
Guided Recovery for Web Service Applications

Jocelyn Simmonds, Shoham Ben-David, Marsha Chechik
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada

{jsimmond, shoham, chechik}@cs.toronto.edu

ABSTRACT
Web service applications are dynamic, highly distributed,
and loosely coupled orchestrations of services which are no-
toriously difficult to debug. In this paper, we describe a
user-guided recovery framework for web services. When be-
havioural correctness properties (safety and bounded live-
ness) of an application are violated at runtime, we automat-
ically propose and rank recovery plans which users can then
select for execution. For safety violations, such plans essen-
tially involve “going back” – compensating the occurred ac-
tions until an alternative behavior of the application is possi-
ble. For bounded liveness violations, such plans include both
“going back” and “re-planning” – guiding the application to-
wards a desired behavior. We report on the implementation
and our experience with the recovery system.

Keywords
Web services, LTS, behavioural properties, runtime moni-
toring, planning, SAT solving.

1. INTRODUCTION
Recent years have seen the increased reliance on being

able to conduct business over the Internet. The Service-
Oriented Architecture (SOA) framework is a popular guide-
line for building web-based applications. A SOA-based ap-
plication is an orchestration of services offered by (possibly
third-party) components written in a traditional compiled
language such as Java, or in an XML-centric language such
as BPEL1.

Web services are distributed systems, where partners are
dynamically discovered and are going on- and off-line as the
application runs. Their failures can be caused by bugs in
the service orchestration, e.g., due to faulty logic and bad
data manipulation, or by problems with hardware, network
or system software, or by incorrect invocations of services.

1http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

With runtime failures of web services inevitable, infrastruc-
tures for running them typically include the ability to de-
fine faults and compensatory actions for dealing with excep-
tional situations. Specifically, the compensation mechanism
is the application-specific way of reversing completed activi-
ties. For example, the compensation for booking a car would
be to cancel the booking.

Existing infrastructures for web services, e.g., the BPEL
engine, include mechanisms for fault definition, for specifica-
tion of compensation actions, and for dealing with termina-
tion. When an error is detected at runtime, they typically
try to compensate all completed activities for which com-
pensations are defined, with the default compensation being
the reversal of the most recently completed action. This
approach presents several major problems: (1) The applica-
tion is often allowed to continue running until the fault is
discovered, thus executing and then compensating for a lot
of unnecessary and potentially expensive activities. (2) It
is hard to determine, a priori, the state of the application
after executing compensation mechanisms. (3) There might
be multiple compensations available, based on global infor-
mation (i.e., avoid canceling the flight since it has a dollar
cost associated with it, and try to cancel the hotel instead),
but the automatic application of compensations does not
allow the user of such a system to choose between them.

This paper describes a user-guided recovery framework for
web services, instantiating it on BPEL programs. We con-
centrate on behavioural correctness, and specifically, on the
correct interaction between service partners. The overview
of the approach is given in Fig. 1a. Our approach consists of
three phases: Preprocessing, Monitoring and Recovery. It
admits the following user guidance: (I) Application devel-
opers define a set of behavioral correctness properties that
need to be maintained at runtime, as well as compensation
costs and idempotent service calls (see Sec. 3.2) (II) (Op-
tional) Application users provide criteria for choosing be-
tween possible recovery plans, i.e., based on the plan length,
compensation cost, etc. (III) Application users manually
choose the desired recovery plan among those automatically
computed and ranked by our system.

We consider behavioral correctness properties to be sce-
narios that the system should exhibit and scenarios that the
system should not exhibit. For example, consider a simple
web-based Trip Advisor System (TAS). In a typical scenario,
a customer either chooses to arrive at her destination via a
rental car (and thus books it), or via an air/ground trans-
portation combination, combining the flight with either a
rental car from the airport or a limo. The requirement of the

(a) (b)

Figure 1: (a) Overview of our approach; (b) a schematic view on plan generation.

system is to make sure the customer has the transportation
needed to get to her destination (this is a desired behaviour)
while keeping the costs down, i.e., she is not allowed by her
company to reserve an expensive flight and a limo (this is a
forbidden behavior). Such desired and forbidden behaviours
can come from use-cases, global invariants, simulation, or
a variety of other sources. They can be expressed in (tem-
poral) logic or in visual notations, such as UML’s Sequence
Diagrams [24]. The problem of collecting and expressing
properties has been addressed by many researchers [1,5,15],
and we consider it to be orthogonal to this paper. We also
refer to the specification of negative behaviour as safety
properties, and positive behaviour – as (bounded) liveness
properties. In the interest of space, we further assume that
properties are represented by finite-state monitors.

A description of the desired orchestration and the set of
monitors describing safety and liveness properties are then
passed to the runtime monitoring framework which runs the
monitors in parallel with the application, stopping when one
of the monitors enters its error state. We build on an ear-
lier work of defining and implementing an unintrusive online
framework for runtime monitoring of conversations between
partners [24]. Using high-level properties allows us to detect
the violation, and our event interception mechanism allows
us to stop the application right before the violation occurs,
and enable recovery.

Our main contribution is the development of recovery
plans from runtime errors. Given an application path which
led to a failure and a monitor which detected it, our goal
is to compute a set of suggestions, i.e., plans, for recovering
from these failures. For violations of safety properties, such
plans use compensation actions to allow the application to
“go back” to an earlier state at which an alternative path
that potentially avoids the fault is available. We call such
states “change states”; these include user choices and cer-
tain partner calls. For example, if the TAS system produces
an itinerary that is too expensive, a potential recovery plan
might be to undo the limo reservation (so that the car can
now be booked) or to undo the flight reservation and see if
a cheaper one can be found.

Yet just merely going back is insufficient to ensure that
the system can produce a desired behaviour. Thus, in order
to satisfy (bounded) liveness properties, we aim to compute
plans that redirect the application towards executing new
activities, those that lead to goal satisfaction. For example,
if the flight reservation partner fails (and thus the air/ground
combination is not available), the recovery plans would be to
provide transportation to the user’s destination (her “goal”
state) either by calling the flight reservation again or by un-
doing the reserved ground transportation from the airport,
if any, and try to reserve the rental car from home instead.
The overall recovery planning problem is then stated as fol-
lows:

From the current (error) state in the system, find

a plan to achieve the goal that goes through a
change state.

This process is shown schematically in Fig. 1b. When there
are multiple recovery plans available, we automatically rank
them based on user preferences (e.g., the shortest, the cheap-
est, the one that involves the minimal compensation, etc.)
and enable the application user to choose among them.

