel-
ative frequency of hard versus soft errors, and the typical modes
of hard errors (e.g. device defects affecting individual cells, whole
rows, columns, or an entire chip).

While there exists a large body of work on protecting systems
against DRAM errors, the nature of DRAM errors is not very
well understood. Most existing work focuses solely on soft er-
rors [1, 6, 9, 12, 14, 15, 21, 22, 25, 27] as soft error rates are often
assumed to be orders of magnitudes greater than typical hard-error
rates [5]. However, there are no large-scale field studies backing
up this assumption. Existing studies on DRAM errors are quite old
and rely on controlled lab experiments, rather than production ma-
chines [15, 25, 26, 28], and focus on soft errors only [10]. A notable
exception is a recent study by Li et al. [11], which analyzes field
data collected on 200 production machines and finds evidence that
the rate of hard errors might be higher than commonly assumed.
However, the limited size of their data set, which includes only a
total of 12 machines with errors, makes it hard to draw statisti-
cally significant conclusions on the rate of hard versus soft errors
or common modes of hard errors. Another recent field study [19]
speculates that the rate of hard errors might be significant based
on correlations they observe in error counts over time, but lacks
more fine-grained data, in the form of information on the location
of errors, to validate their hypothesis.



System Time Nodes # DIMMs DRAM in TByte Nodes Nodes Total FIT
(days) system (TB) years with errors w/ chipkill errs # Errors

BG/L 214 32,768 N/A 49 28 1,742 (5.32%) N/A 227 · 106 97,614
BG/P 583 40,960 N/A 80 127 1,455 (3.55%) 1.34% 1.96 · 109 167,066
SciNet 211 3,863 31,000 62 35 97 (2.51%) N/A 49.3 · 106 18,825
Google 155 20,000 ∼ 130,000 220 93 20,000 N/A 27.27 · 109 N/A

Table 1. Summary of system configurations and high-level error statistics recorded in different systems

The goal of this paper is two-fold. First, we strive to fill the gaps
in our understanding of DRAM error characteristics, in particular
the rate of hard errors and their patterns. Towards this end we pro-
vide a large-scale field study based on a diverse range of produc-
tion systems, covering nearly 300 terabyte-years of main memory.
The data includes detailed information on the location of errors,
which allows us to statistically conclusively answer several impor-
tant open questions about DRAM error characteristics. In particu-
lar, we find that a large fraction of DRAM errors in the field can be
attributed to hard errors and we provide a detailed analytical study
of their characteristics.

As a second contribution, the paper uses the results from the
measurement study to identify a number of promising directions
for designing more resilient systems and evaluates the potential
of different protection mechanism in the light of realistic error
patterns. One of our findings is that simple page retirement policies,
which are currently not widely used in practice, might be able to
mask a large number of DRAM errors in production systems, while
sacrificing only a negligible fraction of the total system’s DRAM.

2. Background
2.1 Overview of data and systems

Our study is based on data from four different environments: the
IBM Blue Gene/L (BG/L) supercomputer at Lawrence Livermore
National Laboratory, the Blue Gene/P (BG/P) from the Argonne
National Laboratory, a high-performance computing cluster at the
SciNet High Performance Computing Consortium, and 20,000 ma-
chines randomly selected from Google’s data centers. Below we
provide a brief description of each of the systems and the data we
obtained.

BG/L: Our first dataset is from the Lawrence Livermore Na-
tional Laboratory’s IBM Blue Gene/L (BG/L) supercomputer. The
system consists of 64 racks, each containing 32 node cards. Each
node card is made up of 16 compute cards, which are the small-
est replaceable hardware component for the system; we refer to the
compute cards as ”nodes”. Each compute card itself contains two
PowerPC 440 cores, each with their own associated DRAM chips,
which are soldered onto the card; there is no notion of a ”DIMM”
(see [7] for more details).

We obtained BG/L logs containing data generated by the sys-
tem’s RAS infrastructure, including count and location messages
pertaining to correctable memory errors that occur during a job and
are reported upon job completion.

The BG/L memory port contains a 128-bit data part that’s di-
vided divided into 32 symbols, where the ECC is able to correct
any error pattern within a single symbol, assuming no errors occur
in any other symbols. However, the system can still function in the
event of two symbols with errors by remapping one of the symbols
to a spare symbol, and correcting the other with ECC [16].

Due to limitations in the types of messages that the BG/L log
contains, we are only able to report on multi-bit errors that were
detected (and corrected) within a single symbol. As such, we refer

to these as MBEs (multi-bit errors) for the BG/L system through-
out the paper. However it’s worth noting that 350 compute cards
(20% of all compute cards with errors in the system) reported ac-
tivating symbol steering to the spare symbol. This is indicative of
more severe errors that required more advanced ECC technologies
(like bit-sparing) to correct. In addition, a cap was imposed on the
total count of correctable errors accumulated during a job for part
of the dataset, making our results for both multi-bit errors and total
correctable error counts very conservative compared to the actual
state of the system.

BG/P: The second system we studied is the Blue Gene/P
(BG/P) from the Argonne National Laboratory. The system has
40 racks containing a total of 40,960 compute cards (nodes). Each
node in BG/P has four PowerPC 450 cores and 40 DRAM chips
totalling 2GB of addressable memory. As the successor to BG/L,
BG/P has stronger ECC capabilities and can correct single and
double-symbol errors. The system is also capable of chipkill error
correction, which tolerates failure of one whole DRAM chip [8].

We obtained RAS logs from BG/P reporting correctable error
samples. Only the first error sample on an address during the ex-
ecution of a job is reported, and total occurrences for each error
type summarized at the end. Due to the sampling and counter size,
the amount of correctable errors are once again very conserva-
tive. However, the correctable samples provide location informa-
tion which allows us to study the patterns and physical distribution
of errors.

Unlike BG/L, there is no bit position information for single-
symbol errors. There is no way to determine the number of bits
that failed within one symbol. Therefore, we report single-symbol
errors as single-bit errors and double-symbol errors as multi-bit
errors, and refer to the latter as MBEs for the BG/P system. A
double-symbol error is guaranteed to have at least two error bits
that originate from the pair of error symbols. This is once again an
under-estimation of the total number of multi-bit errors.

SciNet: Our third data source comes from the General Pur-
pose Cluster (GPC) at the SciNet High Performance Computing
Consortium. The GPC at SciNet is currently the largest supercom-
puter in Canada. It consists of 3,863 IBM iDataPlex nodes, each
with 8 Intel Xeon E5540 cores and 16GB of addressable memory
that uses basic SEC-DED ECC. The logs we collected consist of
hourly-dumps of the entire PCI configuration space, which expose
the onboard memory controller registers containing counts (with
no physical location information) of memory error events in the
system.

