
Ladder Capsule Network

Taewon Jeong 1 Youngmin Lee 1 Heeyoung Kim 1

Abstract
We propose a new architecture of the capsule net-
work called the ladder capsule network, which
has an alternative building block to the dynamic
routing algorithm in the capsule network (Sabour
et al., 2017). Motivated by the need for using
only important capsules during training for ro-
bust performance, we first introduce a new layer
called the pruning layer, which removes irrele-
vant capsules. Based on the selected capsules,
we construct higher-level capsule outputs. Subse-
quently, to capture the part-whole spatial relation-
ships, we introduce another new layer called the
ladder layer, the outputs of which are regressed
lower-level capsule outputs from higher-level cap-
sules. Unlike the capsule network adopting the
routing-by-agreement, the ladder capsule network
uses backpropagation from a loss function to re-
construct the lower-level capsule outputs from
higher-level capsules; thus, the ladder layer im-
plements the reverse directional inference of the
agreement/disagreement mechanism of the cap-
sule network. The experiments on MNIST demon-
strate that the ladder capsule network learns an
equivariant representation and improves the capa-
bility to extrapolate or generalize to pose varia-
tions.

1. Introduction
The convolutional neural network (CNN) has shown super-
human performances over the recent years for a wide range
of computer vision tasks such as image classification, seg-
mentation, detection, and tracking. In essence, a CNN
predicts whether an object (e.g., face) exists by detecting the
existence of features or object parts (e.g., eye, nose, mouth).
However, CNN only captures the existence of features, and

1Department of Industrial and Systems Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon,
Republic of Korea. Correspondence to: Heeyoung Kim <heey-
oungkim@kaist.ac.kr>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

fails to capture the intrinsic spatial relationship between a
part and a whole (e.g., the correct positions of the eye, nose,
and mouth to form a face). This problem in CNN is due
to the max-pooling that discards the information about the
pose (position, size, orientation) of features, although it con-
tributes to the extraction of translation-invariant features. As
an alternative to the CNN, the capsule network (CapsNet),
a new network architecture recently introduced by Sabour
et al. (2017), learns an equivariant representation that is
more robust to pose variations. CapsNet captures various
pose information of the same feature by replacing scalar-
output neurons in the CNN with vector-output capsules, and
captures part-whole spatial relationships by replacing the
max-pooling in the CNN with a dynamic routing algorithm.
CapsNets have shown to outperform CNNs on digit recogni-
tion, even when using a dataset of highly overlapping digits
(Sabour et al., 2017).

Although the dynamic routing algorithm has shown that
it is effective in capturing part-whole relationships, it is
inevitable that information on unnecessary lower-layer cap-
sules would be included when constructing higher-layer
capsules owing to the nature of the algorithm that expresses
the higher-layer capsules by the weighted sum of many
lower-layer capsules. Too many unnecessary capsules, simi-
lar to other over-parameterized deep learning networks, can
cause confusion in delivering the necessary information to
the upper layers and can ultimately lead to difficulties in
performing the desired tasks (Costa et al., 2002).

In this paper, we propose a new architecture of capsule net-
works referred to as the ladder capsule network (L-CapsNet)
based on an alternative building structure to the dynamic
routing algorithm. We first demonstrate via experiments
that not all lower-layer capsules are necessarily required to
construct higher-layer capsules; only part of the capsules
is sufficient to construct higher-layer capsules. To address
this finding in the L-CapsNet, we introduce a new layer
called the pruning layer, which is inspired by pruning meth-
ods that primarily aim at reducing the size of deep neural
networks. The pruning layer removes the capsules with
small activities and only uses the capsules with large ac-
tivities. Subsequently, we can construct the higher-level
capsules as a linear combination of the selected capsules
from the pruning layer, similar to the CapsNet. Unlike the
CapsNet that uses an iterative routing based on the agree-

Ladder Capsule Network

ment between the predictions from lower-level capsules for
constructing higher-level capsules and capturing the part-
whole relationships, our model uses backpropagation from
a loss function to reconstruct lower-level capsules from
higher-level capsules. This reconstruction is performed in
a new layer called the ladder layer. Similar to the ladder
networks that proved their effective performance in semi-
supervised learning (Rasmus et al., 2015), the ladder layer
can effectively learn representative features for reconstruc-
tion using the feedback from lower-level capsules. Through
these two building blocks—pruning and ladder layers, the
L-CapsNet is shown to improve the capability to extrapolate
or generalize to pose variations on the MNIST digits.