This paper makes the following contributions: (1) We pro-
pose a user-guided framework for recovery from run-time vi-
olations of behavioural properties representing desired and
prohibited conversations between partners in web service ap-
plications. (2) We show the difference between recovery from
a violation of safety and bounded liveness properties and
propose automated strategies for such recoveries. (3) We
pose recovery problem as a plan generation problem and in
turn reduce it to a SAT instance which allows us to control
the size of the resulting plans and compute multiple plans.

The rest of this paper is organized as follows. We de-
scribe inputs to our system, BPEL models and monitors
representing properties, in Sec. 2. We define the representa-
tion of BPEL models as Labeled Transition Systems (LTS)
and show how to use these representations for static identi-
fication of change states and goal transitions in Sec. 3. We
briefly discuss runtime monitoring in Sec. 4 and describe
our main contribution, recovery for violations of safety and
bounded liveness properties in Secs. 5 and 6 respectively. We
report on our implementation (Sec. 7) and use it to compute
recovery plans for two web service examples (Sec. 8). After
comparing our work with related approaches in Sec. 9, we
conclude in Sec. 10 with a summary of the paper and sug-
gestions for future work.

2. INPUT
Inputs to our system are a BPEL program enriched with

compensation actions and a set of behavioral correctness
properties described by monitors. We describe these below.

2.1 BPEL Programs
BPEL is a standard for implementing orchestrations of

web services (provided by partners) by specifying an ex-
ecutable workflow using predefined activities. The basic
BPEL activities for interacting with partner web services
are <receive>, <invoke> and <reply>, which are used to
receive messages, execute web services and return values, re-
spectively. The control flow of the application is defined us-
ing structural activities such as<while>, <if>, <sequence>,
<flow> and <pick>.

Fig. 2a shows the BPEL-expressed workflow of the Trip
Advisor System (TAS), introduced in Sec. 1. We use the
NetBeans SOA notation2. TAS interacts with four external
services: 1) book a rental car (bc), 2) book a limo (bl),
3) book a flight (bf), and 4) check price of the flight (cf).

2http://www.netbeans.org

(a)

(b)

Figure 2: (a) Workflow of TAS; (b) Compensation for
booking a flight (bf).

The result of cf is then passed to local services to determine
whether it is expensive (expF) or cheap (cheapF). Service
interactions are preceded by a symbol.

The workflow begins with <receive>’ing input (ri), fol-

lowed by <pick>’ing (indicated by labeled) either the
car rental (OnMessage onlyCar) or the air/ground transporta-
tion combination (OnMessage carAndFlight). The latter choice

is modeled using a<flow> (, labeled) since air (getFlight)
and ground transportation (getCar) can be arranged inde-
pendently, so they are executed in isolation. The air branch
sequentially books a flight, checks if it is expensive and
updates the state of the system accordingly. The ground
branch <pick>’s between booking a rental car and a limo.
The end of the workflow is marked by a <reply> activity,
reporting that the destination has been reached (rd).
Compensation. BPEL’s compensation mechanism allows
the definition of the application-specific reversal of com-
pleted activities. For example, the compensation for book-
ing a flight (bf) is to cancel the booking (cancelF); this is
described in BPEL as shown in Fig. 2b.

Compensation handlers (CH) are attached to <scope>
and <invoke> activities (a <scope> activity is used to logi-
cally group activities) and are executed by fault, termination
and compensation via the<compensate> and<compensate-
Scope> activities. The default compensation respects the
forward order of execution of the scopes being compensated:

If a and b are two activities, where a completed
execution before b, then compensate(a; b) is
compensate(b); compensate(a).

Any attempt to compensate a scope for which the CH either
has not been installed, or has been installed and executed,
is treated as executing an empty activity τ .

We further extended BPEL to allow users to associate
compensations with different costs, e.g., to indicate that
canceling a flight might be significantly more expensive than
canceling a car. We do this by adding an extra attribute cost
to the definition of <compensationHandler>. For example,
the flight booking compensation defined in Fig. 2b has been

assigned a cost of 9 (out of 10), indicating that this is an
expensive compensation and should be avoided if possible.

2.2 Properties and Monitors
The second input to our system is a set of correctness

properties. As mentioned in Sec. 1, we view the question
of harvesting properties as well as the exact language for
specifying them as orthogonal to our work, and we assume
that properties are expressed as monitors (see Def. 1 be-
low). We differentiate between monitors representing safety
properties – negative behaviors that should not appear in
the application — and monitors representing liveness prop-
erties – positive behaviors that the system must posses. In
general, liveness properties are violated only by infinite be-
haviors and thus are not monitorable [16]. However, BPEL
applications are run-to-completion programs which are ex-
pected to terminate. By the explicit addition of the “termi-
nate” (TER) event, liveness properties become bounded and
thus are readily monitorable.

For example, the two requirements of the TAS system
are to make sure that the customer has the transportation
needed to get to her destination (desired behavior), while
keeping the costs down (forbidden behavior). More formally,
they become P1 (liveness): “if requested (ri), TAS will guar-
antee that the transportation booked reaches the customer’s
destination (rd), regardless of the type of transportation cho-
sen”, and P2 (safety): “the user cannot book both a limou-
sine (bl) and an expensive flight (expF)”. Property P1 is
represented by the monitor A1 in Fig. 3a: the property is
satisfied once the booked transportations reaches the desti-
nation (rd), and the automaton is in state 4 (colored green
and shaded vertically). If the application terminates before
rd, the monitor moves to the (error) state 3 (colored red and
shaded horizontally). Σ is the alphabet of the monitor, i.e.,
every event occurring in the application, defined formally in
Sec. 3.1. States 1 and 2 are unshaded and colored yellow to
indicate that P1 is neither satisfied nor violated.

The monitor A2 for property P2 (see Fig. 3b) goes to the
error state 4 when travel includes booking an expensive flight
and a limo, in any order. All other states are yellow, since
the negative behavior can be detected but its absence cannot
be established. We formalize (colored) monitors below.

Definition 1 (monitor). A monitor is a 5-tuple A =
(S,Σ, δ, I, F), where S is a set of states, Σ is an alphabet,
δ ⊆ S×Σ×S is a transition relation, and I ⊆ S and F ⊆ S
are sets of initial and final states, respectively.

A state s of a monitor A is called a sink state if all outgo-
ing transitions from s are self-loops. For example, states 3
and 4 in Fig. 3a and state 4 in Fig. 3b are sinks. We say
that A accepts a word a0a1a2...an−1 ∈ Σ∗ iff there exists
an execution s0a0s1a1s2...an−1sn of A such that s0 ∈ I and
sn ∈ F . In our case, the accepted words correspond to bad
computations, and the set F of accepting states represents
error (red) states. A green state is a desired monitor state:
when it is reached, the corresponding property cannot be
violated in the current computation.