Google: Our fourth data source comes from Google’s datacen-
ters and consists of a random sample of 20,000 machines that have
experienced memory errors. Each machine comprises a mother-
board with some processors and memory DIMMs. The machines
in our sample come from 5 different hardware platforms, where a
platform is defined by the motherboard and memory generation.
The memory in these systems covers a wide variety of the most



10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Errors on a node in one month

F
ra

ct
io

n 
of

 e
rr

or
 n

od
e−

m
on

th

 

 

Blue Gene/L
Blue Gene/P
Google
SciNet

10
−3

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

Top fraction of nodes with CEs

F
ra

ct
io

n 
of

 to
ta

l C
E

s

 

 

Blue Gene/L
Blue Gene/P
Google
SciNet

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

Number of prior errors on a node

P
ro

ba
bi

lit
y 

of
 fu

tu
re

 e
rr

or
s

 

 

BG/L
BG/P
Google
Scinet

Figure 1. The left graph shows the CDF for the number of errors per month per machine. The middle graph shows the fraction y of all errors
that is concentrated in the top x fraction of nodes with the most errors. The right graph shows the probability of a node developing future
errors as a function of the number of prior errors.

commonly used types of DRAM. The DIMMs come from multiple
manufacturers and models, with three different capacities (1GB,
2GB, 4GB), and cover the three most common DRAM technolo-
gies: Double Data Rate (DDR1), Double Data Rate 2 (DDR2) and
Fully-Buffered (FBDIMM). We rely on error reports provided by
the chipset. Those reports include accurate accounts of the total
number of errors that occurred, but due to the limited number of
registers available for storing addresses affected by errors only
provides samples for the addresses of errors. For this reason, the
number of repeat errors we observe and the probability of errors
repeating are very conservative estimates, since there might be re-
peat errors that we missed because they were not sampled.

2.2 Methodology

A memory error only manifests itself upon an access to the affected
location. As such, some systems employ a memory scrubber (a
background processes that periodically scans through all of mem-
ory) to proactively detect errors before they are encountered by an
application. However, except for some of the Google systems, all
the systems we study rely solely on application-level memory ac-
cesses without the use of a scrubber.

Categorizing errors observed in the field as either hard or soft is
difficult as it requires knowing their root cause. Obtaining a definite
answer to the question of whether an observed error is hard and
what type of hard error it is (e.g. a stuck bit or a bad column)
would require some offline testing of the device in a lab or at least
performing some active probing on the system, e.g. by running a
memory test after each error occurrence to determine whether the
error is repeatable. Instead we have to rely on observational data,
which means we will have to make some assumptions in order
to classify errors. Matters are complicated further by the fact that
many hard errors start out as intermittent errors and only develop
into permanent errors over time.

The key assumption that we rely on in our study is that repeat
errors at the same location are likely due to hard errors since it
would be statistically extremely unlikely that the same location
would be hit twice within our measurement period by cosmic rays
or other external sources of noise. We therefore view such repeat
errors as likely being caused by hard errors. Note however that in
practice, hard errors manifest themselves as intermittent rather than
on every access to a particular memory location.

We consider different granularities for locations at which errors
can repeat. We start by looking at repeats across nodes, but then
mainly focus at locations identified by lower-levels in the hard-
ware. Recall that a DIMM comprises multiple DRAM chips, and
each DRAM chip is organized into multiple banks, typically 8 in

today’s systems. A bank consists of a number of two-dimensional
arrays of DRAM cells. A DRAM cell is the most basic unit of stor-
age, essentially a simple capacitor representing one bit. The two
dimensions of an array are also referred to as rows and columns.
We look at repeats of errors at the level of physical addresses, but
also with respect to bank, rows and columns at the chip level.

3. Study of error characteristics
3.1 High-level characteristics

We begin with a summary of the high-level characteristics of mem-
ory errors at the node level. The right half of Table 1 summa-
rizes the prevalence of memory errors in the four different sys-
tems. We observe that memory errors happen at a significant rate
in all four systems with 2.5-5.5% of nodes affected per system.
For each system, our data covers at least tens of millions of errors
over a combined period of nearly 300 Terabyte years. In addition to
correctable errors (CEs), we also observe a non-negligible rate of
“non-trivial” errors, which required more than simple SEC-DED
strategies for correction: 1.34% of the nodes in the BG/P system
saw at least one error that required chipkill to correct it.

Figure 1 (left) and Figure 1 (middle) provide a more detailed
view of how errors affect the nodes in a system. Figure 1 (left)
shows the cumulative distribution function (CDF) of the number of
errors per node for those nodes that experience at least one error.
We see that only a minority (2-20%) of those nodes experience
just a single error occurrence. The majority experiences a larger
number of errors, with half of the nodes seeing more than 100 errors
and the top 5% of nodes each seeing more than a million errors.
Figure 1 (middle) illustrates how errors are distributed across the
nodes within each system. The graph shows for each system the
fraction of all errors in the system (X-axis) that is concentrated on
just the y% of nodes in the system with the largest number of errors
(Y-axis). In all cases we see a very skewed distribution with the top
5% of error nodes accounting for more than 95 % of all errors.

Figure 1 (left) and (middle) indicate that errors happen in a
correlated fashion, rather than independently. This observation is
validated in Figure 1 (right), which shows the probability of a
node experiencing future errors as a function of the number of
past errors. We see that even a single error on a node raises the
probability of future errors to more than 80%, and after seeing just
a handful of errors this probability increases to more than 95%.

The correlations we observe above provide strong evidence
for hardware errors as a dominant error mechanisms, since one
would not expect soft errors to be correlated in space or time.
Our observations agree with similar findings reported in [11, 19].
However, the results in [11] were based on a small number of



machines (12 machines with errors) and the analysis in [19] was
limited to a relatively homogeneous set of systems; all machines
in the study were located in Google’s datacenters. Our results
show that these trends generalize to other systems as well and add
statistical significance.

In addition to error counts, the BG systems also record infor-
mation on the mechanisms that were used to correct errors, which
we can use as additional clues regarding the nature of errors. In
particular, both BG/P and BG/L provide separate log messages that
allow us to distinguish multi-bit errors, and BG/P also records in-
formation on chipkill errors (i.e. errors that required chipkill to
correct them). We observe that a significant fraction of BG/P and
BG/L nodes experiences multi-bit errors (22.08% and 2.07%, re-
spectively) and that these errors account for 12.96% and 2.37% of
all observed errors, respectively. The fraction of nodes with chipkill
errors on BG/P only is smaller, with 1.34% of nodes affected, but
still significant. Interestingly, while seen only on a small number
of nodes, chipkill errors make up a large fraction of all observed
errors: 17% of all errors observed on BG/P were not correctable
with simple SEC-DED, and required the use of chipkill ECC to be
corrected.

We summarize our main points in the following three observa-
tions which motivate us to take a closer look at hard errors and their
patterns in the remainder of this paper.

Observation 1: There are strong correlations between errors
in space and time. These correlations are highly unlikely if soft
errors were the dominating error mode, pointing to hard errors as
the leading cause of memory errors.

Observation 2: The significant frequency of multi-bit and chip-
kill errors is another pointer towards hard errors as an important
error mode, as these types of errors are unlikely to arise from soft
errors.

