
Deep Visual Analogy-Making

Scott Reed Yi Zhang Yuting Zhang Honglak Lee
University of Michigan, Ann Arbor, MI 48109, USA

{reedscot,yeezhang,yutingzh,honglak}@umich.edu

Abstract
In addition to identifying the content within a single image, relating images and
generating related images are critical tasks for image understanding. Recently,
deep convolutional networks have yielded breakthroughs in predicting image la-
bels, annotations and captions, but have only just begun to be used for generat-
ing high-quality images. In this paper we develop a novel deep network trained
end-to-end to perform visual analogy making, which is the task of transforming a
query image according to an example pair of related images. Solving this problem
requires both accurately recognizing a visual relationship and generating a trans-
formed query image accordingly. Inspired by recent advances in language mod-
eling, we propose to solve visual analogies by learning to map images to a neural
embedding in which analogical reasoning is simple, such as by vector subtraction
and addition. In experiments, our model effectively models visual analogies on
several datasets: 2D shapes, animated video game sprites, and 3D car models.

1 Introduction
Humans are good at considering “what-if?” questions about objects in their environment. What if
this chair were rotated 30 degrees clockwise? What if I dyed my hair blue? We can easily imagine
roughly how objects would look according to various hypothetical questions. However, current
generative models of images struggle to perform this kind of task without encoding significant prior
knowledge about the environment and restricting the allowed transformations.

Infer Relationship Transform query

Figure 1: Visual analogy making concept. We learn
an encoder function f mapping images into a space
in which analogies can be performed, and a decoder
g mapping back to the image space.

Often, these visual hypothetical questions
can be effectively answered by analogi-
cal reasoning.1 Having observed many
similar objects rotating, one could learn
to mentally rotate new objects. Having
observed objects with different colors (or
textures), one could learn to mentally re-
color (or re-texture) new objects.

Solving the analogy problem requires the
ability to identify relationships among im-
ages and transform query images accord-
ingly. In this paper, we propose to solve the problem by directly training on visual analogy comple-
tion; that is, to generate the transformed image output. Note that we do not make any claim about
how humans solve the problem, but we show that in many cases thinking by analogy is enough to
solve it, without exhaustively encoding first principles into a complex model.

We denote a valid analogy as a 4-tuple A : B :: C : D, often spoken as “A is to B as C is to D”. Given
such an analogy, there are several questions one might ask:

• A ? B :: C ? D - What is the common relationship?

• A : B ? C : D - Are A and B related in the same way that C and D are related?

• A : B :: C : ? - What is the result of applying the transformation A : B to C?

1See [2] for a deeper philosophical discussion of analogical reasoning.

1

The first two questions can be viewed as discriminative tasks, and could be formulated as classifica-
tion problems. The third question requires generating an appropriate image to make a valid analogy.
Since a model with this capability would be of practical interest, we focus on this question.

Our proposed approach is to learn a deep encoder function f : RD → RK that maps images to an
embedding space suitable for reasoning about analogies, and a deep decoder function g : RK → RD

that maps from the embedding back to the image space. (See Figure 1.) Our encoder function is
inspired by word2vec [21], GloVe [22] and other embedding methods that map inputs to a space
supporting analogies by vector addition. In those models, analogies could be performed via

d = arg maxw∈V cos(f(w), f(b)− f(a) + f(c))

where V is the vocabulary and (a, b, c, d) form an analogy tuple such that a : b :: c : d. Other
variations, such as a multiplicative version [18], on this inference have been proposed. The vector
f(b) − f(a) represents the transformation, which is applied to a query c by vector addition in the
embedding space. In the case of images, we can modify this naturally by replacing the cosine
similarity and argmax over the vocabulary with application of a decoder function mapping from
the embedding back to the image space.

Clearly, this simple vector addition will not accurately model transformations for low-level repre-
sentations such as raw pixels, and so in this work we seek to learn a high-level representation. In
our experiments, we parametrize the encoder f and decoder g as deep convolutional neural net-
works (CNN), but in principle other methods could be used to model f and g. In addition to vector
addition, we also propose more powerful methods of applying the inferred transformations to new
images, such as higher-order multiplicative interactions and multi-layer additive interactions.