2. Background
2.1. Dynamic Routing of CapsNets

A capsule is a basic component of CapsNet, and it is defined
as a group of neurons. The activity vector of a capsule repre-
sents the probability of existence of an entity (an object or an
object part) by its length and the instantiation parameters of
the entity by its orientation. Let {ui ∈ Rd|i = 1, 2, ...Nl}
be the collection of the vector output of capsule i in layer
l. To construct the vector output vj ∈ RD of capsule j
in layer (l + 1), each ui is first multiplied by the predic-
tion matrix Wij ∈ Rd×D, producing the prediction vector
ûj|i = Wijui; subsequently, a weighted sum of all predic-
tion vectors, denoted by sj , is computed as the total input
of vj as follows: sj =

∑
i cij ûj|i, where {0 ≤ cij ≤ 1}

are the coupling coefficients, which are determined through
the dynamic routing algorithm summarized in Algorithm 1.
Finally, vj is calculated as vj =

‖sj‖2
1+‖sj‖2

sj
‖sj‖ by applying

the squashing function to sj , which ensures that the length
of the output vector represents the probability of existence
of an entity.

Algorithm 1 Dynamic routing algorithm (Sabour et al.,
2017)
Initialize logit parameters bij = 0 for all cap-
sule i in layer l and capsule j in layer (l +
1).

1: for 1:MaxIter do
2: cij =

exp(bij)∑
k exp(bik)

for all capsule i in layer l.

3: sj =
∑

i cij ûj|i and vj =
||sj ||2

1+||sj ||2
sj
||sj || for all cap-

sule j in layer (l + 1).
4: bij = bij + 〈ûj|i, vj〉 for all capsule i in layer l and

capsule j in layer (l + 1).
5: end for

In the dynamic routing algorithm, two points are to be em-
phasized. One is the linear relationship between the lower-
level and higher-level capsules. The prediction vector ûj|i

means the prediction of pose of entity j based on the pose of
entity i. For example, if we know where someone’s nose is,
we can predict where his/her face is. Furthermore, if his/her
nose is moved to some direction, the predicted position of
his/her face is also moved to the same direction. Hence, it
is reasonable to assume a linear relationship between the
lower-level and higher-level capsules. This assumption is
also used in the L-CapsNet to construct higher-level cap-
sules based on lower-level capsules.

The other is the core idea of the dynamic routing algorithm.
When we consider the pose of entity j, the core parts of
entity j in the layer below should predict the pose of entity j
consistently, but irrelevant parts are likely to predict the pose
differently. Using the example above again, the nose and
eyes are core parts of the face; therefore, the predictions of
the face pose based on the poses of the nose and eyes should
be similar: their predictions should agree. In contrast, the
predictions of the face pose from the poses of a pencil or
laptop (i.e., irrelevant parts) should disagree. Using this
idea, the dynamic routing algorithm is expected to capture
the part-whole relationship (lower-level and higher-level
capsule relationship). In the algorithm, cij measures the
importance of entity i in constructing entity j in the layer
above. Moreover, a high value of cij indicates that the pose
of entity j is similar with the predicted pose from entity i.

2.2. Pruning Techniques

Pruning is a method used to reduce network complexity by
removing certain unimportant weights, neurons, or channels
on the network (Luo et al., 2017). The primary purpose
of pruning is to reduce the size of the network such that it
can be used for devices with limited computing or storage
capacity. For example, Molchanov et al. (2016) developed a
greedy criteria-based pruning method that uses the Taylor
expansion that approximates the parameter-importance eval-
uation. Aghasi et al. (2017) and Dong et al. (2017) proposed
a layer-wise pruning method to reduce the complexity of
deep neural networks. Structured pruning having various
scale levels such as feature maps or kernels was used by
Anwar et al. (2017) for the real-time application of a deep
learning model. Pruning enabled the studies above to show
similar or even better performance using a much smaller
scale network than a larger network, as it could improve the
generalization ability of deep learning models (Thodberg,
1991; Reed, 1993; Augasta & Kathirvalavakumar, 2013).
The overfitting caused by a large number of parameters
could be prevented by removing unnecessary connections
in the networks.

