
CSC	2547:	Machine	Learning	
	for	Vision	as	Inverse	Graphics	

Anthony	Bonner	
www.cs.toronto.edu/~bonner	

Scene	Understanding	

•  Much	more	than	just	classification.	
•  Needs	a	rich	3-dimensional	representation	of	
the	world.	

•  Objects,	shape,	position,	orientation,	
appearance,	category,	composition,	…	

•  Relationships	between	objects.			
(part-of,	next-to,	on-top-of,	…)	

•  Illumination,	camera	angle,	…	
	

Inverse	Graphics	

•  Computer	graphics	represents	the	world	this	
way	internally.	

•  Inverse	problems:	
– Graphics	generates	a	2D	image	from	a	3D	
representation.	

– Scene	understanding	generates	a	3D	
representation	from	a	2D	image.	

Paper	Presentations	

•  Each	week	will	focus	on	one	topic,	as	listed	on	
the	course	web	page	(soon).	

•  You	can	vote	for	your	choice	of	topic/week	
(soon).	

•  I	will	assign	you	to	a	week	(soon).	
•  Papers	on	each	topic	will	be	listed	on	the	
course	web	page.	

•  If	you	have	a	particular	paper	you	would	like	
to	add	to	the	list,	please	let	me	know.	

Paper	Presentations	

•  Goal:	high	quality,	accessible	tutorials.	
•  7	weeks	and	44	students	=	6	or	7	students	per	
week	and	about	15	minutes	per	student.	

•  2-week	planning	cycle:	
– 2	weeks	before	your	presentation,	meet	me	
after	class	to	discuss	and	assign	papers.	
– The	following	week,	meet	the	TA	for	a	
practice	presentation	(required).	
– Present	in	class	under	strict	time	constraints.	

	

Team	Presentatations	

•  Papers	may	be	presented	in	teams	of	two	or	more	
with	longer	presentations	(15	minutes	per	team	
member).	

•  Unless	a	paper	is	particularly	difficult	or	long,	a	team	
will	be	expected	to	cover	more	than	one	paper	(one	
paper	per	team	member).		

•  A	team	may	cover	one	of	the	listed	papers	and	one	
or	more	of	its	references	(but	see	me	first).	

Tentative	Topics	

•  Discriminative	approaches.	
•  Generative	approaches.	
•  Differentiable	rendering.	
•  Capsule	networks	
•  Group	symmetries	and	equivariance	
•  Visual	attention	mechanisms	
•  Adversarial	methods	

Discriminative	Approaches	

•  Train	a	single	neural	net.	
•  Image	is	the	input	
•  Scene	representation	is	the	output.	
•  Supervised	learning.	

Discriminative	Approaches	

	
•  Problem:	need	a	labeled	scene	representation		
for	each	training	image.	

•  Use	simulated	data:	
– Generate	many	scenes	
– Use	a	graphics	program	to	generate	images	of	the	
scene.	

•  Graphics	community	has	many	labeled	
benchmarks	of	real	data.	

Human	Pose	Estimation	

The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).

6 Acknowledgments

The authors would like to thank Mykhaylo Andriluka for his support. This research was funded in
part by the Office of Naval Research ONR Award N000141210327.

References

[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated
pose estimation. In CVPR, 2009.

8

From	Tompson	et	al,		Joint	Training	of	a	Convolutional	Network	and	a	Graphical	Model	for	Human	Pose	Estimation,	arXiv	2014.	