We first demonstrate visual analogy making on a 2D shapes benchmark, with variation in shape,
color, rotation, scaling and position, and evaluate the performance on analogy completion. Second,
we generate a dataset of animated 2D video game character sprites using graphics assets from the
Liberated Pixel Cup [1]. We demonstrate the capability of our model to transfer animations onto
novel characters from a single frame, and to perform analogies that traverse the manifold induced
by an animation. Third, we apply our model to the task of analogy making on 3D car models, and
show that our model can perform 3D pose transfer and rotation by analogy.

2 Related Work
Hertzmann et al. [12] developed a method for applying new textures to images by analogy. This
problem is of practical interest, e.g., for stylizing animations [3]. Our model can also synthesize
new images by analogy to examples, but we study global transformations rather than only changing
the texture of the image.

Dollár et al. [9] developed Locally-Smooth Manifold Learning to traverse image manifolds. We
share a similar motivation when analogical reasoning requires walking along a manifold (e.g. pose
analogies), but our model leverages a deep encoder and decoder trainable by backprop.

Memisevic and Hinton [19] proposed the Factored Gated Boltzmann Machine for learning to repre-
sent transformations between pairs of images. This and related models [25, 8, 20] use 3-way tensors
or their factorization to infer translations, rotations and other transformations from a pair of images,
and apply the same transformation to a new image. In this work, we share a similar goal, but we
directly train a deep predictive model for the analogy task without requiring 3-way multiplicative
connections, with the intent to scale to bigger images and learn more subtle relationships involving
articulated pose, multiple attributes and out-of-plane rotation.

Our work is related to several previous works on disentangling factors of variation, for which a
common application is analogy-making. As an early example, bilinear models [27] were proposed
to separate style and content factors of variation in face images and speech signals. Tang et al. [26]
developed the tensor analyzer which uses a factor loading tensor to model the interaction among
latent factor groups, and was applied to face modeling. Several variants of higher-order Boltzmann
machine were developed to tackle the disentangling problem, featuring multiple groups of hidden
units, with each group corresponding to a single factor [23, 7]. Disentangling was also considered
in the discriminative case in the Contractive Discriminative Analysis model [24]. Our work differs
from these in that we train a deep end-to-end network for generating images by analogy.

Recently several methods were proposed to generate high-quality images using deep networks.
Dosovitskiy et al. [10] used a CNN to generate chair images with controllable variation in appear-

2

ance, shape and 3D pose. Contemporary to our work, Kulkarni et al. [17] proposed the Deep Convo-
lutional Inverse Graphics Network, which is a form of variational autoencoder (VAE) [15] in which
the encoder disentangles factors of variation. Other works have considered a semi-supervised exten-
sion of the VAE [16] incorporating class labels associated to a subset of the training images, which
can control the label units to perform some visual analogies. Cohen and Welling [6] developed a
generative model of commutative Lie groups (e.g. image rotation, translation) that produced invari-
ant and disentangled representations. In [5], this work is extended to model the non-commutative
3D rotation group SO(3). Zhu et al. [30] developed the multi-view perceptron for modeling face
identity and viewpoint, and generated high quality faces subject to view changes. Cheung et al.
[4] also use a convolutional encoder-decoder model, and develop a regularizer to disentangle latent
factors of variation from a discriminative target.

Analogies have been well-studied in the NLP community; Turney [28] used analogies from SAT
tests to evaluate the performance of text analogy detection methods. In the visual domain, Hwang
et al. [13] developed an analogy-preserving visual-semantic embedding model that could both detect
analogies and as a regularizer improve visual recognition performance. Our work is related to these,
but we focus mainly on generating images to complete analogies rather than detecting analogies.

3 Method
Suppose that A is the set of valid analogy tuples in the training set. For example, (a, b, c, d) ∈ A
implies the statement “a is to b as c is to d”. Let the input image space for images a, b, c, d be RD,
and the embedding space be RK (typically K < D). Denote the encoder as f : RD → RK and the
decoder as g : RK → RD. Figure 2 illustrates our architectures for visual analogy making.

