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Abstract—Models are good at expressing information about
software but not as good at expressing modelers’ uncertainty
about it. The highly incremental and iterative nature of software
development nonetheless requires the ability to express uncer-
tainty and reason with models containing it. In this paper, we
build on our earlier work on expressing uncertainty using partial
models, by elaborating an approach to reasoning with such
models. We evaluate our approach by experimentally comparing
it to traditional strategies for dealing with uncertainty as well
as by conducting a case study using open source software. We
conclude that we are able to reap the benefits of well-managed
uncertainty while incurring minimal additional cost.

I. INTRODUCTION

Software engineering is a highly incremental and iterative
endeavor where uncertainty can exist at multiple stages of the
development process. Consequently, systematic approaches
to handling uncertainty are essential throughout the software
life-cycle.

Models are used pervasively in software engineering, and
their ability to express information about different aspects of
software has been studied by many researchers [25]. How-
ever, models seldom provide the means for expressing the
uncertainty that the modeler has about this information. In
this paper, by “uncertainty” we mean “multiple possibilities”.
This notion of uncertainty is often used in behavioral mod-
eling [10], but we expand it to arbitrary modeling languages.
For example, a modeler of a class diagram may be uncertain
about which of two attributes to include in a particular class
because they represent different design strategies, and it is too
early to know which is correct.

Uncertainty can be introduced into the modeling process
in many ways: alternative ways to fix model inconsisten-
cies [14], [5], [24], different design alternatives (e.g., the
above example) [26], problem-domain uncertainties [27],
multiple stakeholder opinions [18], etc. In each case, the pres-
ence of uncertainty means that, rather than having a single
model, we actually have a set of possible models and we are
not sure which is the correct one. Living with uncertainty
requires us to keep track of this set and use it within mod-
eling activities wherever we would use an individual model;
however, this can be challenging since modeling activities are
typically intended for individual models, not sets of them.
Also, managing a set of models explicitly is impractical as
its size might be quite large. E.g., in Sec. VI we give a case
study in which two inconsistencies lead to several hundred
possible models. On the other hand, if uncertainty is ignored
and one particular possible model is chosen prematurely, we
risk having incorrect information in the model.

Figure 1. (a-f) Six alternative designs for a peer-to-peer file sharing system;
(g) a partial model Me for the six alternatives.

Our approach to handling uncertainty is to use annotations
with well-defined semantics that change a model into a par-
tial model, i.e., one that compactly yet precisely encodes the
entire set of possible models. This representation allows us
to work with a set of models as if it were a single model
and do reasoning efficiently with all the possible models
simultaneously.

Motivating Example. To help motivate and explain our
approach, we use the example of a team engaged in the
development of a simple peer-to-peer file sharing application.
The team uses UML State Machine diagrams to model the
behavior of this application. Its states are Idle, Leeching
(downloading a file) and Seeding (sharing a complete local
copy). Downloading always starts from the Idle state, and
Seeding and Leeching can always be canceled. We assume
that at this stage of development, the team has not finalized



the exact behavior of the program, due to vague requirements
given to them by their client. The team has drafted three
alternative behavioral designs:

1) “Benevolent”: Once the file is downloaded, the program
automatically starts Seeding, as shown in Fig. 1(a).

2) “Selfish”: Once the file is downloaded, the program
becomes Idle, and the user can choose whether to start
Seeding or not – see Fig. 1(c).

3) “Compromise”: Once the file is downloaded, the pro-
gram stops accepting new peers. It doesn’t discon-
nect from peers that were already connected during
the Leeching stage, but rather waits while they are
Finishing before it becomes Idle – see Fig. 1(e).

The team is also unsure whether the program should allow the
user to restart a finished download (i.e., download the file
again). The three alternatives with this feature are shown in
Fig. 1(b, d, e), respectively.

Until the client clarifies the requirements, the team is faced
with uncertainty over which design decision to choose. At
this point, it is probably useful to be able to reason about
the available choices, both to ensure that the models conform
to the desired constraints and to explore their properties. For
example, assume that the team is using a code generator that,
in order to ensure determinism, requires two hard constraints:
HC1: No two transitions have the same source and target.
HC2: No state is a sink.