Observation 3: A significant number of nodes with correctable
errors activated more advanced ECC mechanisms; 20%-45% acti-
vated redundant bit-steering, and 15% activated Chipkill.

3.2 Error patterns

In this section, we attempt to categorize all banks with errors in
our datasets into known error patterns related to hardware defects:
single (transient) events, bad cells, bad rows, bad columns, and a
whole chip error. A definite answer to the question which category
a device with an error falls into would require offline testing of the
device in a lab setting. Instead we have to rely on observational
data, which means we will have to make a few assumptions when
classifying devices. We group all banks that have at least one error
into one of the following categories:

repeat address: The bank has at least one error that repeats, i.e.
there is at least one address on this bank that is reported twice.
repeat row: The bank has at least one row that has experienced
errors at two different locations, i.e. two different addresses on the
row.
repeat column: The bank has at least one column that has experi-
enced errors at two different locations, i.e. two different addresses
on the column.
corrupt row: The bank has at least one row that has experienced
errors at two different addresses on the row and one of these is a
repeat address.
corrupt column: The bank has at least one column that has expe-
rienced errors at two different addresses on the column and one of
these is a repeat address.

BG/L BG/P Google
Error mode Banks Banks Banks
repeat address 80.9% 59.4% 58.7%
repeat address w/o row/cols 72.2% 30.0% 46.1%
repeat row 4.7% 31.8% 7.4%
repeat column 8.8% 22.7% 14.5%
corrupt row 3.0% 21.6% 4.2%
corrupt column 5.9% 14.4% 8.3%
whole chip 0.53% 3.20% 2.02%
single event 17.6% 29.2% 34.9%

Table 2. Frequency of different error patterns

single event: These are banks that have only single events, i.e. they
have no repeat errors on any of their addresses, rows or columns.
whole chip: These are banks that have a large number of errors
(> 100 unique locations) distributed over more than 50 different
rows and columns.

Table 2 groups each error bank in our dataset into one of the
above categories and reports for each system the fraction of banks
that falls into each of these categories. Note, that the repeat-address
category overlaps with the corrupt row and corrupt column cate-
gories. We therefore created an additional entry that reports banks
with repeat addresses that do not exhibit corrupt rows or columns.

We make a number of interesting observations. The vast ma-
jority (65-82%, depending on the system) of all banks experiences
some form of error pattern that points towards hard errors, i.e. an
error pattern other than single events. This observation agrees with
the findings in [11], however the conclusions on the frequency of
different patterns in [11] are limited due to their small dataset (12
machines with errors). We find that among all error patterns the
single most common one are repeat addresses. Consistently for all
systems, more than 50% of all banks with errors are classified as re-
peat addresses. For all systems, corrupt rows and corrupt columns
happen at a significant rate. We note that each system has a clear
tendency to develop one type over the other, where the more com-
mon type is approximately twice as often observed as the other one.
For example, in the case of BG/L and Google, corrupt columns are
twice as likely as corrupt rows, while for BG/P it is the other way
around. This is likely due to the fact that there are twice as many
rows in BG/P banks than in BG/L banks.

Note that the above numbers on hard error patterns are conser-
vative, and in practice likely higher. Since our observation period
for each of the systems is limited and we depend on accesses to
memory cells to detect errors, many of the non-repeat errors in our
study might eventually have turned out to be repeat errors, but the
repeat did not fall into our measurement period. We observe for ex-
ample that for the systems with shorter observation time (BG/L and
Google), the fraction of banks with only repeat addresses, but no
bad rows/columns, is higher than in the BG/P system whose data
spans a longer observation period. Most likely, the longer obser-
vation time increased the chances that a repeat error will manifest
and move a repeat row/column to the corrupt row/column category.
That indicates that a large fraction of errors we categorize con-
servatively as repeat rows/columns might actually be true broken
rows/columns.

Observation 4: The error patterns on the majority of the banks
(more than two thirds) in our study can clearly be attributed to pat-
terns linked to hard errors. Among those patterns the most common
one is a repeat address, although row and column patterns do also
happen at a significant rate.
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Figure 2. The left graph shows the CDF for the number of repeat errors per address (for those addresses with at least on repeat). The middle
graph shows the fraction y of all errors that is concentrated in the top x fraction of addresses with the most errors. The right graph shows the
CDF of the time between successive errors on an address.

3.3 Repeat errors on addresses

The previous section identified repeat addresses as the dominant
error pattern, but did not provide any details on their characteristics.
The only prior work that hints at repeat addresses as a common
error pattern in the field is based on a data set (a dozen machines
with errors) that is too small for a detailed study of repeat error
characteristics [11]. We therefore study this question in more detail
in this subsection.

BG/L BG/P Google
# of error samples 201,206 308,170 1,091,777
# of unique addresses 9,076 44,624 556,161
% unique 4.5 14.5 50.9
% of addresses with repeats 48.2 30.6 32.6
Avg. # of errors / address 44.9 20.3 4.0

Table 3. Statistics on repeat addresses

We begin by providing some statistics on the frequency of
repeat errors on addresses in Table 3 above. We observe that a high
fraction of addresses with errors experience later repeat errors on
the same address: a third (for Google) to nearly a half (for BG/L).
The average number of repeat errors per address ranges from 4
for Google to as many as 44 for BG/L. For a more detailed view,
Figure 2 (left) shows the cumulative distribution function (CDF)
for the number of repeats per address. Most addresses with repeats
(50-60%) see only a single repeat and another 20% see only two
repeats. However, the distribution is very skewed with a long tail,
where a small fraction of addresses at the end of the tail experiences
a huge number of repeats. Figure 2 (middle) illustrates the skew in
the distribution by plotting the fraction of errors that is made up by
the top x% of addresses with the highest error count. It shows that
10% of all addresses with errors account for more than 90% of all
observed errors.

When trying to protect against repeat errors it is useful to under-
stand the temporal characteristics of errors. For example, a system
using page retirement for pages with hard errors might want to wait
before retiring a page that experiences an error until a repeat error
occurs, providing some confidence that the problem is indeed due
to a hard error. An interesting question is therefore how long it will
take before a repeat error happens and an error can confidently be
classified as hard. To help answer this question, Figure 2 (right)
plots the CDF of the time between repeat errors on the same ad-
dress. The graph shows that, if there is a repeat error it typically
happens shortly after the first error occurrence. In BG/P more than
half of repeats happen within less than a couple of minutes after
the first occurrence. The timing information in the Google data is

at a much coarser granularity (recall Section 2) and due to sam-
pling we might not see all repeats, which leads to generally longer
times until a repeat error shows up. However, we can conclude that
more than half of the repeats happen within less than 6 hours. In-
terestingly, for larger timescales, e.g. on the order of days, where
the timing granularity of the Google data should have less of an
effect the trends for both systems start to look very similar. In both
systems, 90% of all repeat errors are detected within less than 2
weeks.