3.1 Making analogies by vector addition
Neural word representations (e.g., [21, 22]) have been shown to be capable of analogy-making by
addition and subtraction of word embeddings. Analogy making capability appears to be an emergent
property of these embeddings, but for images we propose to directly train on the objective of analogy
completion. Concretely, we propose the following objective for vector-addition-based analogies:

Ladd =
∑

a,b,c,d∈A

||d− g(f(b)− f(a) + f(c))||22 (1)

This objective has the advantage of being very simple to implement and train. In addition, with a
modest number of labeled relations, a large number of training analogies can be mined.

3.2 Making analogy transformations dependent on the query context
In some cases, a purely additive model of applying transformations may not be ideal. For example,
in the case of rotation, the manifold of a rotated object is circular, and after enough rotation has
been applied, one returns to the original point. In the vector-addition model, we can add the same
rotation vector f(b) − f(a) multiple times to a query f(c), but we will never return to the original
point (except when f(b) = f(a)). The decoder g could (in principle) solve this problem by learning
to perform a “modulus” operation, but this would make the training significantly more difficult.
Instead, we propose to parametrize the transformation increment to f(c) as a function of both f(b)−
f(a) and f(c) itself. In this way, analogies can be applied in a context-dependent way.

We present two variants of our training objective to solve this problem. The first, which we will call
Lmul, uses multiplicative interactions between f(b)− f(a) and f(c) to generate the increment. The
second, which we call Ldeep, uses multiple fully connected layers to form a multi-layer perceptron
(MLP) without using multiplicative interactions:

Lmul =
∑

a,b,c,d∈A

||d− g(f(c) +W×1[f(b)− f(a)]×2f(c))||22 (2)

Ldeep =
∑

a,b,c,d∈A

||d− g(f(c) + h([f(b)− f(a); f(c)]))||22. (3)

For Lmul, W ∈ RK×K×K is a 3-way tensor.2 In practice, to reduce the number of weights we
used a factorized tensor parametrized as Wijl =

∑
f W

(1)
if W

(2)
jf W

(3)
lf . Multiplicative interactions

2For a tensor W ∈ RK×K×K and vectors v, w ∈ RK , we define the tensor multiplication W ×1 v×2 w ∈
RK as (W ×1 v ×2 w)l =

∑K
i=1

∑K
j=1 Wijlviwj , ∀l ∈ {1, ...,K}.

3

Increment
function T

Decoder
network g

Encoder network f

f(b)

f(a)

f(c)

f(b)

f(a)

f(c)

f(b)

f(a)

f(c)

add
mul

deep

add mul deep

a

b

c
d

Figure 2: Illustration of the network structure for analogy making. The top portion shows the
encoder, transformation module, and decoder. The bottom portion illustrates the transformations
used for Ladd, Lmul and Ldeep. The

⊗
icon in Lmul indicates a tensor product. We share weights

with all three encoder networks shown on the top left.

were similarly used in bilinear models [27], disentangling Boltzmann Machines [23] and Tensor
Analyzers [26]. Note that our multiplicative interaction in Lmul is different from [19] in that we use
the difference between two encoding vectors (i.e., f(b)− f(a)) to infer about the transformation (or
relation), rather than using a higher-order interaction (e.g., tensor product) for this inference.

Algorithm 1: Manifold traversal by analogy,
with transformation function T (Eq. 5).
Given images a, b, c, and N (# steps)
z ← f(c)
for i = 1 to N do

z ← z + T (f(a), f(b), z)
xi ← g(z)

return generated images xi (i = 1, ..., N)

For Ldeep, h : R2K → RK is an MLP (deep
network without 3-way multiplicative interactions)
and [f(b)− f(a); f(c)] denotes concatenation of the
transformation vector with the query embedding.

Optimizing the above objectives teaches the model
to predict analogy completions in image space, but
in order to traverse image manifolds (e.g. for re-
peated analogies) as in Algorithm 1, we also want
accurate analogy completions in the embedding
space. To encourage this property, we introduce a regularizer to make the predicted transforma-
tion increment T (f(a), f(b), f(c)) match the difference of encoder embeddings f(d)− f(c):

R =
∑

a,b,c,d∈A

||f(d)− f(c)− T (f(a), f(b), f(c))||22 , where (4)

T (x, y, z) =

y − x when using Ladd

W ×1 [y − x]×2 z when using Lmul

MLP ([y − x; z]) when using Ldeep

(5)

The overall training objective is a weighted combination of analogy prediction and the above regu-
larizer, e.g. Ldeep+αR. We set α = 0.01 by cross validation on the shapes data and found it worked
well for all models on sprites and 3D cars as well. All parameters were trained with backpropagation
using stochastic gradient descent (SGD).