Additionally, the team is interested in two “nice-to-have”
properties, i.e., soft constraints that are not strictly required
but are desirable:
SC1: Users can share files they already have, (i.e., Seeding

is directly reachable from Idle).
SC2: Users can always cancel any operation (i.e., every non-

idle state has a transition to Idle on cancel()).
In order to reason effectively about any of these properties

over the entire set of alternatives, the team may want to ask
the following questions:

Does the property hold for all, some or none of the alter-
natives? This can help determine how critical some property
is in selecting alternatives when uncertainty is lifted. For
example, HC2 holds for all alternatives, and therefore is not
going to be a main reason in selecting one, once uncertainty
is resolved. Moreover, if some property does not hold for
any alternative, it may be an indication that the team needs
to revisit the designs, sooner rather than later. For example,
knowing early on that HC1 does not hold for the alternatives
in Fig. 1(c, d) may be an indication that the team needs to
reconsider the design of the “selfish” scenario.

If the property does not hold for all alternatives, why is
it so? This form of diagnosis can help guide development
decisions even before uncertainty is lifted. Developers may
be interested in finding one counter-example of an alternative
where the property gets violated (or if they expected that the
property would be violated – an example where it holds) to
help them debug the set of alternatives. For example, locating
the alternative in Fig. 1(e) might be sufficient for the team
to understand why SC2 does not hold for all alternatives.

Figure 2. Simplified metamodel used for defining State Machines.

In other cases, we may prefer to calculate the entire subset
of alternatives that violate the property, to explore whether
there is a common underlying cause, as with the alternatives
in Fig. 1(c, d) that violate the hard constraint HC1.

If the property is a necessary constraint, how to filter out
the alternatives for which it gets violated? Developers may be
interested in this sort of property-driven refinement of the set
of alternatives. E.g., if the team decides that SC2 is necessary,
they should be able to restrict their working set of alternatives
to those that satisfy it, i.e., those in Fig. 1(a-d).

Contributions. In this paper, we elaborate and evaluate a key
component of our broad research agenda for managing un-
certainty within models [7]: reasoning with models contain-
ing uncertainty. Specifically, we define partial models, show
how to construct them and then describe the three reasoning
operators aimed to answer the questions posed by the moti-
vating example. We then extensively evaluate our approach
by experimentally comparing it to conventional strategies for
dealing with uncertainty as well as by conducting a case study
of an open source software project.

Organization of the rest of the paper. In Sec. II, we provide
the necessary background. In Sec. III, we formally define
partial models. Sec. IV develops the core methods of reason-
ing with partial models. These are experimentally evaluated
in Sec. V and then applied to a case study in Sec. VI. We
discuss related work in Sec. VII and conclude the paper with
a summary and suggestions for further research in Sec. VIII.

II. BACKGROUND

In this section, we establish the notation and introduce
concepts used in the remainder of the paper. Specifically, we
ground our approach to graph-based modeling languages and
propositional logic.

Modeling Formalisms. In this paper, a model is a typed
graph that conforms to some metamodel represented by a dis-
tinguished type graph. Our approach is domain-independent,
in the sense that it can handle arbitrary graph-based modeling
languages. The definitions that follow are based on [6].

Definition 1: A graph is a tuple G = 〈V,E, s, t〉, where V
is a set of nodes, E is a set of edges, and s, t : E → V are
the source and target functions, respectively, that assign each
edge a source and target node.

Definition 2: A typed graph (model) of type T is a triple
〈G, type, T 〉 consisting of a graph G, a metamodel T and
a typing function type : G → T that assigns types to the
elements of G.

For example, the models shown in Fig. 1 are typed with the
metamodel shown in Fig. 2.



Definition 3: The scope (or vocabulary) of a model 〈G =
〈V,E, s, t〉, type, T 〉 is the set S = V ∪ E of its typed nodes
and edges.

For example, the scope of the model in Fig. 1(a) consists
of the states Idle, Leeching and Seeding and the edges
start(), completed(), etc.