When interpreting data regarding repeat of errors, it is important
to recall that repeat errors (or any errors) are not detected until
either the application or a hardware scrubber accesses the affected
cell. For the Blue Gene systems, we know that hardware scrubbers
are implemented as a feature, but we were not able to determine
whether this feature was actually enabled in our systems under
study. On the other hand, for the Google machines we know that a
subset of them does employ a hardware scrubber that periodically
in the background reads through main memory to check for errors.
This scrubber reads memory at a rate of 1GB per hour, which means
that each memory cell should be touched at least once every day.

To determine how much earlier repeat errors could be detected
if a memory scrubber is used we compared the time until a repeat
error is detected for those systems with and without the hardware
scrubber separately. Interestingly, we find that the use of a scrub-
ber does not significantly reduce the time until a repeat error is
detected. Even in the tail of the distribution, where it takes a rel-
atively long time (e.g. several days or more) to identify a repeat
error, there is not much difference between systems with and with-
out a scrubber. One possible explanation is that repeat errors might
not always be due to stuck bits, where a cell is permanently stuck
at a particular value. Instead, they might be due to weaknesses in
the hardware that get exposed only under certain access patterns.

The three points below summarize our main observations.

Observation 5: A large fraction of addresses with errors (30-
50%) experience a later repeat error on the same address. This
points to hard errors as a dominant error mode.

Observation 6: If an address experiences multiple errors (indi-
cating a hard error), then 90% of all repeat errors show up within
less than 2 weeks after the first error.

Observation 7: The use of a background scrubber does not
significantly shorten the amount of time until a repeat error is
detected. This indicates that a significant fraction of errors are
intermittent and only manifest themselves under certain access
patterns.
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Figure 3. Number of errors per repeat row/column
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Figure 4. Number of repeat rows/columns per bank
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Figure 5. The two graphs show the probability that a column
(left graph) and a row (right graph) will have an additional error
after having one error (middle bar of each group of bars) and the
probability that it will have an additional unique error (right bar of
each group of bars), i.e. an additional error at an address different
from the first.

3.4 Repeat errors within a row/column

Memory errors that are due to hardware problems don’t only man-
ifest themselves in the form of repeat errors on the same cell. Sec-
tion 3.2 pointed to repeating errors on different locations within
the same row or the same column as another common error mode
(recall Table 2). This subsection takes a closer look at the charac-
teristics of repeat rows and repeat columns.

We begin by looking at the probability that an error at an indi-
vidual address will develop into a row or column error. Understand-
ing those probabilities might help predict impending row/column
errors, allowing a system to take proactive measures. The three
groups of bars in Figure 5 (left) summarize our results for columns
and Figure 5 (right) shows the corresponding results for rows. The
gray center bar in each group of bars shows the probability that af-
ter an error occurs on an address another error will later develop at
a different address along the same column (Figure 5 left) and row
(Figure 5 right), respectively (turning the error from a single event
error into a repeat column/row). We observe that in all three cases
these probabilities are significant for all systems, with probabilities
in the 15% to 30% range.

To put the above repeat probabilities in perspective, we compare
them with the unconditional probability of a random bank/row/column
developing an error, shown in the black (left-most) bar (the bar is
barely visible due to its small magnitude). We see that the uncon-
ditional probabilities are orders of magnitude smaller.

We also study the probability that a repeat error on an address
(rather than a single event error) will turn into a row/column error,
i.e. the probability that after a repeat error on an address another

address along the same row/column experiences an error. Those
probabilities are shown in the white right-most bar in each group
of bars in Figure 5. In all systems, the presence of a repeat address
on a row/column further increases the probability of future errors
on this bar/column. In some cases this increase is quite large.
For example, for BlueGene/P after observing a repeat error on an
address the probability of observing an additional error on another
location on the same row/column increases to more than 40%.
Again, recall that BG/P is the system with the longest observation
period among our datasets, so the probabilities of repeat errors
developing into row/column errors effect might be equally strong
in the other systems and we might just not observe it due to the
shorter timespan of the data.

While we have provided information on the probabilities of
rows/columns developing multiple errors, another question is how
many errors repeat rows and columns typically experience. Fig-
ure 3 (left) and (right) provide the CDF for the number of unique
locations per row/column that experience errors. We see that most
rows/columns with multiple errors (40-60%) don’t develop more
errors beyond the initial 2 errors. However, the top 10-20% of
rows/columns develop errors on dozens of unique locations.

Section 3.2 showed that a significant number of error banks
exhibit row/column errors, but does not quantify the number of
repeat rows/columns. We find that the most common case are banks
with only a single repeat row/column. Depending on the system,
80-95% of all banks with repeat rows/columns have only a single
one (see Figure 4). Around 3-8% of banks develop more than 10
repeat columns and 2-5% develop more than 10 repeat rows.

Interestingly, we observe that a significant number of all banks
(3.4%, 17.4%, and 4.4%, for BG/L, BG/P and Google, respec-
tively) experience both repeat rows and repeat columns. To better
understand the relationship between the number of repeat rows and
columns on a bank, the scatter plot in Figure 6 shows for banks
with at least one repeat row or column the number of repeat rows
and columns. The marker at coordinates (x,y) reflects the fraction
of banks that have x repeat columns and y repeat rows. The size of
the marker in the scatter plot indicates the fraction of error banks
that fall into each of the categories and is chosen to be proportional
to the logarithm of the probabilities. For all three systems we ob-
serve that banks that have a larger number of repeat rows tend to
also have a larger number of repeat columns, and vice versa.

Below we summarize the main observations regarding repeat
rows and columns.

Observation 8: The probability of seeing an error on an address
on a particular row or column increases by orders of magnitude
once we have seen an error on another location on the same row or
column. 15-30% of errors turn into repeat rows/columns, and up to
40% of repeat errors turn into repeat rows/columns.
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Figure 6. The distribution of the number of repeat rows and repeat columns per bank
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Figure 7. A visualization of correlations between errors as a func-
tion of their distances in row/column space

Observation 9: Among error banks that have both repeat rows
and repeat columns, those banks that have a large number of repeat
rows often also have a large number of repeat columns, and vice
versa.

3.5 Correlations across rows/columns

While the previous subsection demonstrated that an error on a row
or column increases the probability of follow-up errors on the same
row/column, it does not tell us anything about correlations between
nearby rows/columns, e.g. do multiple errors on a row make it
more likely that also some nearby rows will have errors. In this
subsection we answer the more general question of how the error
probabilities between cells are correlated depending on the physical
distance in row and column space between those cells.

The heatmap in Figure 7 is an attempt to visualize those corre-
lations. The pixel at the center of the plot at coordinates (0,0) repre-
sents a cell with an error. The pixel at coordinates (x,y) represents
the probability that the cell that is x columns and y rows away from
the original error cell (i.e. at row/column coordinates (a+x, b+y)
where (a,b) are the row/column coordinates of the original error)
has an error as well. Lighter colors represent higher probabilities.