3.3 Analogy-making with a disentangled feature representation
Visual analogies change some aspects of a query image, and leave others unchanged; for example,
changing the viewpoint but preserving the shape and texture of an object. To exploit this fact,
we incorporate disentangling into our analogy prediction model. A disentangled representation is
simply a concatenation of coordinates along each underlying factor of variation. If one can reliably
infer these disentangled coordinates, a subset of analogies can be solved simply by swapping sets
of coordinates among a reference and query embedding, and projecting back into the image space.
However, in general, disentangling alone cannot solve analogies that require traversing the manifold
structure of a given factor, and by itself does not capture image relationships.

In this section we show how to incorporate disentangled features into our analogy model. The
disentangling component makes each group of embedding features encode its respective factor of
variation and be invariant to the others. The analogy component enables the model to traverse the
manifold of a given factor or subset of factors.

4

Identity

Pitch

 switches sIdentity

Elevation

Pitch

Elevation

a

b

c

Algorithm 2: Disentangling training update. The
switches s determine which units from f(a) and
f(b) are used to reconstruct image c.
Given input images a, b and target c
Given switches s ∈ {0, 1}K
z ← s · f(a) + (1− s) · f(b)
∆θ ∝ ∂/∂θ

(
||g(z)− c||22

)
Figure 3: The encoder f learns a disentangled representation, in this case for pitch, elevation and
identity of 3D car models. In the example above, switches s would be a block [0;1;1] vector.

For learning a disentangled representation, we require three-image tuples: a pair from which to
extract hidden units, and a third to act as a target for prediction. As shown in Figure 3, We use a
vector of switch units s that decides which elements from f(a) and which from f(b) will be used
to form the hidden representation z ∈ RK . Typically s will have a block structure according to the
groups of units associated to each factor of variation. Once z has been extracted, it is projected back
into the image space via the decoder g(z).

The key to learning disentangled features is that images a, b, c should be distinct, so that there is no
path from any image to itself. This way, the reconstruction target forces the network to separate the
visual concepts shared by (a, c) and (b, c), respectively, rather than learning the identity mapping.
Concretely, the disentangling objective can be written as:

Ldis =
∑

a,b,c,s∈D

||c− g(s · f(a) + (1− s) · f(b))||22 (6)

Note that unlike analogy training, disentangling only requires a datasetD of 3-tuple of images a, b, c
along with a switch unit vector s. Intuitively, s describes the sense in which a, b and c are related.
Algorithm 2 describes the learning update we used to learn a disentangled representation.

4 Experiments
We evaluated our methods using three datasets. The first is a set of 2D colored shapes, which is
a simple yet nontrivial benchmark for visual analogies. The second is a set of 2D sprites from the
open-source video game project called Liberated Pixel Cup [1], which we chose in order to get
controlled variation in a large number of character attributes and animations. The third is a set of
3D car model renderings [11], which allowed us to train a model to perform out-of-plane rotation.
We used Caffe [14] to train our encoder and decoder networks, with a custom Matlab wrapper
implementing our analogy sampling and training objectives. Many additional qualitative results of
images generated by our model are presented in the supplementary material.

4.1 Transforming shapes: comparison of analogy models
The shapes dataset was used to benchmark performance on rotation, scaling and translation analo-
gies. Specifically, we generated 48 × 48 images scaled to [0, 1] with four shapes, eight colors, four
scales, five row and column positions, and 24 rotation angles.

We compare the performance of our models trained with Ladd, Lmul and Ldeep objectives, respec-
tively. We did not perform disentangling training in this experiment. The encoder f consisted
of 4096-1024-512-dimensional fully connected layers, with rectified linear nonlinearities (relu) for
intermediate layers. The final embedding layer did not use any nonlinearity. The decoder g archi-
tecture mirrors the encoder, but did not share weights. We trained for 200k steps with mini-batch
size 25 (i.e. 25 analogy 4-tuples per mini-batch). We used SGD with momentum 0.9, base learning
rate 0.001 and decayed the learning rate by factor 0.1 every 100k steps.