For a similar objective, to improve the generalization of the
capsule network, we use pruning as a layer that removes
the information of unimportant capsules and retains only
capsules that contain important information. This approach

Ladder Capsule Network

is similar to the stochastic activation pruning proposed for
advanced defense (Dhillon et al., 2018), in that the pruning
is based on the activity levels of neurons in the forward
direction of the network. The operation of the pruning layer
is similar to the k-max pooling (Kalchbrenner et al., 2014),
which is a generalization of max pooling. However, one
major difference exists: our pruning layer does not lose
spatial information because the location information of the
capsules is transferred to the upper layer by the so-called
code vector. More detailed descriptions of the pruning layer
and the code vector are presented in Section 3.1.

2.3. Ladder Networks

Over the recent years, many studies have demonstrated that
supervised learning with auxiliary unsupervised represen-
tation learning can improve the network performance for
supervised tasks (Suddarth & Kergosien, 1990). A ladder
network, which adds an auxiliary task in the intermediate
representation, is one example that is widely used in super-
vised (or semi-supervised) learning and showed remarkable
performance on several tasks (Pezeshki et al., 2016; Doso-
vitskiy & Brox, 2016). Most ladder networks add auxiliary
decoding layers, each of which corresponds to an encod-
ing layer in the network for supervised learning, and each
decoding layer targets at reconstructing the output of the
corresponding encoding layer. Previous studies showed
that this type of networks not only improves representation
learning (Sønderby et al., 2016), but also achieves enhanced
performance for supervised tasks (Zhang et al., 2016). The
CapsNet (Sabour et al., 2017) also uses an additional recon-
struction loss to encourage the digit capsules to encode the
instantiation parameters of the input digit, which results in
the improved performance of digit recognition, compared
with the results from using only the margin loss.

Inspired by these, we adopt a ladder structure into the cap-
sule network by introducing a new layer called the ladder
layer, which forms an alternative building block to the dy-
namic routing algorithm. Unlike previous studies, our ladder
directly links to supervised tasks and facilitates in capturing
the part-whole relationship between capsules. This architec-
ture is similar to the “what-where” autoencoder (Zhao et al.,
2015), for which the “where” component is similar to the
code vector that is introduced in the L-CapsNet. We discuss
the ladder layer in more detail in Section 3.3.

3. Components of L-CapsNet
In this section, we describe the components of the L-
CapsNet. The L-CapsNet consists of three components:
pruning layer, weight construction and propagation layer,
and ladder layer.

3.1. Pruning Layer

The use of pruning in the capsule network was motivated
by a simple thought experiment. Let us use an example of a
classification task between a human face and a car. The core
entities of the face in the lower level could be the nose, eyes,
or mouth, whereas the car’s core entities could be wheels,
roof, or mirror. If an input image corresponds to a human
face, the routing algorithm is expected to predict the face
pose based on the low-level capsules of the nose, eyes, and
mouth. However, the predictions based on the wheel, roof,
and mirror are also executed in the dynamic routing, even
though their capsules are not activated. In fact, we only
need to consider the results of the agreement/disagreement
between the core entities of the face; predictions based on
the car’s capsules are not required.

This argument can be shown from our simple experiment
to implement the CapsNet with the same architecture as in
Sabour et al. (2017) on the MNIST dataset. After training
the network, we found that the activities of some capsules
were significantly higher than those of others. In addition,
these highly activated capsules (ui) tended to have relatively
large coupling coefficients (cij) for the desired parent vj .
This indicates that the construction of higher-level capsules
is primarily contributed by highly activated lower-level cap-
sules; hence, the capsules with low activities need not be
emphasized. Figure 1 illustrates the results with the digit
“0”. The graph shows the average length of ui and the aver-
age value of cij of the 100 most active capsules over 5444
samples (total number of the digit “0” in the training set) on
the left y-axis by the blue bar and the right-y axis by the red
bar, respectively.

0 20 40 60 80 100
0

2

4

6

8

0.1

0.2

0.3

0.4

0.5

0.6

Capsule index

 L
e

n
g

th
 a

v
e

ra
g

e

C
ij
a

v
e

ra
g

e

Figure 1: Length of ui (left y-axis, blue bar) and value of
cij (right y-axis, red bar) of the 100 most active lower-level
capsules to predict the “0” digit capsule.