Not surprisingly, we observe that cells along the same row or
column as the original error cell have increased error probabili-
ties, as indicated by the bright vertical and horizontal line crossing
through (0,0). This agrees with our previous observations that er-
rors have a high probability of turning into repeat rows/columns.

But we also observe that the error probabilities are increased within
a wide band of neighboring rows and columns. For example, a
closer study of the error probabilities as a function of row/column
distance shows that rows and columns that are within a distance of
10 of the original error have an error probability of 2-5%. While
this probability is clearly smaller than that of developing errors on
the same row/column, it is significantly larger than that of an av-
erage row/column. We also find that the error probabilities show
a roughly exponential drop-off as a function of the row/column
distance, and that the probabilities are still significantly increased
within a range of up to 50-100 rows/columns, compared to an av-
erage row/column.

Our study of error probabilities as a function of distance from
another error also shows evidence for other patterns, beyond just
proximity. In particular, we observe for some systems that cells
whose column or row distance from the original error is a multi-
ple of certain powers of two have increased likelihood of errors.
Evidence for these regular patterns show up in the heatmap in the
form of a grid-like background pattern. By studying the CDF of the
pairwise distances between errors, we find for example that for all
systems (BG/P, BG/L, Google), cells with distances in row space
that are multiples of 4 have noticeably increased error probabili-
ties. Some systems also exhibit other patterns. For example, BG/P
also shows clearly increased probabilities at row distances that are
multiples of 128.

Observation 10: Errors do not only tend to cluster along the
same row or column. The probability of errors is also significantly
increased along all cells in the band of nearby rows and columns.

3.6 Error density in different areas of a chip

In this subsection we look at the correlation between errors and
their physical location on a chip, i.e. we are asking the question of
whether some areas of a chip are more likely than others to expe-
rience errors. As before, we use bank, row and column informa-
tion to distinguish different locations on a chip. We first divide the
row/column space of each bank into equal sized square areas of
128x128 rows/columns, i.e. chunks of size 16KB. We then deter-
mine for each of these square areas the probability of observing an
error in this area, i.e. the fraction of all unique banks in the system
(across all nodes) that have at least one error in this area. Figure 8
shows a graphical representation of the results. For this analysis, we
report results separately for BG/P and BG/L and for the four dif-
ferent hardware platforms that the Google data covers. Each graph
represents the row/column space for one of the systems, each di-
vided into the 128x128 sized squares as described above. Each
square is colored according to the observed probability of errors
in this area, where darker colors correspond to higher probabilities.
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Figure 8. The error probabilities for different areas in the row/column space of a bank.
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Figure 8 shows several interesting trends that are consistent
across systems. Focusing on the dark areas in each graph, which
present concentrations of errors, we first see that for all systems
consistently the top left area shows increased error density. This
area tends to span at least the first 512 columns and the first 512
rows. For several of the systems, a whole band along the very top
of the row space, across all columns, shows increased error rates.
For two of the six systems we observe similar concentrations of
errors at the end of the row/column space, i.e. in the bottom right
of the graphs at the highest numbered rows and columns. Secondly,
we find that for three of the systems the entire rows in the center of
the row space exhibit increased error probabilities.

Observation 11: Not all areas on a chip are equally likely to
be affected by errors. In particular, the top and the bottom of the
row/column space on a bank seem to be more likely to experience
errors. Additionally, the upper-left corner corresponds to memory
used by the OS, which may play a role in the increased error prob-
abilities.

3.7 Hard errors from the OS’s point of view

Throughout this section we have observed different ways in which
DRAM errors tend to cluster in space. We have seen that errors tend
to repeat on the same address, along the addresses of a row/column
and on certain areas of a chip. All these measures for spatial clus-
tering were very hardware oriented. In order to explore protection
mechanisms at the OS level, an important question is how the clus-
tering of errors translates to the operating system level. For exam-
ple, retiring pages with errors would work most efficiently and ef-
fectively if most of the errors tended to cluster on a small number
of pages. Unfortunately, error clusters at the hardware level do not
directly translate to clusters on pages. For example, errors along the
same row or column do not necessarily lie on the same page.

To shed some light on how errors are distributed across pages,
Figure 9 (left) shows the CDF for the number of errors per page
and the number of unique locations with errors per page for those
systems for which the information is available (BG/L and BG/P).
The number of unique locations with errors per page is low (on
average 1.4 and 1.8 for BG/L and BG/P, respectively) and around
90% of all pages have only a single one. However the total number
of errors observed per page is still quite large, most likely due to re-
peat addresses. More than 60% of the pages experience more than
one error, and the average number of errors per page is 31 and 12,
for BG/L and BG/P respectively. More importantly, the distribu-
tion of errors across pages is very skewed, maybe not surprisingly
given the frequency of repeat addresses that we observed earlier.
Figure 9 (right) shows the fraction of all errors that is contributed
by the fraction of the top x% of pages with the most errors. 1% of
all pages with errors account for 30-60% of all errors, depending
on the system, and the top 10% of all pages with errors account for
more than 90% of all errors for both BG/L and BG/P. This skew
in the number of errors page is good news for techniques relying
on page retirement, as it means that by retiring a small fraction of
pages a large number of errors can be prevented.

Observation 12: More than 60% of pages that experience an
error, experience at least on follow-up error. The distribution of
the number of errors per page is highly skewed, with some pages
accounting for a large fraction of errors.

Observation 13: An operating system that could identify and
retire those pages that are likely to develop a large number of er-
rors, would avoid a large fraction of errors (90%) by retiring only a
small fraction (10%) of pages with errors.

This observation motivates us to study the possible effectiveness
of different page retirement policies in Section 4.

3.8 Hard errors and multi-bit / chipkill errors

From a systems point of view the most worrisome type of errors
are multi-bit and chipkill errors, as these are the errors that in
the absence of sufficiently powerful hardware ECC turn into un-
correctable errors leading to a machine crash (or if undetected to
the use of corrupted data). Given the correlations we observed be-
tween errors in the previous subsections, an interesting question is
whether it is possible to predict an increased likelihood of future
multi-bit or chipkill errors based on the previous error behavior in
the system. In particular, one might speculate that prior repeat er-
rors, which likely indicate hard errors, will increase the probability
of later multi-bit or chipkill errors. Knowledge about the increased
likelihood of future multi-bit or chipkill errors could be used by
an adaptive system to take proactive measures to protect against
errors.
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Figure 10. The relationship between multi-bit errors and prior errors.
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Figure 11. The relationship between chipkill errors and prior errors.

To shed some light on this question, we plot in Figure 10 (left)
the probability that a node develops a multi-bit error after seeing
previous errors of different types for BG/L and BG/P. More pre-
cisely, each set of 5 bars in the graph shows the following 5 proba-
bilities: The first bar in each group of five bars represents the base-
line probability of a random node seeing a multi-bit error. (Note,
that this probability is so small that it is barely visible in the graph.)
The second bar represents the probability that a node that has seen a
prior error (of any type) will later experience a multi-bit error, The
other three bars show the probability that a node will experience
a later multi-bit error after experiencing a repeat address, a repeat
row or a repeat column, respectively. The figure clearly indicates
that for both systems the probability of a multi-bit error increases,
after seeing previous errors. It also shows that the probability in-
creases dramatically if a previous error was a repeat error.