In the following, we often refer to nodes and edges that are
in the scope of a model as elements or atoms of the model.
From models to formulas and back. To encode a model
in propositional logic, we first map elements in its scope
into propositional variables and then conjoin them. To ensure
that this operation is reversible, we define specific naming
conventions for the propositional variables:
• A node element N of type T is mapped to a proposi-

tional variable “N T”.
• An edge element E of type T with source node N1 and

target node N2 is mapped to a propositional variable
“E N1 N2 T”.

E.g., the propositional encoding of the model in Fig. 1(b) is:
Idle_State ∧ Leeching_State ∧ Seeding_State ∧
start_Idle_Leeching_Transition ∧
cancel_Leeching_Idle_Transition ∧
completed_Leeching_Seeding_Transition ∧
cancel_Seeding_Idle_Transition ∧
restart_Seeding_Leeching_Transition

Given a propositional encoding P (m), of a model m,
we can uniquely reconstruct the model m using the naming
conventions. First, for every propositional whose name fits
the pattern N T, we create a node of type T , named N .
Then, for every propositional variable whose name follows
the pattern E N1 N2 T, we create an edge of type T between
the nodes N1 and N2, with the label E.

This propositional encoding also allows us to embed mod-
els into larger scopes, by negating all the variables not in the
original scope. For example, the model in Fig. 1(a) can be
expressed in the scope of the model in Fig. 1(b) as:

Idle_State ∧ ... ∧ cancel_Seeding_Idle_Transition
∧ ¬ restart_Seeding_Leeching_Transition

Using the propositional representation, we also define a
simple form of model union. Assuming two elements with the
same name are considered identical, the union of two models
is a model that corresponds to a formula that is a conjunction
of all the variables in the union of their scopes. For example,
the union of the models in Fig. 1(b, d) is:

Idle_State ∧ ... ∧
restart_Seeding_Leeching_Transition ∧
completed_Leeching_Idle_Transition ∧
share_Idle_Seeding_Transition

A useful extended scope is the embedding of a sparse graph
into the scope of its corresponding complete graph. In the
union of models with extended scopes, variables only appear
negated if they are negated in both input models.
Properties. We consider properties expressed in first order
logic (FOL) or in a similar language such as the Object
Constraint Language (OCL) [15]. For example, the property
HC1 is expressed in FOL as:

∀t1, t2 : Transition · (Source(t1) = Source(t2)∧
Target(t1) = Target(t2)) ⇔ (t1 = t2)

An FOL formula can be grounded over the vocabulary of a
particular model that is encoded in a propositional formula.
E.g., grounding HC1 over the vocabulary of the model in
Fig. 1(a), given that it contains 4 transition elements and that
HC1 is a universal property, results in ΦHC1 – a conjunction
of 10 unique terms of the form (Si = Sj ∧ Ti = Tj) ⇔
Ei = Ej , where Ei,j are propositional variables representing
transitions, Si,j , Ti,j are variables representing their respec-
tive source and target states, and “=” signifies identity.

III. PARTIAL MODEL PRELIMINARIES

In this section, we formally define partial models and their
associated operations. Semantically, a partial model repre-
sents a set of classical (i.e., non-partial) models.
Partial Models. The particular type of partiality we consider
in this paper is the one that allows a modeler to express
uncertainty as to whether particular model atoms should be
present the model. The model is accompanied by a proposi-
tional formula, called may formula, which explicates allow-
able combinations of such atoms.

Definition 4: A Partial Model is a tuple 〈G, vm, em, φ〉,
where G = 〈〈V,E, s, t〉, type〉 is a complete typed graph,
vm : V → B and em : E → B, where B is the set
{True,False,Maybe}, are functions for annotating atoms
in G, and φ is a propositional may formula over the scope
S = V ∪ E, built as described in Sec. II.

In the above definition, an annotation True (False) means
that the atom must (must not) be present in the model,
whereas Maybe indicates uncertainty about whether the atom
should be present in the model. In other words, a partial
model consists of a complete typed graph whose elements are
annotated with True, False or Maybe, and a may formula
that describes the allowed configurations of its elements. The
annotation functions are often omitted for brevity.