Definition 2 (Colored Monitor). Let A = (S,Σ, δ,
I, F) be a monitor, and let K ⊆ S be the set of all sink states
of A. Then, ∀s ∈ F · color(s) = red, ∀s ∈ K \F · color(s) =
green (all non-accepting sink states), and ∀s ∈ S \ (F ∪K) ·
color(s) = yellow.

(a) (b)

Figure 3: Monitors: (a) A1, and (b) A2. Red states
are shaded horizontally, green states are shaded ver-
tically, and yellow states are solid.

Definition 3. A is a liveness monitor if it includes at
least one green state; otherwise, it is a safety monitor.

We assume that we are given a set SM = {As
1, ...,A

s
m} of m

safety monitors and LM = {A`1, ...,A`n} of n liveness mon-
itors. As with any other property-based specification, it
is possible that the property list is incomplete (i.e., some
behavioural requirements are not captured) or even incon-
sistent (i.e., satisfying the entire set of requirements is not
possible).

3. PREPROCESSING
Inputs to the preprocessing stage are the BPEL program

B, the set of safety monitors SM and a set of liveness mon-
itors LM. We begin with converting B into a formal repre-
sentation, L(B), which is a labeled transition system (LTS).
We then enrich it with transitions on compensation actions
to get LC(B)(Sec. 3.1). We formalize change states and goal
transitions and provide an algorithm for computing these
statically on LC(B) (Sec. 3.2).

3.1 BPEL to LTS
In order to reason about BPEL applications, we need to

represent them formally, so as to make precise the meaning
of “taking a transition”, “reading in an event”, etc. Several
formalisms for representing BPEL models have been sug-
gested [12, 17, 19]. In this work, we build on Foster’s [9]
approach of using an LTS as the underlying formalism.

Definition 4 (Labeled Transition Systems). A La-
beled Transition System LTS is a quadruple (S,Σ, δ, I), where
S is a set of states, Σ is a set of labels, δ ⊆ S × Σ× S is a
transition relation, and I ⊆ S is a set of initial states.

Effectively, LTSs are state machine models, where transi-
tions are labeled whereas states are not. We often use the
notation s

a−→ s′ to stand for (s, a, s′) ∈ δ.
[9,10] specify mapping of all BPEL 1.1 activities into LTS.

For example, Fig. 4 shows the translation of the <invoke>
activity bf which returns a confirmation number. The activ-
ity is a sequence of two transitions: the actual service invo-
cation (invoke bf) and its return (receive bf)3. Conditional
activities like <while>, <if> and <pick> are represented
as states with two outgoing transitions, one for each valu-
ation of the condition. <sequence> and <flow> activities
result in the sequential and the parallel composition of the
enclosed activities.

The set of labels Σ of the resulting translation L(B) is
derived from the possible events in the application B: ser-
vice invocations and returns, OnMessage events, <scope>
entries, and condition valuations. It also includes the new
system event TER, modeling termination. The set of states

3Foster’s translation uses names to include traceability in-
formation to the BPEL’s scopes. We omit these in this paper
for simplicity.

Figure 4: LTS translation of the <invoke> activity
bf and its compensation (bold).

(a)

(b)

(c)

Figure 5: (a) LTS LC(TAS), showing traces t1 (dotted)
and t2 (dashed); (b) a fragment of L(TAS) × A1; (c) a
recovery plan in XML.

S in L(B) consists of the states produced by the translation
as well as a new state t. This state is reached from any state
of S via a TER event: ∀s ∈ S \ {t}, (s,TER, t) ∈ δ.

In order to capture BPEL’s compensation mechanism, we
introduce additional, backwards transitions. For example,
the compensation for bf, specified in Fig. 2b, is captured

by adding the transition 3
invoke cancelF−→ 1 as shown in Fig. 4.

Taking this transition effectively leaves the application in
a state where bf has not been executed. We denote by τ
an ‘empty’ action, allowing undoing of an action without
requiring an explicit compensation action.

Note that we have made a major assumption that com-
pensation returns the application to one of the states that
has been previously seen. Thus, given a BPEL program B
and its translation to LTS L(B) = (S,Σ, δ, I), we translate B
with compensation into an LTS LC(B) = (S,Σ∪Σc, δ∪δc, I),
where Σc is the set of compensation actions (including τ)
and δc is the set of compensation transitions.

Fig. 5a shows LC(TAS). To increase legibility, we do not
show the termination state t and transitions to it. Also,
we only show one transition for each service invocation, ab-
stracting the return transition and state. In this notation,

the LTS in Fig. 4 has two transitions: 1
bf−→ 3 and 3

cancelF−→ 1.
This allows us to visually combine an action and its com-
pensation into one transition, labeled in the form a/ā, where
a is the application activity and ā is its compensation. In

other words, each transition s
a/ā←→ t in Fig. 5a represents

two transitions: (s, a, t) ∈ δ and (t, ā, s) ∈ δc.
The <pick> activity (labeled in Fig. 2a) corresponds

to state 2 of Fig. 5a. The choice between onlyCar and carAnd−
Flight is represented by two outgoing transitions from this
state: (2, onlyCar, 3) and (2, carAndFlight, 6). Since these ac-
tions do not affect the state of the application, they are

compensated by τ . The <flow> activity (labeled in
Fig. 2a) results in two branches, depending on the order in
which the air and ground transportation are executed. The
compensation for these events is also τ .

3.2 Identifying Goal Transitions and Change
States

The second part of the preprocessing phase statically iden-
tifies strategic behaviors of the application L(B), aimed to
help find an efficient recovery plan when a violation is en-
countered (see Sec. 5 and Sec. 6).

3.2.1 Goal Transitions
In order to find a good recovery plan, we first need to com-

pute a set of goal transitions, that is, transitions taken by
the application which (immediately) result in satisfaction of
some properties. We compute these on a per-property basis.
Further, recall that only liveness properties can be satisfied,
which is indicated by the monitor reaching a green state;
safety properties can only be violated. Thus, for each live-
ness monitor A`i ∈ LM = (Si,Σ, δi, Ii, Fi), we are looking for
transitions in L(B) = (S,Σ, δ, I) corresponding to A`i enter-
ing its green state(s). To find those, we compute the cross-
product L(B)×A`i . (s, a, s′) ∈ δ is a goal transition iff ∃q, q′ ∈
Si ·(s, q)

a−→ (s′, q′) ∧ color(q) 6= green ∧ color(q′) = green.

That is, s
a−→ s′ corresponds to taking a transition on a into

a green state of A`i . The resulting set of goal transitions is
denoted by G(B,A`i).