Model Rotation steps Scaling steps Translation steps
1 2 3 4 1 2 3 4 1 2 3 4

Ladd 8.39 11.0 15.1 21.5 5.57 6.09 7.22 14.6 5.44 5.66 6.25 7.45
Lmul 8.04 11.2 13.5 14.2 4.36 4.70 5.78 14.8 4.24 4.45 5.24 6.90
Ldeep 1.98 2.19 2.45 2.87 3.97 3.94 4.37 11.9 3.84 3.81 3.96 4.61

Table 1: Comparison of squared pixel prediction error of Ladd, Lmul and Ldeep on shape analogies.

5

ref +rot (gt) query +rot +rot +rot +rot

ref +scl (gt) query +scl +scl +scl +scl

ref +trans (gt) query +trans +trans +trans +trans

Figure 4: Analogy predictions made by Ldeep for
rotation, scaling and translation, respectively by
row. Ladd and Lmul perform as well for scaling
and transformation, but fail for rotation.

Figure 5: Mean-squared prediction error on
repeated application of rotation analogies.

Figure 4 shows repeated predictions fromLdeep on rotation, scaling and translation test set analogies,
showing that our model has learned to traverse these manifolds. Table 1 shows that Ladd and Lmul

perform similarly for scaling and translation, but onlyLdeep can perform accurate rotation analogies.
Further extrapolation results with repeated rotations are shown in Figure 5. Though both Lmul and
Ldeep are in principle capable of learning the circular pose manifold, we suspect that Ldeep has
much better performance due to the difficulty of training multiplicative models such as Lmul.

4.2 Generating 2D video game sprites
Game developers often use what are known as “sprites” to portray characters and objects in 2D video
games (more commonly on older systems, but still seen on phones and indie games). This entails
significant human effort to draw each frame of each common animation for each character.3 In this
section we show how animations can be transferred to new characters by analogy.

Our dataset consists of 60× 60 color images of sprites scaled to [0, 1], with 7 attributes: body type,
sex, hair type, armor type, arm type, greaves type, and weapon type, with 672 total unique characters.
For each character, there are 5 animations each from 4 viewpoints: spellcast, thrust, walk, slash and
shoot. Each animation has between 6 and 13 frames. We split the data by characters: 500 training,
72 validation and 100 for testing.

We conducted experiments using the Ladd and Ldeep variants of our objective, with and without dis-
entangled features. We also experimented with a disentangled feature version in which the identity
units are taken to be the 22-dimensional character attribute vector, from which the pose is disentan-
gled. In this case, the encoder for identity units acts as multiple softmax classifiers, one for each
attribute, hence we refer to this objective in experiments as Ldis+cls.

The encoder network consisted of two layers of 5×5 convolution with stride 2 and relu, followed by
two fully-connected and relu layers, followed by a projection onto the 1024-dimensional embedding.
The decoder mirrors the encoder. To increase the spatial dimension we use simple upsampling in
which we copy each input cell value to the upper-left corner of its corresponding 2× 2 output.

For Ldis, we used 512 units for identity and 512 for pose. For Ldis+cls, we used 22 categorical
units for identity, which is the attribute vector, and the remaining 490 for pose. During training for
Ldis+cls, we did not backpropagate reconstruction error through the identity units; we only used
the attribute classification objective for those units. When Ldeep is used, the internal layers of the
transformation function T (see Figure 2) had dimension 300, and were each followed by relu. We
trained the models using SGD with momentum 0.9 and learning rate 0.00001 decayed by factor 0.1
every 100k steps. Training was conducted for 200k steps with mini-batch size 25.

Figure 6 demonstrates the task of animation transfer, with predictions from a model trained on Ladd.
Table 2 provides a quantitative comparison of Ladd, Ldis and Ldis+cls. We found that the disen-
tangling and additive analogy models perform similarly, and that using attributes for disentangled
identity features provides a further gain. We conjecture that Ldis+cls wins because changes in cer-
tain aspects of appearance, such as arm color, have a very small effect in pixel space yielding a weak
signal for pixel prediction, but still provides a strong signal to an attribute classifier.

3In some cases the work may be decreased by projecting 3D models to 2D or by other heuristics, but in
general the work scales with the number of animations and characters.

