CSC 2547: Machine Learning for Vision as Inverse Graphics

Anthony Bonner www.cs.toronto.edu/~bonner

Paper Presentations

- Each week will focus on one topic, as listed on the course web page (soon).
- You can vote for your choice of topic/week (soon).
- I will assign you to a week (soon).
- Papers on each topic will be listed on the course web page.
- If you have a particular paper you would like to add to the list, please let me know.

Paper Presentations

- Goal: high quality, accessible tutorials.
- 7 weeks and 44 students = 6 or 7 students per week and about 15 minutes per student.
- 2-week planning cycle:
 - 2 weeks before your presentation, meet me after class to discuss and assign papers.
 - The following week, meet the TA for a practice presentation (required).
 - Present in class under strict time constraints.

Team Presentatations

- Papers may be presented in teams of two or more with longer presentations (15 minutes per team member).
- Unless a paper is particularly difficult or long, a team will be expected to cover more than one paper (one paper per team member).
- A team may cover one of the listed papers and one or more of its references (but see me first).

Tentative Topics

- Discriminative approaches.
- Generative approaches.
- Differentiable rendering.
- Capsule networks
- Group symmetries and equivariance
- Visual attention mechanisms
- Adversarial methods

Project Ideas

- Improve upon the work in a paper
 - Even a small improvement is OK
- For example,
 - Make a generative model conditional
 - Disentangle (some) latent variables
 - Adapt a method to new circumstances
 - Different kinds of data
 - Missing or noisy data

Make a supervised method semi-supervised

Project Ideas

- Examples (continued)
 - Modify the cost function
 - Introduce learnable parameters into a cost function
 - Use an adversarial cost
 - Try a variation on KL divergence
 - Modify the latent priors
 - Make the prior learnable
 - Do not assume Gaussianity
 - Modify the variational assumptions
 - Do not assume complete independence
 - Do not assume Gaussianity

Project Ideas

- Implement and compare different methods for the same problem (e.g., different methods for inferring 3D structure)
 - Clearly and succinctly describe each method
 - Clearly articulate their differences
 - Describe their strengths and weaknesses
 - Ideally, include experiments highlighting the differences between the methods on realistic problems.

Project Considerations

- Is your idea sensible?
- Can you download all the necessary data?
- Do you have the computational resources (GPUs)?
- Do you have time to complete it?
- Start by duplicating the results in the paper (if the paper gives enough details).

Project Dates

- Proposal due February 18
 - about 2 pages
 - include preliminary literature search
- Project presentations: March 24 and 31
 - about 5 minutes per student (like "spotlight presentations" at a conference)
- Project due: April 12

project report (4-8 pages) and code

Generative Approaches

- Given a scene, s, a graphics program, G, produces an image, G(s).
- Given an image, x, find s such that G(s) ≈ x
- More generally, find P(s|x),.
- P(s|x) is high when G(s) is close to x.

Variational Approximations

- Finding P(s|x) is intractable in general.
- Use variational approximations.
- Variational auto-encoders work very well.
- G can be a neural net that we learn (unsupervised).
- Computationally intensive.

Variational Autoencoders

From Yan et al, Perspective Transformer Nets, arXiv 2017

Disentangled Representations

From Reed et al, Learning to Disentangle Factors of Variation, ICML 2014

Learning 3D Shape

From Yan et al, Perspective Transformer Nets, arXiv 2017

Learning 3D Structure

From Niu et al, Im2Struct: recovering 3D Shape Structure, CVPR 2018

Scene Understanding

From Wu et al, Neural Scene De-rendering, CVPR 2017

Scene Understanding

From Huang et al, Occlusion Aware Generative Models, ICLR 2016

Conditional Image Generation

From Sohn et al, Deep Conditional Generative Models, NIPS 2015

Conditional Image Generation

From Ivanov et al, Variational Autoencoder with Arbitrary Conditioning, ICLR 2019

Attribute Conditioned Image Generation

From Yan et al, Attribute2Image: Conditional Image Generation, arXiv 2016

Making Visual Analogies

• Given images A, B, C, generate image D so that D is to C as B is to A.

From Reed et al, Deep Visual Analogy-Making, NIPS 2015