For example, consider a fragment of L(TAS)× A1 shown in
Fig. 5b. The green state of A1 is state 4, with transition on rd
leading to it. The only transition in L(TAS)×A1 satisfying the

above definition is (4, 2)
rd−→ (5, 4), and thus G(TAS, A1) =

{(4, rd, 5)} (depicted by tiny-dashed transitions in Fig. 5a).
When computing recovery plans, we need to direct the

application towards taking its goal transitions.

3.2.2 Change States
Given an erroneous run, how far back do we need to com-

pensate before resuming forward computation? If we want
to avoid repeating the same error again, we need the appli-
cation to take an alternative path. States of L(B) that have
actions executing which can potentially produce a branch in
control flow of the application are called change states.

Flow-changing actions are user choices, states modeling
the <flow> activity (since each pass through this state may
produce a different interleaving of actions), and those service
calls whose outcomes are not completely determined by their
input parameters but instead depend on the implicit state
“of the world”. This characteristics of services is sometimes
referred to as idempotence, since multiple invocations of the
same service yield the same results. Thus, non-idempotent
service calls also identify change states. For example, cheapF
is a call to determine whether a given flight is cheap and, un-
less the specification of what cheap means changes, returns
the same answer for a given flight. On the other hand, bf

books an available flight, and each successive call to this
service can produce different results. Non-idempotent ser-
vice calls are identified by the BPEL developer as XML at-
tributes in the BPEL program.

We denote by C(B) the set of all change states in the LTS
of the application B. For example, in the LTS in Fig. 5a,
state 6 corresponds to the <flow> activity and represents
the different serialization order of the branches. States 2,
12 and 15 model user choices. Non-idempotent partner calls
are bf, bc, bl, and thus

C(TAS) = {1, 2, 3, 6, 7, 12, 13, 15, 16, 18, 23, 24},

identified in Fig. 5a by shading.
A recovery plan should pass through at least one change

state, to allow a change in the execution.
Of course, it is possible that the computed recovery plan

passes through a change state which does not affect its out-
come, i.e., is irrelevant to the encountered error and its fix.
We address computation of “relevant” change states in [22].

4. RUNTIME MONITORING
The runtime monitoring phase uses the set of safety (SM)

and liveness (LM) monitors to analyze the BPEL program
B as it runs on a BPEL-specific Application Server.

In [24], we have reported on an implementation of a run-
time monitoring framework within the IBM WebSphere busi-
ness integration products4. The interception mechanism
captures events in Σ as they pass between the application
server and the program. We use them to update the state of
the monitors and store them as part of the execution trace
T. This process continues until the current event is about
to cause the application termination or entering the error
state of one of the monitors. At this point, we stop the
computation and begin the recovery process.

Formally, for the LTS L(B) = (S,Σ, δ, I) we build the trace

T = s0
a0−→ s1

a1−→ ...
an−1−→ sn, where s0 ∈ I and ∀i · ai ∈ Σ

and si ∈ S. T is a successful trace iff ∀Ai ∈ SM ∪ LM,
a0a1...an−1 is rejected by Ai. Then sn = t, the termination
state of the application. T is a failure (or an error) trace iff
∃Ai ∈ SM∪LM s.t. a0a1...an−1 is accepted by Ai. Then state
sn is called an error state and is denoted by e. Note that e
can be t as well; this occurs when Ai is a liveness monitor
since absence of a desired sequence is determined when the
application terminates.

For example, consider the execution of TAS in which the
customer chooses the air/ground option but due to commu-
nication problems with the flight system partner, the invo-
cation of cf times out and triggers termination of the appli-
cation, leaving monitor A1 in its error state 3. This scenario
corresponds to the trace t1 depicted by dotted transitions
in Fig. 5a. In another scenario, corresponding to the trace
t2, depicted by dashed transitions in Fig. 5a, the customer
attempts to arrive at her destination via an expensive flight
(expF) and a limo (bl). Executing this trace leaves monitor
A2 in its error state 4.

Since the application properties are specified separately
from the BPEL program, no code instrumentation is re-
quired in this step, enabling non-intrusive (and scalable)
online monitoring.

4http://www-306.ibm.com/software/info1/websphere/
index.jsp?tab=products/businessint

5. RECOVERY PLANS FROM SAFETY
PROPERTY VIOLATIONS

Once an error has been detected during runtime monitor-
ing, the goal of the recovery phase is to suggest a number
of recovery plans that would lead the application away from
the error.

Definition 5 (Plan). A plan is a sequence of actions.
A BPEL recovery plan is a sequence of actions consisting of
user interactions, compensations (empty or not) and calls to
service partners.

Recovery plans differ depending on the type of property
that failed. We treat safety properties below, and recovery
from liveness properties is described in Sec. 6.

Computing Plans. The recovery procedure for a safety
property violation receives LC(B) – the LTS of the running
application B with compensations (see Sec. 3.1), T – the
executed trace ending in an error state e (see Sec. 4) and
C(B) – the set of change states (see Sec. 3.2.2).

In order to recover, we need to “undo” a part of the ex-
ecution trace, executing available compensation actions, as
specified by δc. We do this until we either reach a state in
C(B) or the initial state of LC(B). Multiple change states
can be encountered along the way, thus leading to the com-
putation of multiple plans.

For example, consider the error trace t2 described in Sec. 4
and shown in Fig 5a. {1, 2, 6, 15, 16, 18} are the change states
seen along t2. This leads to the recovery plans shown in
Fig 6a. We add state names between transitions for clarity
and refer to plans as to mean “recovery to state s”. A given
plan can also become a prefix for the follow-on one. This is
indicated by using the former’s name as part of the definition
of the latter. For example, recovery to state 16 starts with
recovery to state 18 and then includes two more backward
transitions, the last one with a non-empty compensation.
Plan r18 can avoid the error if, after its application, the user
chooses a cheap flight instead of an expensive one. Executing
plan r15 gives the user the option of changing the limousine
to a rental car, and plan r2 – the option of changing from an
air/ground combination to just renting a car. Both of these
behaviours do not cause the violation of A2.

Computed plans are then converted to BPEL for presen-
tation to the user. For example, plan r18 is shown in Fig 5c.
The chosen plan can then be applied (see Sec. 7), allow-
ing the program to continue its execution from the resulting
change state.

The exact number of plans is determined by the number
of change states encountered along the trace. Since each
new plan includes the previous one, the maximum number
of plans computed by our tool is set by user preferences ei-
ther directly (“compute no more than 3 plans”) or indirectly
(“compute plans of up to length 20” or “compute plans while
the overall sum of compensation actions is less than 10”).

