CSC 2547: Machine Learning for Vision as Inverse Graphics

Anthony Bonner www.cs.toronto.edu/~bonner

Scene Understanding

- Much more than just classification.
- Needs a rich 3-dimensional representation of the world.
- Objects, shape, position, orientation, appearance, category, composition, ...
- Relationships between objects.
 (part-of, next-to, on-top-of, ...)
- Illumination, camera angle, ...

Inverse Graphics

- Computer graphics represents the world this way internally.
- Inverse problems:
 - Graphics generates a 2D image from a 3D representation.
 - Scene understanding generates a 3D representation from a 2D image.

Paper Presentations

- Each week will focus on one topic, as listed on the course web page (soon).
- You can vote for your choice of topic/week (soon).
- I will assign you to a week (soon).
- Papers on each topic will be listed on the course web page.
- If you have a particular paper you would like to add to the list, please let me know.

Paper Presentations

- Goal: high quality, accessible tutorials.
- 7 weeks and 44 students = 6 or 7 students per week and about 15 minutes per student.
- 2-week planning cycle:
 - 2 weeks before your presentation, meet me after class to discuss and assign papers.
 - The following week, meet the TA for a practice presentation (required).
 - Present in class under strict time constraints.

Team Presentatations

- Papers may be presented in teams of two or more with longer presentations (15 minutes per team member).
- Unless a paper is particularly difficult or long, a team will be expected to cover more than one paper (one paper per team member).
- A team may cover one of the listed papers and one or more of its references (but see me first).

Tentative Topics

- Discriminative approaches.
- Generative approaches.
- Differentiable rendering.
- Capsule networks
- Group symmetries and equivariance
- Visual attention mechanisms
- Adversarial methods

Discriminative Approaches

- Train a single neural net.
- Image is the input
- Scene representation is the output.
- Supervised learning.

Discriminative Approaches

- Problem: need a labeled scene representation for each training image.
- Use simulated data:
 - Generate many scenes
 - Use a graphics program to generate images of the scene.
- Graphics community has many labeled benchmarks of real data.

Human Pose Estimation

From Tompson et al, Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation, arXiv 2014.

Object Detection and Localization

From He et al, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, arXiv 2015

Image Transformation

- Simplest case:
 - Train a single neural net.
 - Image as input
 - Transformed image as output
- More complex cases:
 - Train two or more feed-forward neural nets.
 - Two or more images as input (one per neural net).
 - Combine outputs into a transformed image.

Semantic Segmentation

From Long et al, Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Artistic Style Transfer

From Gatys et al, A Neural Algorithm of Artistic Style, arXiv 2015

Feature Interpolation

Older

From Upchurch et al, Deep Feature Interpolation for Image Content Changes, arXiv 2017

Texture Synthesis

Generative Approaches

- Given a scene, s, a graphics program, G, produces an image, G(s).
- Given an image, x, find s such that G(s) ≈ x
- More generally, find P(s|x),.
- P(s|x) is high when G(s) is close to x.

Variational Approximations

- Finding P(s|x) is intractable in general.
- Use variational approximations.
- Variational auto-encoders work very well.
- G can be a neural net that we learn (unsupervised).
- Computationally intensive.

Variational Autoencoders

From Yan et al, Perspective Transformer Nets, arXiv 2017

Learning 3D Shape

From Yan et al, Perspective Transformer Nets, arXiv 2017

Making Visual Analogies

• Given images A, B, C, generate image D so that D is to C as B is to A.

From Reed et al, Deep Visual Analogy-Making, NIPS 2015