Figure 10 (left) tells us only that the probability of multi-bit
errors increases after other errors have been observed. It does not
tell us whether most multi-bit errors were in fact preceded by
prior errors (which a system could use as an early warning sign
of impending multi-bit errors). In order to look at this side of the
story, Figure 10 (right) plots the fraction of multi-bit errors that
were preceded be the four types of errors we considered previously
(any error, repeat address, repeat row, repeat column). The graph
shows that multi-bit errors don’t happen without prior warning: 60-
80% of multi-bit errors were preceded by repeat addresses, 70-85%
of multi-bit errors were preceded by a repeat row and 40-50% of
multi-bit errors were preceded by a repeat column.

Figure 11 repeats the same analysis for chipkill errors, rather
than multi-bit errors (for BG/P only, as chipkill errors do not apply
to BG/L). While the overall probabilities are smaller (due to the
lower rate of chipkill errors), we observe the same trends. Prior er-
rors greatly increase the probability of a later chipkill error. Among
nodes with prior error the probability increases to 7%. If there is a
repeat row or repeat column present in the system, the likelihood
of a later chipkill error increases to around 20%.

Observation 14: The incidence of errors in the system, in
particular repeat errors, increases the likelihood of later multi-
bit and chipkill errors by more than an order of magnitude. A
large fraction (more than half) of multi-bit and chipkill errors are
preceded by early warning signs in the form of repeat errors.

4. Implications for system design
An underlying theme throughout the previous section has been
the study of hard errors as the dominating error mode among
DRAM errors in the field. Compared to soft errors, hard errors have
a greater potential to increase error rates, due to their repetitive
nature, and to increase the chance of future uncorrectable errors.

On the positive side, the repeating nature of hard errors makes
them also more predictable than soft errors creating a potential
for taking proactive measures against them. In this section, we
discuss various implications on resilient system that follow from
the insights derived from our measurement study.

4.1 Page retirement

While error protection at the hardware level in the form of ECC is
effective, it is not always the most desirable option. In addition to
the cost factor, another concern, in particular for the more powerful
ECC codes, is the increase in energy consumption and the possible
impact on performance.

As an alternative or extra level of protection in addition to the
use of ECC DIMMs, one could consider the retirement of pages
that have experienced previous (hard) errors. Page retirement can
be accomplished by having the OS isolate pages containing errors
and prevent them from being allocated in the future. While this
technique is not widely used in today’s data centers, some operating
systems, such as Solaris [3, 20], offer build-in support for page
retirement. For the standard Linux kernel there exists a patch that
allows one to retire bad pages [17]. However, there is no rigorous
study on the possible effectiveness of page retirement for realistic
error patterns and there is no published work comparing different
policies for deciding on when to retire a page.

The main trade-off in retiring pages is the amount of mem-
ory lost due to retired pages versus the number of future errors
prevented. An ideal retirement policy detects as early as possible
pages that are likely to develop a large number of errors in the
future and retires only those pages. We have observed several indi-
cators that lend themselves well for such predictions. Below are a
few simple policies that were directly derived from the findings in
Section 3.

repeat-on-address: Once an address experiences a repeat error
the corresponding page is retired.

1-error-on-page: Since a large fraction of addresses with errors
experiences a repeat, this policy pessimistically assumes after the
first occurrence of an error on a page that it will turn into a hard
error and retire the page.

2-errors-on-page: This policy retires a page once two errors
have been observed on this page (either on the same address or on
two different addresses on the page).

repeat-on-row: Since a row with 2 unique addresses has high
chances of developing additional errors, this policy retires all the
pages on a row after two errors have been observed.

repeat-on-column: Equivalent to repeat-on-row, but for columns.

We simulate all of the above policies on our trace data for
BG/L and BG/P and report the results in Table 4. For each policy



All nodes with errors Nodes w/ multi-bit/
chipkill error

System Policy Pages 95%ile Errors MBEs Chipkill Pages 95%ile
retired pages avoided avoided avoided retired pages

retired (%) (%) (%) retired
BG/L repeat on address 2.2 2 94.2 88.1 N/A 15.8 103.25

any 1 error on page 3.8 4 96.8 96.7 N/A 42.4 319
any 2 errors on page 2.4 3 94.9 94.8 N/A 24.6 123.8
repeat on row 33.9 32 95.6 97.3 N/A 245.5 1620
repeat on column 14,336 16,384 96.5 90.6 N/A 257,930 1,212,416

BG/P repeat on address 4.8 18 86.3 86.4 61.8 4.8 18
any 1 error on page 17.6 62.7 91.4 91.5 71.0 17.7 62.7
any 2 errors on page 6.9 25.6 88.1 88.1 64.7 6.9 25.6
repeat on row 158.0 576 92.6 92.7 77.0 158 576
repeat on column 49,989 266,650 91.9 92 67.3 49,972 266,650

Table 4. Effectiveness of page retirement

we include the average number of pages it retires per machine
with errors, the 95th percentile of the number of pages retired
per machine, the percentage of all errors in the system that would
have been prevented by this policy (because they fall on previously
retired pages) and the percentage of all multi-bit and chipkill errors
that could have been prevented.

We find that even the simple policies we are considering are
quite effective at reducing the number of errors a system would
observe: All policies are able to prevent nearly 90% of all errors.
The most aggressive policies (retiring a page immediately after just
one error, or retiring whole rows and columns) are able to avoid
up to 96% of all errors. The main difference between policies lies
in the cost involved in achieving this performance. The number of
pages retired per machine averages at only 2.2 - 4.8 for the repeat-
on-address policy, which is a small price to pay for a large gain in
the number of avoided errors. For policies that retire entire rows
or columns this number can grow into hundreds or thousands of
pages retired per machine. Retiring entire columns is particularly
expensive, due to the large number of pages that a column spans,
and is prohibitive, at least in the form of the very simple policies
that we have experimented with.

Another interesting finding from our simulation study is the
effectiveness of page retirements in avoiding multi-bit and chipkill
errors. All policies are able to avoid around two thirds of all chipkill
errors and nearly 90% of all multi-bit errors. While a system with
chipkill ECC would have been able to mask all of these errors, the
high reduction of errors under page retirement is still interesting
as it does not come with an increase in hardware cost or energy
consumption. The only price to pay is the reduced amount of
memory available, due to retired pages.