Discussion. Note that plan r16 which cancels the limo,
would lead to rebooking it right away which may still leave
the possibility of booking an expensive flight and violating
the property P2. The reason why this plan might not be
as useful as others is that computation of change states in
Sec. 3.2.2 treats all non-idempotent service calls as the same,
whereas not all might be relevant to the satisfaction of prop-
erties of interest. See [22] for a description of computation
and evaluation of effectiveness of relevant change states.

6. RECOVERY PLANS FROM LIVENESS
PROPERTY VIOLATIONS

Failure of a liveness monitor during execution means that
some required actions have not been seen before the ap-
plication tried to terminate, and the recovery plan should
attempt to perform these actions.

The recovery procedure receives A` – the monitor that
identified the violation, LC(B) – the LTS of the application,
G(B,A`) – the set of goal transitions corresponding to A`, T
– the executed trace ending in an error state e, and C(B) –
the set of change states.

A recovery plan effectively“undoes”actions along T, start-
ing with e and ending in a change state (otherwise, the plan
would not be executable!) and then “re-plans” the behavior
to reach the goal (see Fig. 1b for a schematic view of the
overall process). Our solution adapts techniques from the
field of planning [14], described below.

6.1 Recovery as a planning problem
A planning problem is a triple P = (D, i,G), where D is

the domain, i is the initial state, and G is a set of goal states.
In addition to P , a planner often gets as input k – the

length of the longest plan to search for, and applies various
search algorithms to find a plan of actions of length ≤ k,
starting from i and ending in one of the states in G. Typi-
cally, the plan is found using heuristics and is not guaranteed
to be the shortest available. If no plan is found, the bound
k can be increased in order to look for longer plans.

To convert a recovery problem into a planning problem,
we use LC(B) as the domain and e as the initial state. The
third component needed is a set of goal states. Recall that
G(B,A`) is a set of goal transitions. We define Gs(B,A

`) =
{s | ∃a, s′ · (s, a, s′) ∈ G(B,A`)}. That is, Gs(B,A

`) is a set
of sources of transitions in G(B,A`). We can now define the
planning problem

P(B,A`,T) = (LC(B), e,Gs(B,A
`))

Note that when a plan p to a goal state s is computed, we
need to extend it with an additional transition, p

a−→ s′ to
account for (s, a, s′) ∈ G(B,A`). For example, consider the
trace t1 of Fig. 5a, described in Sec. 4, in which monitor
A1 fails. We define the planning problem P(TAS, A1, t1) =
(LC(TAS), 9, {4}), where 9 is the initial state (see Fig. 5a)
and Gs(TAS, A1) = {4} (see Sec. 3.2.1). The resulting plan p

should be expanded to p
rd−→ 5.

Unfortunately, not every trace returned by solving P(B,
A`,T) is acceptable: the recovery plans for liveness viola-
tions should also go through change states. Thus, we cannot
simply use a planner as a “black box”.

Instead, we look at how planners encode the planning
graph and then manipulate the produced encoding directly,
to add additional constraints. Consider the LTS in Fig. 7a,
which is the planning domain, with s as both the initial and
the goal state. The planning graph expanded up to length 3
is shown in Fig. 7b and is read as follows: at time 1 we begin
in state s1. If action a occurs (modeled as a2), then at time
2 we move to state t (modeled as proposition t2 becoming
true); otherwise, we remain in state s (i.e., proposition s2

is true). If action b occurs while we are in state t (modeled
as b3), then at time 3 we move to state s. Two plans of
length 2 are extracted from this graph: a2, b3, correspond-
ing to executing a first, followed by b, and “do nothing” – a

(a)
r18 = 4

τ−→ 21
τ−→ 20

τ−→ 19
cancelF−→ 18 r6 = r15

τ−→ 6

r16 = r18
τ−→ 17

cancelL−→ 16 r2 = r6
τ−→ 2

r15 = r16
τ−→ 15 r1 = r2

τ−→ 1

(b)

p0 = 9
τ−→ 8

cancelF−→ 7
τ−→ 6

τ−→ 2
onlyCar−→ 3

bc−→ 4

p1 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp true−→ 10

expF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p2 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p3 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

limo−→ 24
bl−→ 4

Figure 6: Recovery plans for TAS: (a) plans for the safety violation of trace t2; (b) plans of length ≤ 10 for
recovery from the liveness violation of trace t1.

(a) (b)

Figure 7: (a) a simple LTS and (b) its encoding as
the planning graph of size 3.

planner-specific treatment of a sequence of no-ops.
Several existing planners, such as BlackBox [18], translate

the planning graph into a CNF formula and then use a SAT
solver, such as SAT4J5, to find a satisfying assignment for
it. Such an assignment, if found, represents a plan. For
example, the CNF encoding of the planning graph in Fig. 7b
is as follows:

flts = (¬no-op s2 ∨ s1) ∧ (¬a2 ∨ s1) ∧ (¬no-op s3 ∨ s2)
∧(¬b3 ∨ t2) ∧ (¬s2 ∨ no-op s2) ∧ (¬t2 ∨ a2)
∧(¬no-op s3 ∨ s3) ∧ (¬b3 ∨ s3) ∧ (s1) ∧ (s3).

Note that it explicitly models pre- and post-conditions of
the execution of actions. Such a formula is passed to a SAT
solver which produces a satisfying assignment s, if one exists.
The desired plan is extracted from s by taking propositions
that correspond to actions and that are assigned positive
values in s. For the above example, these are a2, b3 and “do
nothing”.

In what follows, we first discuss how to produce a single re-
covery plan using a SAT-based approach (Sec. 6.2) and then
show how to extend it to produce multiple plans (Sec. 6.3).

6.2 Producing a single recovery plan
Let fP be the encoding of the planning problem P(B,A`,T)

produced by an existing planner. We augment fP to follow
our “undo until a change state and then redo” approach by
adding conjuncts to fP with the purpose of restricting its
solutions. For efficiency, some additional filtering is done
after all plans have been computed (see Sec. 6.4).

1. We want to make sure a recovery plan visits at least one
of the change states encountered on the execution trace T.
Let S(T) be the set of states on T. We define C(T) = S(T) ∩ C(B)
to be the change states that appear on T and denote by
c1, ..., cn the propositions that correspond to states in C(T).
If k is the maximum length of the plan which is being searched
for, propositions cj1, cj2, ..., cjk correspond to expansions of
cj to times 1 ... k. For example, consider Fig. 7 again. If
t is a change state and k = 3, then propositions t1, t2, t3 in
flts correspond to expansions of t to times 1, 2, 3. We define
c = (c11 ∨ ... ∨ c1k ∨ ... ∨ cn1 ... ∨ cnk), or, in the case of our
example, c = (t1 ∨ t2 ∨ t3). This formula is true when at
least one of the change states in C(T) is part of the plan.