6

Figure 6: Transferring animations. The top row shows the reference, and the bottom row shows the
transferred animation, where the first frame (in red) is the starting frame of a test set character.

Model spellcast thrust walk slash shoot average
Ladd 41.0 53.8 55.7 52.1 77.6 56.0
Ldis 40.8 55.8 52.6 53.5 79.8 56.5
Ldis+cls 13.3 24.6 17.2 18.9 40.8 23.0
Table 2: Mean-squared pixel error on test analogies, by animation.

From a practical perspective, the ability to transfer poses accurately to unseen characters could help
decrease manual labor of drawing (at least of drawing the assets comprising each character in each
animation frame). However, training this model required that each transferred animation already
has hundreds of examples. Ideally, the model could be shown a small number of examples for a
new animation, and transfer it to the existing character database. We call this setting “few-shot”
analogy-making because only a small number of the target animations are provided.

Num. of few-shot examples
Model 6 12 24 48
Ladd 42.8 42.7 42.3 41.0
Ldis 19.3 18.9 17.4 16.3
Ldis+cls 15.0 12.0 11.3 10.4

Table 3: Mean-squared pixel-prediction error
for few-shot analogy transfer of the “spellcast”
animation from each of 4 viewpoints. Ldis out-
performs Ladd, and Ldis+cls performs the best
even with only 6 examples.

Reference Output Query Prediction

Figure 7: Few shot prediction with 48 examples.

Table 3 provides a quantitative comparison and figure 7 provides a qualitative comparison of our
proposed models in this task. We find that Ldis+cls provides the best performance by a wide margin.
Unlike in Table 2, Ldis outperforms Ladd, suggesting that disentangling may allow new animations
to be learned in a more data-efficient manner. However, Ldis has an advantage in that it can average
the identity features of multiple views of a query character, which Ladd cannot do.

The previous analogies only required us to combine disentangled features from two characters, e.g.
the identity from one and the pose from another, and so disentangling was sufficient. However,
our analogy method enables us to perform more challenging analogies by learning the manifold of
character animations, defined by the sequence of frames in each animation. Adjacent frames are thus
neighbors on the manifold and each animation sequence can be viewed as a fiber in this manifold.

We trained a model by forming analogy tuples across animations as depicted in Fig. 8, using disen-
tangled identity and pose features. Pose transformations were modeled by deep additive interactions,
and we used Ldis+cls to disentangle pose from identity units. Figure 9 shows the result of several
analogies and their extrapolations, including character rotation for which we created animations.

Figure 8: A cartoon visualization of the “shoot” animation manifold for two different characters
in different viewpoints. The model can learn the structure of the animation manifold by forming
analogy tuples during training; example tuples are circled in red and blue above.

7

 ref. output query predictions

walk

thrust

rotate

Figure 9: Extrapolating by analogy. The model sees the reference / output pair and repeatedly
applies the inferred transformation to the query. This inference requires learning the manifold of
animation poses, and cannot be done by simply combining and decoding disentangled features.

4.3 3D car analogies
In this section we apply our model to analogy-making on 3D car renderings subject to changes in
appearance and rotation angle. Unlike in the case of shapes, this requires the ability of the model to
perform out-of-plane rotation, and the depicted objects are more complex.

Features Pose AUC ID AUC
Pose units 95.6 85.2
ID units 50.1 98.5

Combined 94.6 98.4

Table 4: Measuring the disentangling performance on 3D
cars. Pose AUC refers to area under the ROC curve for
same-or-different pose verification, and ID AUC for same-
or-different car verification on pairs of test set images.

 Pose ID GT Prediction

Figure 10: 3D car analogies. The
column “GT” denotes ground truth.

We use the car CAD models from [11]. For each of the 199 car models, we generated 64× 64 color
renderings from 24 rotation angles each offset by 15 degrees. We split the models into 100 training,
49 validation and 50 testing. The same convolutional network architecture was used as in the sprites
experiments, and we used 512 units for identity and 128 for pose.

ref output query +1 +2 +3 +4-4 -3 -2 -1

Figure 11: Repeated rotation analogies in forward and reverse directions, starting from frontal pose.