While the average number of pages retired per machine aver-
aged across all machines with errors is low when the right policy
is chosen, this number might be higher for machines that expe-
rience multi-bit or chipkill errors (or more precisely would have
experienced multi-bit or chipkill errors in the absence of page re-
tirement). We therefore also computed the statistics for the number
of pages retired per machine for only those machines in our dataset
that experienced multi-bit and chipkill errors and report the results
in the right half of the above table. We find that both the average
number of pages retired and the 95th percentile of the number of
pages retired is still very small, compared to the total amount of
memory in modern server systems. For example, under the repeat-
on-address policy 5-16 pages are retired for an average machine
with errors. A machines in the 95th percentile of number of retires
pages, still sacrifices only 18-104 pages, i.e. less than half a MByte
of total DRAM space. Even the for the more aggressive 1-error-on-

a-page policy the number of retired pages is still in the same order
of magnitude. More elaborate techniques based on statistical mod-
eling or machine learning might be able to further improve on the
cost-efficiency trade-off of page retirement policies.

4.2 Selective error protection

Several of our findings indicate that errors are not uniformly dis-
tributed in space. For example, we saw evidence that some parts
of a chip and of the physical address space experience higher error
rates than others. This implies that selective error protection mecha-
nisms might be an interesting avenue for future work. For example,
approaches along the lines of the recent work on virtualized and
flexible ECC [24] might provide effective solutions that exploit the
differences in error rates in different parts of the system.

4.3 Proactive error detection and monitoring

The two previous subsections provide examples for techniques that
operating systems can use to exploit the characteristics of hard
errors in order to reduce the negative impact of DRAM errors
on system availability. However, such techniques require that the
operating system has full knowledge of all errors happening at
the underlying hardware level, including error counts, as well as
more detailed information, such as the addresses that were affected.
ECC protection used in most server systems masks the presence of
errors and it is typically not trivial to obtain location information
on errors. Our findings about the nature of DRAM errors provide
strong encouragement to improve error tracking and reporting to
the operating systems.

The second factor limiting the amount of knowledge about the
underlying error process stems from the fact that DRAM errors
are latent, i.e. they will not be detected until the affected cell
is accessed. The chances that an error will eventually lead to an
uncorrectable error, causing system downtime, increases the longer
it is left latent. While hardware scrubbers provide an attempt to
proactively detect errors and hence reduce this time, we observed in
Section 3.3 that their effectiveness might be limited. We speculate
that this is likely due to the passive monitoring approach that they
are taking, rather than actively attempting to expose errors. Given
the large amount of idle time that typical servers in data centers
experience [2], it might be worthwhile to invest a small fraction
of this idle time to periodically run a memory test, similar in
functionality to memtest86, that actively probes the DRAM for
memory errors. Memory tests have a much higher potential for
detecting hard errors than a scrubber, since they can create access
patterns that stress the memory, and because they actively write to
memory cells, rather than just checking the validity of currently



written values. Such tests could either be done periodically on all
machines, or they could be used selectively in cases where there is
a suspected hard error, e.g. after observing an earlier error in the
system (that has not yet repeated).

4.4 Effectiveness of hardware mechanisms

While this was not the original focus of our study, our analysis
lets us also draw conclusions about the practical value of hardware
mechanisms, such as chipkill ECC, in reducing the rate of machine
crashes due to uncorrectable errors. In the presence of only soft
errors, the occurrence of error patterns requiring chipkill ECC
would be extremely unlikely. Our observation that a large number
of errors observed in the field is likely due to hard errors provides
firmer grounding for using these techniques in practice, despite
their added cost and energy overheads.

Only one earlier study [19] that is based on large-scale field
data comments on the effectiveness of chipkill, however they only
observe that in their systems under study hardware platforms with
chipkill show lower rates of uncorrectable errors than hardware
platforms without chipkill. They are not able to quantify how much
of this difference in error rates is due to the use of chipkill versus
other hardware differences between the platforms.

Our fine-grained data allowed us to quantify exactly the number
of errors that required chipkill to be corrected and that would have
led to a machine crash in the absence of chipkill. We find that
a significant fraction of machines experienced chipkill errors, i.e.
errors whose correction was only possible with the use of chipkill
techniques. In fact, among the errors in our study, a large fraction
(17%) of them required the use of chipkill for correction providing
some tangible benefits of the use of chipkill. We can therefore
conclude that for systems with stringent availability requirements
the reduction in machine crashes due to uncorrectable errors might
make chipkill well worth the price.

4.5 System evaluation

Any evaluation of the impact of DRAM errors on system reliability
or the effectiveness of mechanisms protecting against them relies
on realistic assumptions about the characteristics of the underlying
error process. In the absence of field data (or realistic models built
based on field data), both analytical and experimental work typi-
cally rely on very simplistic assumptions about errors. For example,
analytical models often assume that errors follow a Markov process
and experimental work often relies on injecting errors at uniformly
randomly generated locations. Given the high occurrence rate of
hard errors, these simple approaches are likely to give misleading
results (or results that represent only the less relevant scenario of a
system experiencing only soft errors), as they do not capture any of
the correlations and patterns present in hard errors.

While we are hoping that the findings we report here will help
researchers and practitioners to base their work on more realistic
assumptions on DRAM errors, we believe that more work in this
direction is necessary. Towards this end, we are currently working
on developing statistical models capturing the various properties of
DRAM error process that can be used to generate realistic patterns
in simulation or for error injection. More importantly, it seems that
the current lack of publicly available field data that researchers
can use to drive their experiments is a major roadblock. Li et al.
have graciously made the data collected for their study on DRAM
errors [11] publicly available. While we were unfortunately not
able to obtain permission to share the Google data used in this
study, we are currently preparing a public database of all error
patterns that we have extracted from the data for the Blue Gene
systems. This database and the raw logs for the Blue Gene systems
will be made publicly available as part of the Usenix Failure Data
Repository [23].

5. Conclusions
While a large body of work has been dedicated to studying the char-
acteristics of DRAM errors and how to best protect against them,
the large majority of this work has focused on soft errors in DRAM.
Our work presents the first study based on data from a large number
of production systems that shows that a large fraction of errors ob-
served in the field can be traced back to hard errors. For all systems
we studied, more than a third of all memory banks that experienced
errors show signs of hard errors, most commonly in the form of
repeating errors on the same physical address within less than 2
weeks. Repeating errors on the same row/column are also common
error modes. For some systems, as many as 95% of all observed
errors can be attributed to hard errors. We also provide a detailed
study of the statistical characteristics of hard errors. Some of these
provide direct insights useful for protecting against errors. For ex-
ample, we observe that not all areas in memory are equally likely
to be affected by errors; specific regions such as low rows/columns
have higher error probabilities. We speculate that this might be due
to different usage patterns in different memory areas, as we observe
for example that those areas used by the OS tend to see larger error
counts. Furthermore, from the perspective of the OS, a large frac-
tion of the errors observed in a system is usually concentrated on a
small set of pages providing some motivation for proactively retir-
ing pages after they experience errors. We also observed that errors
that have the highest potential to be uncorrectable, such as multi-bit
errors and errors that require chipkill for correction, are usually pre-
ceded by more benign early warning signs, such as repeating errors
on individual addresses, rows or columns. Finally, we observe that
a significant number of errors is complex enough to require more
than simple SEC-DED error correction to be corrected. A signifi-
cant number of nodes with correctable errors in our study activated
more advanced ECC mechanisms (20%-45% activated redundant
bit-steering, and 15% activated Chipkill) and a large fraction (17%)
of all errors required the use of chipkill for error correction.