2. In order to further lead the planner towards the “undo
and then redo” plans, we want to make sure that the only

5http://www.sat4j.org/

compensations used in the plan correspond to actions in the
original trace T. More formally, let TC be the set of com-
pensation actions corresponding to the actions in T, and let
Σc \ TC be all other compensation actions. Let a be a for-
mula which excludes (timed versions) of actions in Σc \ TC:
i.e., neither of these compensation actions is true at any step
in the plan. For example, for trace t1 over the LTS LC(TAS)
(see Fig. 5a), formula a would exclude all compensations
except cancelF and τ .

We now build a new propositional formula, based on fP:

R0(fP) = fP ∧ c ∧ a

R0(fP) describes the original planning problem for P(B,A`,T),
and in addition requires that at least one of the change states
is visited and no compensation actions for events that did
not occur in T appear in the plan.

6.3 Producing multiple recovery plans
Let π0 be the plan produced for R0(fP) (see Sec. 6.2), lead-

ing to a goal state g ∈ Gs(B,A
`). To give the user options for

recovery, we want to produce other plans, different from π0.
The simplest way to do this is to remove g from G(B,A`) and
repeat the process described in Sec. 6.2. The new plan will
necessarily lead to a different goal transition and thus will
be different from π0. However, this method cannot produce
multiple plans to the same destination.

Instead, we constrain R0(fP) to explicitly rule out π0. For
example, to rule out the plan a, b for the LTS in Fig. 7a, we
use R0(flts) computed in Sec. 6.2 and modify it as

R1(flts) = R0(flts) ∧ (¬a2 ∨ ¬b3)

This guarantees that the plan, if found, is different from the
previously found one in at least one action.

We continue this way, restricting Ri(fP) with the set of
previously computed plans to get Ri+1(fP), until the number
of desired plans is reached or until no new plan can be found,
that is, Rj(fP) is not satisfiable for some j.

We now apply this method to the TAS problem and the
error trace t1 shown in Fig. 5a and ending in state 9. Looking
for plans up to length 10, we get plans p0, p1 and p2 shown
in Fig. 6b. And, as mentioned earlier, each plan is extended

with the last goal transition 4
rd−→ 5.

Plan p0 is the shortest: if unable to obtain a price for the
flight, cancel the flight and reserve the car instead. Plans p1

and p2 also cancel the flight (since 8 is not a change state
whereas 7 is) and then proceed to re-book it and book the
car, regardless of the flight’s cost. Increasing the plan length,
we also get the option of taking the getCar transition out of
state 6, book the car and then the flight.

The produced plans are than ranked based on the length
of the plan and the cost of compensation actions in it. For

example, plan p0 is the shortest and the additional compen-
sation, for action carAndFlight, is of zero cost. Thus, it is
ranked the highest. Of course, this plan does not take into
account the time the user will spend driving rather than fly-
ing, so she may choose one of the alternative plans instead.

Chosen plans are then converted to BPEL for execution.
The compensation part of the plan is similar to the one
shown in Fig. 5c, and the re-planning part consists of a se-
quence of BPEL <invoke> operations.

6.4 Discussion
Precision. Our treatment of goal transitions effectively
means that we model satisfaction of the required sequence of
actions of a liveness property by executing the last event in
the sequence. Thus, our approach may include some plans
that do not result in the satisfaction of the desired prop-
erty (we did not encounter this problem in the examples
reported in Sec. 8). One way to approach this problem that
we intend to investigate in the future is to define goal traces,
based on the computation tree of L(B). While this will lead
to the extra precision in plan generation, we expect to pay
a potentially steep price in performance.

In addition, we can aim to limit the number of recov-
ery plans computed by taking two issues into consideration:
(a) making sure that the plan goes through only “relevant”
change states, i.e., those that affect the computation of the
violating trace, and (b) removing those plans that result in
the violation of one of the safety properties (see [22]).

Controlling unnecessary compensations. Plans p1, p2

and p3 seem to be doing an unnecessary compensation: why
cancel a flight and then re-book it if the check flight service
call failed? The reason is that the application developer
identified service call cf as idempotent. That is, she deter-
mined that executing this service again cannot change the
flow of control of the application, and thus further compen-
sations are necessary.

Of course, every service call can fail, and thus none are
truly idempotent. Yet, having too many change states would
undermine the effectiveness of our framework. We believe
that the tradeoff we have made in this paper is reasonable
but intend to revisit this issue as we gain more experience
with the approach.

Furthermore, as plan lengths get large, the planner can
generate plans with compensation loops which involve doing
an action and then immediately undoing it. For example,
in recovering from a violation in trace t1 in LTS LC(TAS),
shown in Fig. 5a, the plan may include booking a flight and
then canceling it several times (i.e., going between states
7 and 8 of LC(TAS). Clearly, such situations should be
avoided. We could have encoded a corresponding formula
as the SAT problem, conjoining it to R0(fP): “at any point
in the plan, when a non-compensatory action appears, all
follow-on actions should not include compensation”. How-
ever, we feel that this modification should make SAT com-
putation significantly less efficient. Instead, we filter com-
puted plans so that the ones with compensation loops are
not presented to the user.

Can generated plans still fail? There are a number of
reasons our plans can fail. The first one, addressed earlier
in this subsection, are due to the inherent imprecision of our
handling of required event sequences. The second reason is
that any service in the recovery plan can fail; thus, the ap-

plication will be unable to reach its goal, prompting further
planning and recovery. Finally, for recovery of safety prop-
erties, it is possible that all paths from a change state may
still lead the application to an error state. This problem can
probably be addressed using additional static analysis.

7. TOOL SUPPORT
We have implemented the process described in this paper

using a series of publicly available tools and several short
(200-300 lines) new Python or Java scripts. For more infor-
mation, please refer to [23].

The preprocessing phase (see Sec. 3) receives as input a
BPEL program B in BPEL4WS XML format. We use the
WS-Engineer extension for LTSA [11] to translate B into an
LTS L(B) and then export it in the Aldebaran format [4],
with an extension .aut. Since WS-Engineer does not sup-
port full handling of BPEL compensations, we built our own
.aut-to-.aut Python script (add comp.py) which uses B and
L(B) to produce LC(B) as described in Sec. 3.1. Traceabil-
ity between the BPEL and the resulting LTS is established
by the WS-Engineer’s encoding of BPEL scopes into names
of LTS actions. This traceability allows us to convert com-
puted plans to BPEL.

The safety and liveness monitors are specified in Alde-
baran as well, and we built a script compute cp.py to com-
pute cross-products and identify change states and goal links
for them, as described in Sec. 3.2.

The monitoring phase is implemented on top of the IBM
WebSphere Process Server. It allows us to intercept events
that pass between the application server and the program.
In this phase we also build the trace, registering the encoun-
tered change states. When recovering for safety properties,
we use these states to compute and rank plans.