Model Me in Fig. 1(g) is an example of a partial model.
The elements annotated with True, e.g., the state Idle and
the transition start(), appear with solid lines, and its Maybe
elements, e.g. the state Finishing, with dashed lines. The
edges that are not shown (e.g. any edge between the states
Finishing and Leeching) are annotated with False. Me is
accompanied by the may formula φe, shown next to it in the
figure. We used capital letters as shortcuts for the full names
of the propositional variables that correspond to Maybe ele-
ments. E.g., F stands for the variable Finishing State.

Given a partial model M , let C(M) be the set of classical
(or concrete) models that it represents, called concretiza-
tions. For example, C(Me) consists of the models shown in
Fig. 1(a)-(f). A partial model with an empty set of concretiza-
tions is called inconsistent. In what follows, we only assume
consistent partial models.

The size of the set of concretizations reflects the modeler’s
degree of uncertainty. Uncertainty can be reduced by reducing
the set of concretizations via refinement. A partial model is
refined by changing the annotations of its elements to increase
the level of certainty: Maybe elements can be assigned to
True, False or Maybe; True and False annotations must
remain unchanged since information about them is already



Figure 3. Normal forms of the model M¬HC1
e , shown in Fig. 4(a): (a)

Graphical Normal Form (GNF) (b) Propositional Normal Form (PNF).

certain. Changes to Maybe elements must not violate the
formula of the original partial model, and thus produce a
(nonempty) subset of concretizations allowed by it.

Definition 5: Given two partial modelsM1 andM2, where
Mi = 〈Gi, vmi, emi, φi〉, with G1 = G2, we say that M2

refines M1 (or that M1 is more abstract than M2), denoted
M2 �M1 iff C(M2) ⊆ C(M1) over the same scope S.
E.g., the model MHC1

e in Fig. 4(b) is more refined than Me

in Fig. 1(g). In particular, C(Me) consists of the models in
Fig. 1(a)-(f), whereas C(MHC1

e ) consists of the models in
Fig. 1(a,b,e,f). Thus, the model MHC1

e has less uncertainty.
A partial model without Maybe elements has exactly one

concretization. The naming conventions in Sec. II allow us to
define a unique conversion between a classical model and a
corresponding partial model with a unique concretization.
Normal Forms. Given a set of classical models, there is no
unique way to represent them as a partial model. For example,
M¬HC1
e in Fig. 4(a) represents the models in Fig. 1(c, d).

However, the same set of concretizations could be expressed
by: (a) removing from the scope ofM¬HC1

e extraneous False
elements, such as the state Finishing, and (b) rewriting its
propositional formula only in terms of its Maybe elements.
In the case of M¬HC1

e , the partial model has only one
Maybe element (the transition on restart()), which can be
either True or False, and therefore, the attached propositional
formula φ¬HC1

e is a tautology.
Definition 6: Two partial models M1, M2 are equivalent,

denoted M1 ∼ M2, iff C(M1) = C(M2). Obviously, M1 ∼
M2 iff M1 �M2 and M2 �M1.

To help represent models, we define two normal forms:
Graphical Normal Form (GNF) and Propositional Normal
Form (PNF). Intuitively, a model in GNF represents most
information in the graph, whereas in PNF it represents all
the information in the formula. For example, the GNF and
PNF for M¬HC1

e are shown in Fig. 3(a-b), respectively. In
the latter, we did not represent False edges which would
otherwise be represented by negated variables.

As partial models are complete graphs, the normal form
of M should be restricted to its largest complete subgraph
that only contains True and Maybe nodes. We call the scope

of this subgraph minimal. In the following, the symbol �
signifies logical entailment.