Inspired by these results, we introduce the pruning layer,
which implements the selection of important lower-level
capsules to ensure that only the outputs of the important
capsules are sent to the layer above. We expect that the prun-
ing layer not only reduces computational burden, but also

Ladder Capsule Network

improves the network generalization. The pruning layer col-
lects the outputs of theK most active capsules. More specif-
ically, consider the outputs of the level l capsules, U l =
{ui ∈ Bd|i = 1, 2, ...nl}, where Bd is the unit ball in Rd,
and the corresponding activity level (or the probability of
existence of an entity), Al = {0 ≤ ai ≤ 1|i = 1, 2, ...nl}.
The orientation of ui represents the pose of an entity, and
the length of ui represents the activity level, or the prob-
ability of existence of the entity, i.e., ai = ‖ui‖. Before
propagating the outputs in level l to level (l + 1), we select
the K most active capsules. Let a(i) denote the ith highest
activity level in Al such that a(1) > a(2) > ... > a(n).
Further, let I(m) denote the ordering index for the mth low-
est activity level within {i|ai ≥ a(K)}. Subsequently, we
can collect the outputs of the K most active capsules as
{uI(m)

∈ Rd|m = 1, 2, ...K}. Based on this collection, we
can construct U l

K ∈ RK×d matrix, where the pth row is
equal to uI(p) . We also consider one-hot encoded vectors
cl ∈ (0, 1)nl from the index set {i|ai ≥ a(K)}, which we
call the code vector. The code vector restores the informa-
tion about which capsules are selected, and it contains the
information about which capsules in U l are used to form
U l
K . For level (l+1), we only propagate U l

K and cl, instead
of the whole capsule output U l; subsequently, we construct
higher-level capsules in level (l+ 1). Figure 2 illustrates an
example of the pruning layer with nl = 6 and K = 3: when
the three capsules u1, u4, and u6 are selected among ui,
i = 1, . . . , 6, the code vector becomes cl = (1, 0, 0, 1, 0, 1).

3.2. Weight Construction and Propagation Layer

We propagate each row of U l
K to higher-level capsules by

applying a linear operator, as discussed in Section 2.1. Re-
call that the CapsNet sets the prediction matrix Wij as a
linear operator between all lower-level and higher-level cap-
sules. That is, predictions ûj|i from all lower-level capsules
by multiplying Wij are propagated to the layer above to
construct higher-level capsule outputs. In contrast, the L-
CapsNet propagates only part of the capsules selected in the
pruning layer, U l

K , to the next level above; thus, the same
operation with Wij cannot be directly used. Instead of Wij ,
we use the code vector cl, which contains the information
about which capsules are highly active. We define a func-
tion of the code vector {fj|i(cl) ∈ Rd×D}, which is a linear
operator for propagating the ith row in U l

K to the capsule j
in layer (l + 1).

Moreover, we define another non-negative function of
the code vector pj(cl) = (pj|1(c

l), pj|2(c
l), . . . , pj|K(cl)),

which determines how much contribution comes from differ-
ent output vectors of the layer below. Let uli denote the ith
row of U l

K and ũj|i denote the prediction made by a capsule
i. We have ũj|i = ulifj|i ∈ RD. Subsequently, we compute
a partial input of capsule j in layer (l+1), denoted by sl+1

j ,

as follows:

sl+1
j =

K∑
i=1

pj|i(c
l)ũj|i ∈ RD. (1)

We used the word “partial,” because other components (that
will be discussed in Section 3.3) are also used to construct
the output of capsule j in layer l + 1, vl+1

j . More precisely,
sl+1
j only represents the pose of entity j in layer l+1. In the

layer above, we obtain the activity level and by multiplying

it by
sl+1
j

‖sj‖ , we compute the total output of vl+1
j . In the

L-CapsNet, the functions of the code vector, fj|i and pj ,
are architecture from a deep convolutional neural network;
we train all parameters of the network via backpropagation.
This is different from the dynamic routing algorithm: we
train the contribution rate of propagation, pj(cl), while the
dynamic routing determines cij using an iterative routing
algorithm.

3.3. Ladder Layer

The ladder layer is designed to capture the part-whole re-
lationship; it plays a similar role as the dynamic routing
algorithm, but is based on a different idea. Recall that in the
dynamic routing algorithm, predictions made from lower-
level capsules are investigated if they agree. The L-CapsNet
focuses on the reverse directional inference; lower-level cap-
sules are regressed from higher-level capsules. The primary
idea of the ladder layer is that if higher-level capsules are
well constructed, we can subsequently infer the pose of the
core entities in the layer below. Using the simple example
of Section 2.1, if we know the face pose such as the location
and orientation, subsequently we can well infer the pose
of the core entities of the face, nose, and eyes; however, it
is difficult to infer the pose of irrelevant entities such as a
pencil or laptop. Recall that U l

K is constructed by selecting
the K most active capsules, which correspond to the entities
with high probability of existence. If the elements of U l

K

are indeed the core entities of capsule j in layer l + 1, then
we can expect that regression from sl+1

j to U l
K performs

well.