Figure 10 shows test set predictions of our model trained onLdis, where images in the fourth column
combine pose units from the first column and identity units from the second. Table 4 shows that the
learned features are in fact disentangled, and discriminative for identity and pose matching despite
not being discriminatively trained. Figure 11 shows repeated rotation analogies on test set cars using
a model trained onLdeep, demonstrating that our model can perform out-of-plane rotation. This type
of extrapolation is difficult because the query image shows a different car from a different starting
pose. We expect that a recurrent architecture can further improve the results, as shown in [29].

5 Conclusions
We studied the problem of visual analogy making using deep neural networks, and proposed several
new models. Our experiments showed that our proposed models are very general and can learn to
make analogies based on appearance, rotation, 3D pose, and various object attributes. We provide
connection between analogy making and disentangling factors of variation, and showed that our
proposed analogy representations can overcome certain limitations of disentangled representations.
Acknowledgements This work was supported in part by NSF GRFP grant DGE-1256260, ONR
grant N00014-13-1-0762, NSF CAREER grant IIS-1453651, and NSF grant CMMI-1266184. We
thank NVIDIA for donating a Tesla K40 GPU.

8

References

[1] Liberated pixel cup. http://lpc.opengameart.org/. Accessed: 2015-05-21.
[2] P. Bartha. Analogy and analogical reasoning. In The Stanford Encyclopedia of Philosophy. Fall 2013

edition, 2013.
[3] P. Bénard, F. Cole, M. Kass, I. Mordatch, J. Hegarty, M. S. Senn, K. Fleischer, D. Pesare, and K. Breeden.

Stylizing animation by example. ACM Transactions on Graphics, 32(4):119, 2013.
[4] B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen. Discovering hidden factors of variation in

deep networks. In ICLR Workshop, 2015.
[5] T. Cohen and M. Welling. Learning the irreducible representations of commutative Lie groups. In ICML,

2014.
[6] T. Cohen and M. Welling. Transformation properties of learned visual representations. In ICLR, 2015.
[7] G. Desjardins, A. Courville, and Y. Bengio. Disentangling factors of variation via generative entangling.

arXiv preprint arXiv:1210.5474, 2012.
[8] W. Ding and G. W. Taylor. Mental rotation by optimizing transforming distance. arXiv preprint

arXiv:1406.3010, 2014.
[9] P. Dollár, V. Rabaud, and S. Belongie. Learning to traverse image manifolds. In NIPS, 2007.

[10] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural
networks. In CVPR, 2015.

[11] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detection and viewpoint estimation with a deformable
3d cuboid model. In NIPS, 2012.

[12] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin. Image analogies. In SIGGRAPH, 2001.
[13] S. J. Hwang, K. Grauman, and F. Sha. Analogy-preserving semantic embedding for visual object catego-

rization. In NIPS, 2013.
[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
[15] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
[16] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with deep genera-

tive models. In NIPS, 2014.
[17] T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum. Deep convolutional inverse graphics network.

In NIPS, 2015.
[18] O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic regularities in sparse and explicit word representa-

tions. In CoNLL-2014, 2014.
[19] R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-order

boltzmann machines. Neural Computation, 22(6):1473–1492, 2010.
[20] V. Michalski, R. Memisevic, and K. Konda. Modeling deep temporal dependencies with recurrent gram-

mar cells. In NIPS, 2014.
[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and

phrases and their compositionality. In NIPS, 2013.
[22] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP,

2014.
[23] S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold

interaction. In ICML, 2014.
[24] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza. Disentangling factors of variation for facial

expression recognition. In ECCV. 2012.
[25] J. Susskind, R. Memisevic, G. Hinton, and M. Pollefeys. Modeling the joint density of two images under

a variety of transformations. In CVPR, 2011.
[26] Y. Tang, R. Salakhutdinov, and G. Hinton. Tensor analyzers. In ICML, 2013.
[27] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. Neural compu-

tation, 12(6):1247–1283, 2000.
[28] P. D. Turney. Similarity of semantic relations. Computational Linguistics, 32(3):379–416, 2006.
[29] J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent transforma-

tions for 3d view synthesis. In NIPS, 2015.
[30] Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view perceptron: a deep model for learning face identity

and view representations. In NIPS, 2014.

9

http://lpc.opengameart.org/