Definition 7: Given a partial model M = 〈G,φ〉, its GNF
is a partial model M GNF = 〈G GNF, φ GNF〉, constructed as
follows:
• G GNF ⊆ G and the scope S of M GNF is minimal.
• For every atom a in G, if φ � a, then a is annotated with

True in G GNF.
• For every atom a in G, if φ � ¬a, then a is annotated

with False in G GNF.
• φ GNF is specified only in terms of elements annotated

with Maybe in G GNF.
• φ � φ GNF.
Proposition 1: Let M be a partial model and M GNF be a

result of applying Definition 7. Then, M ∼M GNF.
Definition 8: Given a partial model M = 〈G,φ〉, its PNF

is a partial model M PNF = 〈G PNF, φ PNF〉 constructed as
follows:
• G PNF ⊆ G and the scope S of M PNF is minimal.
• All elements in G PNF are annotated with Maybe.
• φ PNF � φ.
Proposition 2: Let M be a partial model and M PNF be a

result of applying Definition 8. Then, M ∼M PNF.
Properties of Partial Models. The result of checking a
property on a partial model can be True, False or Maybe.
True means that the property holds for all concretizations,
False that it does not hold for any of them, and Maybe
that it holds for some, but not all concretizations. This is
called thorough checking [2]. Moreover, by Definition 5,
refinement preserves True and False properties. That is, as
uncertainty gets reduced, values of properties about which we
were certain remain unaffected.

IV. REASONING WITH PARTIAL MODELS

In this section, we describe how to facilitate decision
deferral in the presence of uncertainty by using partial models
to reason with sets of alternatives. In particular, we define four
reasoning operations:
OP1: Construction: how to create a partial model to (pre-

cisely) represent a set of alternatives.
OP2: Verification: how to check whether a partial model

satisfies a property.
OP3: Diagnosis: how to find out which alternatives violate

the property.
OP4: Refinement: how to filter out the alternatives that

violate the property.

OP1: Construction. Construction of partial models is
achieved by merging the alternatives and annotating the el-
ements that vary between them by Maybe. Additionally, may
formula is constructed to capture the allowable configurations
of the Maybe elements.

Algorithm 1 shows how to create a partial model M from
a set A of alternatives. By construction, C(M) = A, which
establishes the algorithm’s correctness.

In our motivating example, the six alternative behavioral
designs can be represented using the partial model shown



Algorithm 1 Construction of partial models.
Input: Set A of n concrete models mi, i ∈ [0..n− 1].
Output: A partial model M = 〈GM ,ΦM 〉

1: Construct GM as the union of all mi ∈ A.
2: Annotate non-common elements in GM by Maybe.
3: Create ΦM :=False
4: for all mi ∈ A, ex ∈ GM e annotated with Maybe do
5: Create φi = e0 ∧ ¬e1 ∧ . . . ∧ ek,
6: where if ex 6∈ mi, it appears negated.
7: ΦM := ΦM ∨ φi
8: end forM = 〈GM ,ΦM 〉

in Fig. 1(g). In the figure, elements annotated as Maybe
appear dashed. For example, the state Finishing exists in
only two alternatives, and the transition on restart() – in
three; therefore, both are represented as Maybe. The rest of
the elements are present in all of the alternatives, and thus are
represented as True and appear solid. The corresponding may
formula is shown in Fig. 1(g).

OP2: Verification. The purpose of the verification task is to
answer the question ”Does the desired property hold?”.

In order to facilitate reasoning, we put the partial model in
PNF and appropriately combine its PNF may formula with
the formula representing the property we want to check. A
SAT solver is then used to check whether the encoding of the
model entails that of the property.

Specifically, the verification engine receives a partial model
M that is represented in PNF by the propositional formula
ΦM and a property expressed as a propositional formula Φp.
We then check satisfiability of the expressions ΦM ∧ ¬Φp
and ΦM ∧ Φp, using two queries to a SAT solver, combining
the results to determine the outcome of the property on the
partial model as described in Table I. For example, if both the
property and its negation are satisfiable, then there is at least
one concretization of the partial model where the property
holds and another – where it does not. Thus, in the partial
model the property has value Maybe.