As the lower-level and higher-level capsules are linked by
a linear relationship, the regression from sl+1

j to U l
K is

also assumed to be linear. We introduce a linear regression
operator fregj (cl) ∈ RK×d×D, which is another function
of the code vector used for the regression of U l

K from vl+1
j .

The regressed U l
K from vl+1

j is denoted by ûregj :

ûregj = fregj (cl)(sl+1
j)T ∈ RK×d. (2)

As ulj lies on the unit ball Bd, we apply the squashing
function to ûregj for down scaling, resulting in uregj in Eq.(3).
Although the squashing function is nonlinear, it preserves

Ladder Capsule Network

Figure 2: Illustration of the pruning and ladder layers

the input orientation; therefore, the regression of the pose is
still valid after applying the squashing function.

uregj =
‖ûregj ‖2

1 + ‖ûregj ‖2
ûregj

‖ûregj ‖
∈ BK×d. (3)

Subsequently, we define an L2-norm-based similarity mea-
sure, denoted by dj , between uregj and U l

K . The measure
dj allows us to numerically evaluate the part-whole relation-
ship between lower-level and higher-level capsules:

dj = exp(−γ‖uregj − U l
K‖2), (4)

where ‖uregj −U l
K‖2 = 1

K

∑K
i=1 ‖u

reg
i|j −u

l
i‖2, where uregi|j

denotes the ith row of uregj , and γ is a non-negative hyper-
parameter. A value of dj close to one indicates a good fit of
the regression model, resulting in lower-level entities appro-
priately posed for constructing higher-level entities. Hinton
et al. (2018) indicated the importance of sensitiveness to the
difference between good and very good agreement, which is
one of deficiencies of the dynamic routing algorithm. Hence,
we choose the hyperparameter γ = 5.12, which solves for
exp(−0.01γ) = 0.95 to ensure a good fit of the regression
model for a well-suited relationship between lower-level
and higher-level entities. We let dj represent the activity of
the capsule j in layer (l + 1). Using dj , the total output of

capsule j in layer l + 1 is given by vl+1
j = dj

sl+1
j

‖sl+1
j ‖

.

Recall that cl provides the information about which en-
tity’s pose is represented in each row of U l

K . Therefore,
cl informs fregj about the entities that should be regressed
from sl+1

j , which makes the ith row of ûregj reconstruct
uli. It is noteworthy that the ladder layer trains all weights
via backpropagation, unlike the CapsNet that uses an iter-
ative routing. This reduces the computational cost of the
L-CapsNet. A comparison of computation time between the
CapsNet and L-CapsNet is presented in Section 5.2.

4. Loss on L-CapsNet
Sabour et al. (2017) proposed the margin loss for classifica-
tion using the capsule network. We also applied this loss,

which is expressed on the L-CapsNet as follows:

Lmargin
k = Tk max(0,m+ − dk)2

+λ(1− Tk)max(0, dk −m−)2,

where Tk’s are outputs of the one-hot encoded labels; m+,
m−, and λ are non-negative hyperparameters; di is the
activity level of capsule i in the final layer; further, the
number of capsules in the final layer should be the same
as the number of labels. In Section 5, we trained the L-
CapsNet with the margin loss with m+ = 0.9, m− = 0.1,
and λ = 0.5. In addition, we found that adding the loss of
difference between the code vector and lower-level activity
level, ‖cl − Al‖2, would be helpful for training; thus we
trained the L-CapsNet with the loss

L = Lmargin + ε‖cl −Al‖2

with ε = 0.0001. We used the Adam optimizer with expo-
nentially decaying learning rate starting from 0.001.