In the liveness recovery phase, we first use our own script
(gen plan prob.py) to translate LC(B) into a planning prob-
lem which starts in the error state e and ends in the source of
one of the goal transitions (see Sec. 6.2). The planning prob-
lem is expressed in STRIPS [8] – an input language to the
planner Blackbox [18] which we use to convert it into a CNF
formula fP (see Sec. 6). Another new script, GenPlans.java,
modifies fP to produce alternative plans, calls the satisfia-
bility solver SAT4J, extracts plans from the satisfying as-
signments produced by SAT4J, ranks them and converts
them to BPEL4WS XML format for displaying and exe-
cution. SAT4J is an incremental SAT solver, i.e., it saves
results from one search and uses them for the next. For our
method of generating multiple plans (see Sec. 6.3), where
each SAT instance is more restricted than the previous one,
this is particularly useful, leading to efficient analysis.

Dynamic workflows [25], implemented in IBM WebSphere
Integration Developer 6.2, allow us to execute the generated
plans at runtime.

8. CASE STUDIES
In this section, we report on our experience applying our

approach to recover from two known vulnerabilities [6] in the
Flickr system. [6] modeled each of the aspects of the system
as a finite-state machine and showed how to use redundan-
cies in the system in order to “work around” these vulnera-
bilities. A much bigger example of the use of our framework
on the Travel Booking System is reported in [21].

8.1 Examples

Our approach [6]
App. k vars clauses plans time (s) length plans
FV 15 797 16,198 2 0.04 ≤ 2 1

22 1,436 33,954 4 0.74 ≤ 3 5
26 1,804 44,262 8 1.14 ≤ 4 13
42 3,276 85,494 40 3.12 ≤ 8 412

FC 4 42 159 1 0.01 ≤ 1 0
6 95 592 2 0.02 ≤ 2 2
12 321 3,248 4 0.15 ≤ 3 8
16 554 7,393 5 0.27 ≤ 4 22
20 856 14,427 13 1.38 ≤ 8 484

TAS 6 135 254 1 0.01 - -
8 798 10,355 5 0.13 - -
13 1,398 25,023 13 0.27 - -

Table 1: Plan generation data.

Flicker visibility. Flickr is a web-based photo-management
application. Photos are initially uploaded as either public,
family or private, and a photo’s visibility should be change-
able anytime using the setPerm function. The identified vul-
nerability is “when a photo is initially loaded as private, its
visibility cannot be changed to family at a later date”.

We created the Flicker visibility system (FV) by reverse-
engineering the model given in [6] and expressing it in BPEL.
We then expressed its properties “If a user tries to set a
photo’s visibility to X, Flickr will guarantee that the photo
will have the visibility X”, where X is each of the possible
visibilities as separate liveness automata. An instance with
X = family will “catch” the identified vulnerability in the
case where a photo is initially loaded as private.

The BPEL model FV, described fully in [20], consists of
28 activities (8 with explicit compensations). Two of these,
upload and change are non-idempotent. Converted to LTS,
the resulting model has 28 states and 37 transitions.

Flicker comments. Flickr lets users comment on uploaded
photos. While any user can add a comment to a public
photo, only authorized users can comment on private and
family photos. The identified vulnerability is “after upload-
ing a photo as public, no comments could be added”. Using
the same process as for FV, we created the BPEL model FC
(see [20]), consisting of 16 activities (6 with compensations).
The resulting LTS model has 18 states and 22 transitions.
We expressed FC’s property “if a user adds a comment to
a public photo that has comments enabled, the comment
should be successfully added to the photo’s comments” as a
liveness monitor.

8.2 Experience
The number of recovery plans generated for failed traces

of FV and FC is shown in Table 1. For example, for the
plan length up to 26, we have generated 8 plans for FV. The
longest plan was of length 42.

We now look at the effectiveness of the plan generation
process. For FV, one of the plans we generate for k = 22
is “compensate changes in visibility until the photo becomes
private again, set the photo visibility to public and change
visibility to family”, which corresponds to the workaround
plan chosen by [6]. For FC, the plan corresponding to the
chosen workaround is “delete the problematic comment, tog-
gle the comments permission and then try to add the com-
ment again”, generated when k = 12.

To compare the precision of our approach, i.e., the num-
ber of plans generated, we look at the list of workaround
sequences computed by [6] (see Table 1). The work in [6]
modeled the Flickr behavior directly and the model did not
include BPEL-induced actions such as entering scopes. Fur-

ther, the workaround sequences did not include the “going
back” part – they were plans on how to execute a task start-
ing from the initial state. Thus, the plans we generate are
somewhat longer. For example, the workaround sequences
of length ≤ 2 correspond to our plans of length k = 15.
With this adjustment, Table 1 shows that we generate sig-
nificantly fewer plans of the corresponding length. We also
generate every plan marked by [6] as desired.

Our experience with the Flickr examples suggests that
combining simple properties with the compensation mecha-
nism is effective for producing recovery plans.

8.3 Scalability
To check whether SAT-solving done as part of the plan-

ning is the bottleneck of our approach, we measured sizes of
SAT problems for FV, FC and our running example, TAS,
listing them in Table 1. For all three systems, the number
of variables and the number of clauses grows linearly with
the length of the plan, as expected, and the running time of
the SAT solver remains in seconds.

While the web applications we have analyzed have been
small (e.g., TAS has 14 activities, and its LTS encoding – 22
states and 27 transitions), our experience suggests that SAT
instances used in plan generation remain small and simple
and scale well as length of the plan grows. Given that mod-
ern SAT solvers can often handle millions of clauses and
given that individual web services are intended to be rela-
tively compact (with tens rather than thousands of partner
calls), we have a good reason to believe that our approach
to plan generation is scalable to realistic systems.

9. RELATED WORK
The main contribution of our work is a recovery frame-

work for web applications via planning. Bertoli et al. [3]
used planning for the synthesis of web service orchestrations.
In contrast, we assume the orchestration is given, and use
planning to help recover when an error is detected.

Several works have suggested “self-healing” mechanisms
for web-service applications. The Dynamo framework [2]
uses annotation rules in BPEL in order to allow recovery
once a fault has been detected. Such rules need to be in-
stalled by the developers before the system can function. In
contrast, our work uses an existing compensation mechanism
and requires no extra effort from developers.

[13] propose a framework for self-healing web services,
where all possible faults and their repair actions are pre-
defined in a special registry. This approach relies on being
able to identify and create recovery from all available faults.
Our approach uses compensations for individual actions and
can dynamically recover from errors as they are detected.