Object	Detection	and	Localization	
13

bottle :0.24

person:1.20

sheep:1.52

chair:0.21

diningtable:0.78

person:1.16
person:1.05

pottedplant:0 .21

chair:4.79

pottedplant:0.73

chai r:0 .33

din ingtable:0.34

chair:0.89

bus:0.56

car:3.24

car:3.45

person:1.52

train:0.31

train:1.62

pottedplant:0.33

pottedplant:0.78

sofa:0.55
tvmonitor:1.77

aeroplane:0.45

aeroplane:1.40

aeroplane:1.01

aeroplane:0.94

aeroplane:0.93

aeroplane:0.91 aeroplane:0.79

aeroplane:0.57aeroplane:0.54

person:0.93

person:0.68

horse:1.73

person:1.91

boat:0.60

person:3.20

car:2.52

bus:2.01

car:0.93person:4.16
person:0.79

person:0.32

horse:1.68
horse:0.61

horse:1.29

person:1.23

chair:0.87

person:1.79

person:0.91

sofa:0.22

person:0.85
sofa:0.58

cow:2.36
cow:1.88

cow:1.86

cow:1.82

cow:1.39cow:1.31

cat:0.52

person:1.02

person:0.40

bicycle:2.85

bicycle:2.71

bicycle:2.04

bicycle:0.67

person:3.35
person:2.39

person:2.11

person:0.27
person:0.22

bus:1.42

person:3.29
person:1.18

bottle:1.15
pottedplant:0.81

sheep:1.81

sheep:1.17

sheep:0.81

bird:0.24

pottedplant:0.35pottedplant:0.20

car:1.31person:1.60

person:0.62

dog:0.37

person:0 .38

dog:0.99

person:1.48

person:0.22

cow:0.80

person:3.29

person:2.69

person:2.42
person:1.05

person:0.92person:0.76

bird:1.39
bird:0.84

bottle:1.20diningtable:0.96

person:1.53

person:1.52

person:0.73

car:0.12

car:0.11

car:0.04

car:0.03

car:3.98

car:1.95

car:1.39

car:0.50

bird:1.47

sofa:0.41 person:2.15

person:0.86
tvmonitor:2.24

motorbike:1.11
motorbike:0.74

person:1.36

person:1.10

Figure 6: Example detection results of “SPP-net ftfc7 bb” on the Pascal VOC 2007 testing set (59.2% mAP).
All windows with scores > 0 are shown. The predicted category/score are marked. The window color is
associated with the predicted category. These images are manually selected because we find them impressive.
Visit our project website to see all 4,952 detection results in the testing set.

if rounding is needed, we take the floor operation on
the left/top boundary and ceiling on the right/bottom
boundary.

Mapping a Window to Feature Maps.

In the detection algorithm (and multi-view testing
on feature maps), a window is given in the image
domain, and we use it to crop the convolutional fea-
ture maps (e.g., conv5) which have been sub-sampled
several times. So we need to align the window on the
feature maps.

In our implementation, we project the corner point
of a window onto a pixel in the feature maps, such
that this corner point in the image domain is closest
to the center of the receptive field of that feature map

pixel. The mapping is complicated by the padding
of all convolutional and pooling layers. To simplify
the implementation, during deployment we pad bp/2c
pixels for a layer with a filter size of p. As such, for
a response centered at (x0

, y
0) , its effective receptive

field in the image domain is centered at (x, y) =
(Sx0

, Sy
0) where S is the product of all previous

strides. In our models, S = 16 for ZF-5 on conv5,
and S = 12 for Overfeat-5/7 on conv5/7. Given a
window in the image domain, we project the left (top)
boundary by: x0 = bx/Sc + 1 and the right (bottom)
boundary x

0 = dx/Se � 1. If the padding is not bp/2c,
we need to add a proper offset to x.

From	He	et	al,	Spatial	Pyramid	Pooling	in	Deep	Convolutional	Networks	for	Visual	Recognition,	arXiv	2015	

Image	Transformation	

•  Simplest	case:	
– Train	a	single	neural	net.	
–  Image	as	input	
– Transformed	image	as	output	

•  More	complex	cases:	
– Train	two	or	more	feed-forward	neural	nets.	
– Two	or	more	images	as	input	(one	per	neural	net).	
– Combine	outputs	into	a	transformed	image.	

Semantic	Segmentation	

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30, 3, 9, 31, 17, 15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally

96

384 256 409
6
409

6 21

21

backward/learning

forward/inference

pix
elw

ise
 p

red
ict

ion

seg
men

ta
tio

n
g.t

.

256
384

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 17], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

1

From	Long	et	al,	Fully	Convolutional	Networks	for	Semantic	Segmentation,	CVPR	2015	

Artistic	Style	Transfer	

Figure 2: Images that combine the content of a photograph with the style of several well-known
artworks. The images were created by finding an image that simultaneously matches the content
representation of the photograph and the style representation of the artwork (see Methods). The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image
is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913.