5. L-CapsNet Architecture and Experiments
5.1. L-CapsNet Architecture

The general architecture of the L-CapsNet is depicted in
Figure.3. We start with a convolutional layer having a 9× 9
kernel and 256 channels with a stride of 1 and the ReLu ac-
tivation function. This layer propagates the activities of the
local feature detectors to the primary capsule layer, similar
to the work of Sabour et al. (2017), by applying 8 convo-
lution units with a 9 × 9 kernel, 32 channels, and a stride
of 2. Subsequently, for an I × I pixel image, the primary
capsules have a total of nI × nI × 32 8D capsule outputs,
where nI = ceil(I−162). Each primary capsule output sees
the output of all convolution units whose receptive fields
overlap with the location of the center of the capsule. We
first construct nl = nI × nI × 32 primary capsule inputs
ti ∈ R8; subsequently, we obtain the primary capsule out-
put ui = squash(ti), by applying the squash function, and
the corresponding activity ai =

‖ti‖2
1+‖ti‖2 . Subsequently, the

primary capsule outputs are propagated to the pruning layer,
which selects the K most active capsules, forming Upri

K ,

Ladder Capsule Network

Figure 3: L-CapsNet architecture

Table 1: Architecture of the function of the code vector

fj|i(c
pri) fregj (cpri) pj(c

pri)

1st layer fully connected, activation: Relu
output dim 8× 16× 3 8× 16× 3 K × 3
2nd layer fully connected, activation: Relu

output dim 8× 16× 2 8× 16× 2 K × 2
3rd layer fully connected, activation: Relu

output dim 8× 16 8× 16 K
4th layer fully connected, activation: linear (fj|i(cpri), f

reg
j (cpri)), sigmoid(pj(cpri))

output dim 8× 16×K 8× 16×K K

which we call the core primary capsules, and then the cor-
responding code vector cpri is obtained. Based on cpri, we
construct fj|i(cpri), pj(cpri), and fregj (cpri) using a com-
bination of fully connected layers and convolution layers.
More detailed structures are presented in Table 1. By ap-
plying those linear operators for propagation (i.e., fj|i(cpri)
and pj(cpri)) and for regression (i.e., fregj (cpri)), we ob-
tain the digit capsules and regressed primary capsules. As
mentioned in Section 4, the number of digit capsules equals
the number of labels, and we set the dimension of the digit
capsules to 16. By computing the similarity between the
core primary capsules and the regressed primary capsules
using Eq.(4), the activity of each digit capsule is obtained,
which is subsequently used to compute the loss in Section
4.

5.2. Experiments on MNIST

To evaluate the performance of the L-CapsNet, we per-
formed two experiments. For the first experiment, we
trained 60,000 images and tested 10,000 images of the
28 × 28 MNIST. For the second experiment, we trained

60,000 images of the 40× 40 expanded MNIST, and tested
10,000 images of the affNIST. We assumed the same ex-
perimental environment (i.e., 9× 9 kernel on ReLuConv1
and PrimaryCaps) as in Sabour et al. (2017) on both experi-
ments. This setting produces 1152 capsules for the MNIST
experiment and 4608 capsules for the expanded MNIST and
affNIST experiment. Furthermore, to consider various ratios
of the number of selected capsules to the total capsules, we
assumed more experimental settings with the kernel size
15× 15. In the MNIST experiment, we change the kernel
size on PrimaryCaps from 9× 9 to 15× 15, and in the ex-
panded MNIST and affNIST experiment, we set the kernel
size 15× 15 on both layers. These settings produce 288 and
1152 primary capsules on MNIST and affNIST, respectively.
We performed the experiments with several values of K for
pruning. Table 2 shows the test error for each case, together
with the results of the CNN and CapsNet reported in Sabour
et al. (2017).

Although the L-CapsNet resulted in higher test errors on
MNIST classification, it dramatically outperformed on the
affNIST test set. Recall that the expanded MNIST is con-

Ladder Capsule Network

Table 2: Test error results of L-CapsNets

Method K MNIST(%) affNIST(%)
CNN (Sabour et al., 2017) - 0.39 34.0
CapsNet (Sabour et al., 2017) - 0.25 21.0
L-CapsNet (9× 9 kernel) 50 0.74 13.0
L-CapsNet (9× 9 kernel) 70 0.50 12.5
L-CapsNet (9× 9 kernel) 100 0.80 13.2
L-CapsNet (15× 15 kernel) 50 0.69 12.5
L-CapsNet (15× 15 kernel) 70 0.73 12.2
L-CapsNet (15× 15 kernel) 100 0.79 13.1

(a) K=50 (b) K=70 (c) K=100

Figure 4: Activity levels of the primary capsules on L-CapsNet

structed by translating MNIST, whereas affNIST is con-
structed by MNIST’s affine transformation, i.e., affNIST
incorporates more variations (e.g., rotation). The outper-
forming results on affNIST show that the L-CapsNet learns
an equivariant representation that is more robust to pose
variations on MNIST digits than the CapsNet.