[7] uses fault tolerance patterns to transform the origi-
nal BPEL process into a fault-tolerant one at compile time.
It is done by adding redundant behavior to the application
which may result in a significantly bigger, and slower, pro-
gram. Our work is non-intrusive and does not slow down
the application if no errors are found.

The work of Carzaniga et al. [6] is the closest to ours in
spirit. It exploits redundancy in web applications to find
workarounds when errors occur, assuming that the appli-
cation is given as a finite-state machine, with an identified
error state as well as the “fallback” state to which the ap-
plication should return. The approach generates all possible
recovery plans, without prioritizing them. In contrast, our

framework not only detects runtime errors but also calcu-
lates goal and change states and in addition automatically
filters out unusable recovery plans (those that do not include
change states) and ranks the remaining ones. See Sec. 8 for
a detailed comparison.

10. CONCLUSION AND FUTURE WORK
In this paper, we have used BPEL’s compensation mecha-

nism to define and implement an online system for suggest-
ing, ranking and executing recovery plans. Our experience
has shown that this approach computes a small number of
highly relevant plans, doing so quickly and effectively.

We have evaluated our approach on relatively small and
simple examples. While we expect web service applications
to be small, it is still important to conduct further case stud-
ies to assess scalability and, more importantly, usability of
our approach. Furthermore, throughout the paper we have
identified several precision issues related to the identifica-
tion of goals and change states. We intend to apply static
analysis techniques to help improve it and conduct further
experiments to better understand the tradeoffs between the
more expensive analyses and the effective computation of
recovery plans. Some preliminary work towards this end is
reported in [22].

Another limitation of our approach is that we model com-
pensations as going back to states visited earlier in the run.
While this model is simple, clean and enables effective anal-
ysis, the compensation mechanism in languages like BPEL
allows the user to execute an arbitrary operation and thus
end up in a principally different state. In fact, our approach
will encounter this situation as soon as we start modeling
data in addition to control. For example, if we model the
amount of money the user has as part of the state, then
booking and then canceling a flight brings her to a different
state – the one where she has less money and no flight. Thus,
extending our framework to situations where compensation
affects data remains a challenge.

In fact, reasoning about properties which involve the ac-
tual data exchanged by conversation participants may be
challenging from the perspective of expressing the proper-
ties and converting them into monitoring automata as well
as from the scalability perspective (e.g., computing the goal
links, expressing the formal model of BPEL with data as a
state machine, etc.).

Acknowledgements
We thank IBM CAS Toronto (specifically, Bill O’Farrell,
Elena Litani and Leho Nigel), members of the IFIP 2.9
WG, and FSE anonymous reviewers for their helpful feed-
back on this work and its presentation. This research has
been funded by NSERC, IBM Toronto, MITACS, and by
the Ontario Post-Doctoral Fellowship program.

11. REFERENCES
[1] M. Autili, P. Inverardi, and P. Pelliccione. A Scenario

Based Notation for Specifying Temporal Properties. In
Proc. of SCESM (at ICSE’06), 2006.

[2] L. Baresi and S. Guinea. Dynamo and Self-Healing BPEL
Compositions. In Proc. of ICSE’07 (Companion), pages
69–70, 2007.

[3] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore,
H. Raik, and M. Wagner. Continuous Orchestration of Web
Services via Planning. In Proc. of ICAPS’09, 2009.

[4] M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier.

Protocol Verification with the ALDÉBARAN Toolset.
STTT, 1(1-2):166–184, 1997.

[5] T. Bultan. Modeling Interactions of Web Software. In Proc.
of WWV’06, pages 45–52, 2006.

[6] A. Carzaniga, A. Gorla, and M. Pezze. Healing Web
Applications through Automatic Workarounds. STTT,
10(6):493–502, 2008.

[7] G. Dobson. Using WS-BPEL to Implement Software Fault
Tolerance for Web Services. In Proc. of EUROMICRO’06,
pages 126–133, 2006.

[8] R. Fikes and N. J. Nilsson. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. In
Proc. of IJCAI’71, pages 608–620, 1971.

[9] H. Foster. A Rigorous Approach to Engineering Web
Service Compositions. PhD thesis, Imperial College, 2006.

[10] H. Foster, W. Emmerich, J. Kramer, J. Magee,
D. Rosenblum, and S. Uchitel. Model Checking Service
Compositions under Resource Constraints. In Proc. of
ESEC-FSE ’07, pages 225–234, 2007.

[11] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS:
a Tool for Model-Based Verification of Web Service
Compositions and Choreography. In Proc. of ICSE’06,
pages 771–774, 2006.

[12] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of WWW’04, pages 621–630, 2004.

[13] M. Fugini and E. Mussi. Recovery of Faulty Web
Applications through Service Discovery. In Proc. of
SMR’06, 2006.

[14] F. Giunchiglia and P. Traverso. Planning as Model
Checking. In Proc. of ECP’99, pages 1–20, 1999.

[15] R. Grosu and S. A. Smolka. Safety-Liveness Semantics for
UML 2.0 Sequence Diagrams. In Proc. of ACSD’05, pages
6–14, 2005.

[16] K. Havelund and G. Rosu. Testing Linear Temporal Logic
Formulae on Finite Execution Traces. Technical report,
2001.

[17] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to
Petri Nets. In Proc. of BPM’05, volume 3649 of LNCS,
pages 220–235, 2005.

[18] H. A. Kautz and B. Selman. Unifying SAT-based and
Graph-based Planning. In Proceedings of IJCAI’99, pages
318–325, 1999.

[19] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel,
M. Dumas, and A. H. M. ter Hofstede. Formal Semantics
and Analysis of Control Flow in WS-BPEL. Sci. Comput.
Program., 67(2-3):162–198, 2007.

[20] J. Simmonds. Dynamic Analysis of Web Services. PhD
thesis, Department of Computer Science, University of
Toronto, 2010. (in preparation).

[21] J. Simmonds, S. Ben-David, and M. Chechik. Monitoring
and Recovery of Web Service Applications. In Smart
Internet, LNCS, pages 1–35. Springer, 2010. To appear.

[22] J. Simmonds, S. Ben-David, and M. Chechik. Optimizing
Computation of Recovery Plans for BPEL Applications,
2010. Submited.

[23] J. Simmonds, S. Ben-David, and M. Chechik. RuMoR:
Monitoring and Recovery of BPEL Applications, May 2010.
Submitted.

[24] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell,
E. Litani, and J. Waterhouse. Runtime Monitoring of Web
Service Conversations. IEEE Trans. on Serv. Comp., 2009.

[25] W. M. P. van der Aalst and M. Weske. Case Handling: a
New Paradigm for Business Process Support. Data Knowl.
Eng., 53(2):129–162, 2005.