5

From	Gatys	et	al,	A	Neural	Algorithm	of	Artistic	Style,	arXiv	2015	

Feature	Interpolation	

Deep Feature Interpolation for Image Content Changes

Paul Upchurch1,* Jacob Gardner1,* Geoff Pleiss1 Robert Pless2 Noah Snavely1 Kavita Bala1

Kilian Weinberger1

1Cornell University
2George Washington University

*Authors contributed equally

Abstract

We propose Deep Feature Interpolation (DFI), a new data-
driven baseline for automatic high-resolution image trans-
formation. As the name suggests, DFI relies only on sim-
ple linear interpolation of deep convolutional features from
pre-trained convnets. We show that despite its simplicity,
DFI can perform high-level semantic transformations like

“make older/younger”, “make bespectacled”, “add smile”,
among others, surprisingly well—sometimes even matching
or outperforming the state-of-the-art. This is particularly
unexpected as DFI requires no specialized network architec-
ture or even any deep network to be trained for these tasks.
DFI therefore can be used as a new baseline to evaluate
more complex algorithms and provides a practical answer
to the question of which image transformation tasks are still
challenging after the advent of deep learning.

1. Introduction
Generating believable changes in images is an active and

challenging research area in computer vision and graphics.
Until recently, algorithms were typically hand-designed for
individual transformation tasks and exploited task-specific
expert knowledge. Examples include transformations of
human faces [41, 17], materials [2, 1], color [50], or sea-
sons in outdoor images [23]. However, recent innovations in
deep convolutional auto-encoders [33] have produced a suc-
cession of more versatile approaches. Instead of designing
each algorithm for a specific task, a conditional (or adver-
sarial) generator [21, 13] can be trained to produce a set of
possible image transformations through supervised learn-
ing [48, 43, 52]. Although these approaches can perform a
variety of seemingly impressive tasks, in this paper we show
that a surprisingly large set of them can be solved via lin-
ear interpolation in deep feature space and may not require
specialized deep architectures.

How can linear interpolation be effective? In pixel space,
natural images lie on an (approximate) non-linear mani-
fold [44]. Non-linear manifolds are locally Euclidean, but

Input Older
Figure 1. Aging a face with DFI.

globally curved and non-Euclidean. It is well known that in
pixel space linear interpolation between images introduces
ghosting artifacts, a sign of departure from the underlying
manifold, and linear classifiers between image categories
perform poorly.

On the other hand, deep convolutional neural networks
(convnets) are known to excel at classification tasks such as
visual object categorization [38, 14, 15]—while relying on a
simple linear layer at the end of the network for classification.
These linear classifiers perform well because networks map
images into new representations in which image classes
are linearly separable. In fact, previous work has shown
that neural networks that are trained on sufficiently diverse
object recognition classes, such as VGG [38] trained on
ImageNet [22], learn surprisingly versatile feature spaces
and can be used to train linear classifiers for additional image
classes. Bengio et al. [3] hypothesize that convnets linearize
the manifold of natural images into a (globally) Euclidean
subspace of deep features.

Inspired by this hypothesis, we argue that, in such deep
feature spaces, some image editing tasks may no longer be
as challenging as previously believed. We propose a simple
framework that leverages the notion that in the right feature
space, image editing can be performed simply by linearly
interpolating between images with a certain attribute and
images without it. For instance, consider the task of adding
facial hair to the image of a male face, given two sets of
images: one set with facial hair, and one set without. If con-

1

ar
X

iv
:1

61
1.

05
50

7v
2

 [c
s.C

V
]

19
 Ju

n
20

17

From	Upchurch	et	al,	Deep	Feature	Interpolation	for	Image	Content	Changes,	arXiv	2017	

Texture	Synthesis	

Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [21]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.

5

From	Gatys	et	al,	Texture	Synthesis	Using	Convolutional	Neural	Networks,	NIPS	2015	

Generative	Approaches	

•  Given	a	scene,	s,	a	graphics	program,	G,	
produces	an	image,	G(s).	

•  Given	an	image,	x,	find	s	such	that	G(s)	≈	x	
•  More	generally,	find	P(s|x),.	
•  P(s|x)	is	high	when	G(s)	is	close	to	x.	

Variational	Approximations	

•  Finding	P(s|x)	is	intractable	in	general.	
•  Use	variational	approximations.	
•  Variational	auto-encoders	work	very	well.	
•  G	can	be	a	neural	net	that	we	learn	
(unsupervised).	

•  Computationally	intensive.	