Moreover, we compare the computation time of the L-
CapsNet and CapsNet. We varied the value of K in the
L-CapsNet as 50, 70, and 100, while varying the number
of routing iterations (denoted by r) in the dynamic routing
algorithm in the CapsNet as 3, 4, and 5. Table 3 presents
the average computation time of 1 training iteration over
100 batch samples on MNIST, with standard errors in paren-
theses. The results show that the L-CapsNet significantly
reduces the computation time. This may be because only
the selected lower-level capsules from the pruning layer
are sent to the layer above, and all weights are trained via
backpropagation through the ladder layer in the L-CapsNet,
while all lower-level capsules are used in the dynamic rout-
ing algorithm with several routing iterations in the CapsNet.

5.3. Analysis of the Effects of K

In the L-CapsNet, only K most active capsules are used for
classification tasks. Recall the example in Section 3.1 again,

Table 3: The average computation time of 1 training iteration
over 100 batch samples on MNIST. r: the number of routing
iterations. Standard errors in parentheses.

Method Computation time, in seconds
L-CapsNet (K = 50) 0.2034 (0.010)
L-CapsNet (K = 70) 0.2159 (0.008)
L-CapsNet (K = 100) 0.2953 (0.001)
CapsNet (r = 3) 1.732 (0.026)
CapsNet (r = 4) 2.123 (0.041)
CapsNet (r = 5) 2.656 (0.085)

when the input is a human face, we hope that the core entities
(e.g., nose, eyes, and mouth) are captured inK most activate
capsules, while capsules for representing irrelevant entities
(e.g., wheels and mirrors) are deactivated. In other words,
we hope that the L-CapNet clearly discriminates capsules
for core entities versus irrelevant entities. We found from
our experiments that this could be achieved by appropriately
selecting the number of K.

We performed an analysis to see the effects of the hyper-
parameter K in the L-CapsNet. Figure 4 illustrates the
average activity levels of 300 most active primary capsules
on the L-CapsNet over 5444 samples of digit “0” in the

Ladder Capsule Network

MNIST training set for K values of 50, 70, and 100. We
can see that for low K values (i.e., K=50, 70), the activity
levels are extremely high or low. That is, the active and
inactive capsules are distinguished clearly. This supports
our adoption of K motivated by the need for using only im-
portant capsules for robust performance. When K = 100,
the distinction between active and inactive capsules is not as
clear as the cases of K=50 and 70, maybe because it is not
very effective in capturing disentangled entities and their
poses using more capsules than actually needed. In contrast,
when K is low, each capsule may capture a disentangled
entity and its pose, which results in clear discrimination
between active and inactive capsules, which represent core
and irrelevant entities, respectively. As Lenssen et al. (2018)
pointed out the importance of disentangled representation
for equivariance, for our experiments, low K values would
be preferred.

6. Conclusion
In this paper, we proposed a new building block of the
capsule network that removes irrelevant capsules without
losing information about the spatial relationship between
lower-level and higher-level entities, based on our fining
that only part of the entities (i.e., core entities) significantly
contributes to capturing the part-whole spatial relationships.
While the CapsNet captures the part-whole relationships
by using an iterative routing-by-agreement, the L-CapsNet
achieves the same goal by using both the pruning and ladder
layers. More specifically, the pruning layer selects relevant
lower-level capsules based on the activity level, using the
fact that the activity level represents the probability of ex-
istence of an entity. In fact, we showed that highly active
lower-level capsules tend to have large coupling coefficients
for the desired parent (Figure 1) and that the L-CapsNet
clearly discriminates relevant and irrelevant capsules using
the activity level (Figure 4). Subsequently, the higher-level
capsules can be constructed as a linear combination of the
selected lower-level capsules. Unlike the CapsNet that takes
the inner product between higher-level capsule and the pre-
diction from the layer below as the “agreement” rule, the
L-CapsNet takes how well lower-level capsule outputs are
regressed from higher-level capsules as the agreement rule.

We select the K most active capsules through the pruning
layer, and subsequently propagate the activities of only the
selected capsules into the layer above, from which we can
expect the robust capability on the network. However, the
method to determine the appropriate K value according to
the characteristics of data or tasks should be further studied.
In our MNIST & affine MNIST experiments, the value ofK
selected at a rate of approximately 6% of the total capsules
produced the best results. Another important component
of the L-CapsNet is the ladder layer. It is motivated by the

reverse directional inference of the agreement/disagreement
rule for the CapsNet. Based on our outperforming results
on the affNIST data, we may conclude that the ladder layer
provides the extrapolation capability or robustness on the
L-CapsNet.