As a second contribution, we identify various implications on
resilient system design that follow from the insights derived from
our measurement study. One of our findings is that simple page re-
tirement policies can potentially mask a large number of errors with
only a small sacrifice in the amount of available DRAM. For exam-
ple, a simple policy that retires a page after the first repeat error on
an address on this page can mask up to 95% of all errors and up
to 60% of errors that would require chipkill for correction, while
giving up only a few dozen pages of main memory. This is an in-
teresting finding, since based on discussions with administrators of
large datacenters, the use of page retirement is not widely spread in
practice, although it has been implemented in some systems in the
past [3]. On the other hand, we find that a commonly used tech-
nique for proactively detecting memory errors, the use of back-
ground memory scrubbers, might not be as effective as one might
think. We hypothesize that this is because a large fraction of errors
are intermittent, i.e. they manifest only under certain access pat-
terns. This observation, together with the observed high frequency
of hard (and hence repeatable) errors, might make it worthwhile
to use the idle time that most servers in datacenters experience to
periodically run a memory test to actively probe for errors, in par-
ticular after observing prior errors on a node. Finally, the fact that
different areas of memory experience different error rates and that
usage likely plays a role in error frequencies suggests an interesting
avenue for future work might be selective error protection mecha-
nisms, where different protection mechanisms are used for different
areas of memory.



Acknowledgments
We would like to thank Thomas Gooding, Mark Megerian, and
Rob Wisniewski from IBM for helping us acquire very detailed
information about the BlueGene systems. We would also like to
thank Pete Beckman, Rinku Gupta, Rob Ross and everybody else
at Argonne National Laboratory who was involved in collecting
and making available the BG/P data and helped us interpret the
data. The third author thanks Google for hosting her as a visiting
faculty during the summer of 2009, where part of this work started.
In particular, she would like to thank John Hawley, Xin Li, Eduardo
Pinheiro, Nick Sanders, and Wolf-Dietrich Weber for their help
in accessing the data and answering questions about the data and
systems at Google. We thank Adam Oliner, Jon Stearley and Sandia
National Laboratories for making the BG/L data available. Finally,
we would like to thank the members of SciNet, in partiular Chris
Loken and Ching-Hsing Yu, for providing us with the data from
their GPC system. This work has been funded by an NSERC
discovery grant.

References
[1] Soft errors in electronic memory – a white paper. Tezzaron Semi-

conductor. URL http://tezzaron.com/about/papes/soft_
errors_1_1_secture.pdf.

[2] L. A. Barroso and U. Hölzle. The case for energy-proportional com-
puting. IEEE Computer, 40(12), 2007.

[3] T. M. Chalfant. Solaris operating system availability features. In
SunBluePrints Online, 2004.

[4] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for
PC server main memory. IBM Microelectronics, 1997.

[5] T. J. Dell. System RAS implications of DRAM soft errors. IBM J.
Res. Dev., 52(3), 2008.

[6] P. E. Dodd. Device simulation of charge collection and single-event
upset. IEEE Nuclear Science, 43:561–575, 1996.

[7] A. Gara. Overview of the Blue Gene/L system architecture. IBM J.
Res. Dev., 49:195–212, March 2005.

[8] IBM journal of Research and Development staff. Overview of the
IBM Blue Gene/P project. IBM J. Res. Dev., 52(1/2):199–220, January
2008.

[9] H. Kobayashi, K. Shiraishi, H. Tsuchiya, H. Usuki, Y. Nagai, and
K. Takahisa. Evaluation of lsi soft errors induced by terrestrial cosmic
rays and alpha particles. Technical report, Sony corporation and RCNP
Osaka University, 2001.

[10] X. Li, K. Shen, M. Huang, and L. Chu. A memory soft error mea-
surement on production systems. In Proc. USENIX Annual Technical
Conference (ATC ’07), pages 21:1–21:6, 2007.

[11] X. Li, M. C. Huang, K. Shen, and L. Chu. A realistic evaluation of
memory hardware errors and software system susceptibility. In Proc.
USENIX Annual Technical Conference (ATC ’10), pages 75–88, 2010.

[12] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in
dynamic memories. IEEE Transactions on Electron Devices, 26(1),
1979.

[13] B. Murphy. Automating software failure reporting. ACM Queue, 2,
2004.

[14] E. Normand. Single event upset at ground level. IEEE Transaction on
Nuclear Sciences, 6(43):2742–2750, 1996.

[15] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld,
C. J. Montrose, H. W. Curtis, and J. L. Walsh. Field testing for cosmic
ray soft errors in semiconductor memories. IBM J. Res. Dev., 40(1),
1996.

[16] M. Ohmacht. Blue Gene/L compute chip: memory and Ethernet
subsystem. IBM J. Res. Dev., 49:255–264, March 2005.

[17] R. V. Rein. BadRAM: Linux kernel support for broken RAM modules.
URL http://rick.vanrein.org/linux/badram/.

[18] B. Schroeder and G. A. Gibson. A large scale study of failures in high-
performance-computing systems. In Proc. Int’l Conf. Dependable
Systems and Networks (DSN 2006), pages 249–258, 2006.

[19] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
a large-scale field study. In Proc. 11th Int’l Joint Conf. Measurement
and Modeling of Computer Systems (SIGMETRICS ’09), pages 193–
204, 2009.

[20] D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro. Assessment of
the effect of memory page retirement on system RAS against hardware
faults. In Proc. Int’l Conf. Dependable Systems and Networks (DSN
2006), pages 365–370, 2006.

[21] H. H. Tang. Semm-2: a new generation of single-event-effect model-
ing tools. IBM J. Res. Dev., 52:233–244, May 2008.

[22] H. H. K. Tang, C. E. Murray, G. Fiorenza, K. P. Rodbell, M. S. Gordon,
and D. F. Heidel. New simulation methodology for effects of radiation
in semiconductor chip structures. IBM J. Res. Dev., 52:245–253, May
2008.

[23] USENIX. The computer failure data repository (CFDR). URL http:
//cfdr.usenix.org/.

[24] D. H. Yoon and M. Erez. Virtualized and flexible ECC for main mem-
ory. In Proc. 15th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’10), pages 397–408,
2010.

[25] J. Ziegler. IBM experiments in soft fails in computer electronics.
Political Analysis, 40(1):3–18, 1996.

[26] J. F. Ziegler. Terrestrial cosmic rays. IBM J. Res. Dev., 40:19–39,
January 1996.

[27] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays on Computer
Memories. Science, 206:776–788, 1979.

[28] J. F. Ziegler, M. E. Nelson, J. D. Shell, R. J. Peterson, C. J. Gelderloos,
H. P. Muhlfeld, and C. J. Montrose. Cosmic ray soft error rates of 16-
Mb DRAM memory chips. IEEE J. Solid-state Circuits, 33:246–252,
1998.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