Variational	Autoencoders	

5x5 conv
5x5 conv

5x5 conv

64x64x3
32x32x64

16x16x128
8x8x256

Volume Generator Perspective Transformer

 1x1x 512

 latent unit 1x1x1024

1x32x32x32

6x6x6 conv

 4x4
transformation

1x32x32

Encoder Decoder

1x1x1024
512x3x3x3

256x6x6x6 96x15x15x15

4x4x4 conv
5x5x5 conv

Τθ(G)

 Grid generator

Sampler

1x32x32x32

Input image

Target projection

Figure 2: Illustration of network architecture.

(convolution layers have 64, 128 and 256 channels with fixed filter size of 5 ⇥ 5; the three fully-
connected layers have 1024, 1024 and 512 neurons, respectively). The 3D convolutional decoder
consists of one fully-connected layer, followed by 3 convolution layers (the fully-connected layer
have 3 ⇥ 3 ⇥ 3 ⇥ 512 neurons; convolution layers have 256, 96 and 1 channels with filter size of
4 ⇥ 4 ⇥ 4, 5 ⇥ 5 ⇥ 5 and 6 ⇥ 6 ⇥ 6). For perspective transformer networks, we used perspective
transformation to project 3D volume to 2D silhouette where the transformation matrix is parametrized
by 16 variables and sampling grid is set to 32⇥ 32⇥ 32. We use the same network architecture for
all the experiments.

Implementation Details. We used the ADAM [7] solver for stochastic optimization in all the
experiments. During the pre-training stage (for encoder), we used mini-batch of size 32, 32, 8, 4,
3 and 2 for training the RNN-1, RNN-2, RNN-4, RNN-8, RNN-12 and RNN-16 as used in Yang
et al. [23]. We used the learning rate 10�4 for RNN-1, and 10�5 for the rest of recurrent neural
networks. During the fine-tuning stage (for volume decoder), we used mini-batch of size 6 and
learning rate 10�4. For each object in a mini-batch, we include projections from all 24 views as
supervision. The models including the perspective transformer nets are implemented using Torch [3].
To download the code, please refer to the project webpage: http://goo.gl/YEJ2H6.

Experimental Design. As mentioned in the formulation, there are several variants of the model
depending on the hyper-parameters of learning objectives �proj and �vol. In the experimental section,
we denote the model trained with projection loss only, volume loss only, and combined loss as
PTN-Proj (PR), CNN-Vol (VO), and PTN-Comb (CO), respectively.

In the experiments, we address the following questions: (1) Will the model trained with combined
loss achieve better single-view 3D reconstruction performance over model trained on volume loss
only (PTN-Comb vs. CNN-Vol)? (2) What is the performance gap between the models with and
without ground-truth volumes (PTN-Comb vs. PTN-Proj)? (3) How do the three models generalize
to instances from unseen categories which are not present in the training set? To answer the questions,
we trained the three models under two experimental settings: single category and multiple categories.

4.1 Training on a single category
We select chair category as the training set for single category experiment. For model comparisons,
we first conduct quantitative evaluations on the generated 3D volumes from the test set single-view
images. For each instance in the test set, we generate one volume per view image (24 volumes
generated in total). Given a pair of ground-truth volume and our generated volume (threshold is 0.5),
we computed its intersection-over-union (IU) score and the average IU score is calculated over 24
volumes of all the instances in the test set. In addition, we provide a baseline method based on nearest
neighbor (NN) search. Specifically, for each of the test image, we extract VGG feature from fc6

layer (4096-dim vector) [17] and retrieve the nearest training example using Euclidean distance in the

Table 1: Prediction IU using the models trained on chair category. Below, “chair" corresponds to
the setting where each object is observable with full azimuth angles, while “chair-N" corresponds
to the setting where each object is only observable with a narrow range (subset) of azimuth angles.

Method / Evaluation Set chair chair-N
training test training test

PTN-Proj:single (no vol. supervision) 0.5712 0.5027 0.4882 0.4583
PTN-Comb:single (vol. supervision) 0.6435 0.5067 0.5564 0.4429
CNN-Vol:single (vol. supervision) 0.6390 0.4983 0.5518 0.4380
NN search (vol. supervision) — 0.3557 — 0.3073

5

From	Yan	et	al,	Perspective	Transformer	Nets,	arXiv	2017	

Learning	3D	Shape	
Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 3: Single-class results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb, VO: CNN-Vol
(Best viewed in digital version. Zoom in for the 3D shape details). The angles are shown in the
parenthesis. Please also see more examples and video animations on the project webpage.

feature space. The ground-truth 3D volume corresponds to the nearest training example is naturally
regarded as the retrieval result.