The reverse directional inference was similarly considered
in Hinton et al. (2018). In their work, Hinton et al. (2018)
approximate the mispredictions by higher-level capsules
of lower-level capsule outputs by using the negative log
probability density, avoiding the expensive matrix inversion
of the prediction matrix Wij . The L-CapsNet learns the
inverse linear transformation freg with a neural network
rather than exactly inverting Wij or fj|i.

For more extensive research, we plan to develop an
algorithm for a bi-directional agreement/disagreement
mechanism, based on the idea that we can predict not only
higher-level capsule outputs from lower-level capsules, but
can also regress lower-level capsule outputs from higher-
level capsules. We expect this exchangeability to enable
more robust capsule outputs to be extracted and improve
the task performance. The code for L-CapsNet is available at
https://github.com/taewonjeong/L-CapsNet.

Acknowledgements
The authors thank the reviewers for reviewing the pa-
per and providing valuable comments. This work was
supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT)
(No.2018R1C1B6004511).

References
Aghasi, A., Abdi, A., Nguyen, N., and Romberg, J. Net-

trim: Convex pruning of deep neural networks with per-
formance guarantee. In Advances in Neural Information
Processing Systems, pp. 3177–3186, 2017.

Anwar, S., Hwang, K., and Sung, W. Structured pruning
of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
13(3):32, 2017.

Augasta, M. G. and Kathirvalavakumar, T. Pruning algo-
rithms of neural networksa comparative study. Central
European Journal of Computer Science, 3(3):105–115,
2013.

Costa, M. A., Braga, A. P., and de Menezes, B. R. Improving
neural networks generalization with new constructive and
pruning methods. Journal of Intelligent & Fuzzy Systems,
13(2-4):75–83, 2002.

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bern-
stein, J., Kossaifi, J., Khanna, A., and Anandkumar, A.

Ladder Capsule Network

Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018.

Dong, X., Chen, S., and Pan, S. Learning to prune deep
neural networks via layer-wise optimal brain surgeon. In
Advances in Neural Information Processing Systems, pp.
4860–4874, 2017.

Dosovitskiy, A. and Brox, T. Inverting visual representations
with convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4829–4837, 2016.

Hinton, G. E., Frosst, N., and Sabour, S. Matrix capsules
with EM routing. In International Conference on Learn-
ing Representations, 2018.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A con-
volutional neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), volume 1, pp. 655–665, 2014.

Lenssen, J. E., Fey, M., and Libuschewski, P.
Group equivariant capsule networks. arXiv preprint
arXiv:1806.05086, 2018.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5058–5066, 2017.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz,
J. Pruning convolutional neural networks for resource
efficient inference. Proceedings of the International Con-
ference on Learning Representations, 2016.

Pezeshki, M., Fan, L., Brakel, P., Courville, A., and Bengio,
Y. Deconstructing the ladder network architecture. In
International Conference on Machine Learning, pp. 2368–
2376, 2016.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and
Raiko, T. Semi-supervised learning with ladder networks.
In Advances in Neural Information Processing Systems,
pp. 3546–3554, 2015.

Reed, R. Pruning algorithms-a survey. IEEE transactions
on Neural Networks, 4(5):740–747, 1993.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. In Advances in Neural Information
Processing Systems, pp. 3859–3869, 2017.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K.,
and Winther, O. Ladder variational autoencoders. In
Advances in neural information processing systems, pp.
3738–3746, 2016.

Suddarth, S. C. and Kergosien, Y. Rule-injection hints as a
means of improving network performance and learning
time. In Neural Networks, pp. 120–129. Springer, 1990.

Thodberg, H. H. Improving generalization of neural net-
works through pruning. International Journal of Neural
Systems, 1(04):317–326, 1991.

Zhang, Y., Lee, K., and Lee, H. Augmenting supervised
neural networks with unsupervised objectives for large-
scale image classification. In International Conference
on Machine Learning, pp. 612–621, 2016.

Zhao, H., Wang, Z., Wu, H., Xiao, Q., Yao, W., Wang, E.,
Liu, Y., and Wei, M. Stat3 genetic variant, alone and
in combination with stat5b polymorphism, contributes
to breast cancer risk and clinical outcomes. Medical
Oncology, 32(1):375, 2015.