As shown in Table 1, the model trained without volume supervision (projection loss) performs as
good as model trained with volume supervision (volume loss) on the chair category (testing set). In
addition to the comparisons of overall IU, we measured the view-dependent IU for each model. As
shown in Figure 4, the average prediction error (mean IU) changes as we gradually move from the
first view to the last view (15� to 360�). For visual comparisons, we provide a side-by-side analysis
for each of the three models we trained. As shown in Figure 3, each row shows an independent
comparison. The first column is the 2D image we used as input of the model. The second and
third column show the ground-truth 3D volume (same volume rendered from two views for better
visualization purpose). Similarly, we list the model trained with projection loss only (PTN-Proj),

0 50 100 250 300 350150 200

Azimuth (degree)

0.44

0.42

0.4

0.46

0.48

0.52

0.5

M
ea

n
IU PTN-Proj

PTN-Comb
CNN-Vol

Figure 4: View-dependent IU. For example, 3D reconstruction from 0� is more difficult than from
30� due to self-occlusion.

6

From	Yan	et	al,	Perspective	Transformer	Nets,	arXiv	2017	

Making	Visual	Analogies	

•  Given	images	A,	B,	C,	generate	image	D	so	
that	D	is	to	C	as	B	is	to	A.	
	
	
	

Deep Visual Analogy-Making

Scott Reed Yi Zhang Yuting Zhang Honglak Lee

University of Michigan, Ann Arbor, MI 48109, USA
{reedscot,yeezhang,yutingzh,honglak}@umich.edu

Abstract

In addition to identifying the content within a single image, relating images and
generating related images are critical tasks for image understanding. Recently,
deep convolutional networks have yielded breakthroughs in predicting image la-
bels, annotations and captions, but have only just begun to be used for generat-
ing high-quality images. In this paper we develop a novel deep network trained
end-to-end to perform visual analogy making, which is the task of transforming a
query image according to an example pair of related images. Solving this problem
requires both accurately recognizing a visual relationship and generating a trans-
formed query image accordingly. Inspired by recent advances in language mod-
eling, we propose to solve visual analogies by learning to map images to a neural
embedding in which analogical reasoning is simple, such as by vector subtraction
and addition. In experiments, our model effectively models visual analogies on
several datasets: 2D shapes, animated video game sprites, and 3D car models.

1 Introduction

Humans are good at considering “what-if?” questions about objects in their environment. What if
this chair were rotated 30 degrees clockwise? What if I dyed my hair blue? We can easily imagine
roughly how objects would look according to various hypothetical questions. However, current
generative models of images struggle to perform this kind of task without encoding significant prior
knowledge about the environment and restricting the allowed transformations.

Infer Relationship Transform query

Figure 1: Visual analogy making concept. We learn
an encoder function f mapping images into a space
in which analogies can be performed, and a decoder
g mapping back to the image space.

Often, these visual hypothetical questions
can be effectively answered by analogi-
cal reasoning.1 Having observed many
similar objects rotating, one could learn
to mentally rotate new objects. Having
observed objects with different colors (or
textures), one could learn to mentally re-
color (or re-texture) new objects.

Solving the analogy problem requires the
ability to identify relationships among im-
ages and transform query images accord-
ingly. In this paper, we propose to solve the problem by directly training on visual analogy comple-
tion; that is, to generate the transformed image output. Note that we do not make any claim about
how humans solve the problem, but we show that in many cases thinking by analogy is enough to
solve it, without exhaustively encoding first principles into a complex model.

We denote a valid analogy as a 4-tuple A : B :: C : D, often spoken as “A is to B as C is to D”. Given
such an analogy, there are several questions one might ask:

• A ? B :: C ? D - What is the common relationship?

• A : B ? C : D - Are A and B related in the same way that C and D are related?

• A : B :: C : ? - What is the result of applying the transformation A : B to C?

1See [2] for a deeper philosophical discussion of analogical reasoning.

1

From	Reed	et	al,	Deep	Visual	Analogy-Making,	NIPS	2015	