Returning to our running example, in order to check
whether the property HC1 holds for the partial model Me in
Fig. 1(g), we first put Me in PNF to get the propositional
formula Φe. Then we express HC1 as a propositional for-
mula ΦHC1, by grounding it over the vocabulary of Me, as
described in Sec. II. Checking the property means checking
satisfiability Φe ∧ ¬ΦHC1 and Φe ∧ ΦHC1. The SAT solver
returns one of the two models from Fig. 1(c, d) as the
satisfying assignment for Φ ∧ ¬ΦHC1, and one of those in
Fig. 1(a, b, e, f) for Φ ∧ ΦHC1. Thus, the value of HC1 is
uncertain (Maybe) on the model.

OP3: Diagnosis. If the result of the verification task is False
or Maybe, the next step is to do diagnosis, i.e., to answer the
question ”Why does the property of interest not hold?”. Or,
conversely, if the outcome was Maybe where it was expected
to be False, to answer the question ”Why is the property not
violated?”. Three forms of feedback can be returned:

Table I
CHECKING PROPERTY p ON THE PARTIAL MODEL M .

ΦM ∧ Φp ΦM ∧ ¬Φp Property p
SAT SAT Maybe
SAT UNSAT True
UNSAT SAT False
UNSAT UNSAT (Inconsistent M )

1) Return one counter-example – a particular concretiza-
tion for which the property does not hold (OP3a): Such
a counter-example is provided “for free” as a by-product
of SAT-based verification. In particular, if the property is
False, the SAT solver produces a satisfying assignment for
ΦM ∧ ¬Φp.

This assignment is a valuation for all propositional vari-
ables that correspond to elements in the scope of M and
can thus be visualized as a classical model for presentation
to the user. To create the visualization, we conjoin all vari-
ables, negating those that had value False in the satisfying
assignment. Provided the naming conventions in Sec. II are
followed, this conjunction uniquely corresponds to a classical
model, which is then presented as the feedback.

In our running example, verifying SC2 on the model Me

involves checking the satisfiability of Φe ∧ ¬ΦSC2. This
formula is satisfiable, and the SAT solver returns one of the
concretizations in Fig. 1(e, f) as a satisfying assignment.

2) Return a concretization where the property does hold
(OP3b): This is also a by-product of the verification stage: if
the result of checking the property is Maybe, the SAT solver
produces a satisfying assignment for the formula ΦM ∧ Φp.
This valuation is expressed as a model (as discussed above)
and provided to the user.

In the case of verifying SC2, the SAT solver returns a
valuation that corresponds to one of the concretizations in
Fig. 1(a,b,c,d) as a satisfying assignment to the formula
Φe ∧ ΦSC2.

3) Return a partial model representing the set of all con-
cretizations for which the property does not hold (OP3c):
These concretizations are characterized by the formula ΦM ∧
¬Φp. In our example, the concretizations of Me that violate
HC1 are those that satisfy the formula Φe∧¬ΦHC1, i.e., those
in Fig. 1(c,d).

In order to create useful feedback to the user, we consider a
new partial model M¬p with the same vocabulary as M , that
is represented in PNF by the formula ΦM∧¬Φp. We visualize
M¬p by putting it into GNF. In our example, the partial model
M¬HC1
e that represents the set of concretizations of Me that

violate HC1 is shown in Fig. 4(a). M¬HC1
e is expressed in

terms of the larger scope ofMe and therefore certain elements
are tagged as False and omitted from the diagram. The
overall process is described in Algorithm 2. As the resulting
model is constructed by the formula ΦM ∧ ¬Φp, its set of
concretizations is exactly the subset of concretizations of the
original partial model for which the property was violated. In
other words, M¬p �M .
OP4: Property-driven refinement. If the result of verifica-
tion of an important property is Maybe, the developer may



Figure 4. (a) Partial model M¬HC1
e representing all concretizations of Me

that violate HC1. (b) Partial model MHC1
e representing all concretizations

of Me that satisfy HC1.

want to refine the partial model to a constrained version
such that all of its concretizations satisfy the property. This
subset of concretizations exactly characterized by the formula
ΦM ∧ Φp. We use it to construct the partial model Mp in the
same manner as we did for constructing M¬p.

In our example, the set of concretizations ofMe that satisfy
HC1 consists of those in Fig. 1(a, b, e, f). Constructing the
partial model MHC1

e that represents these is done using the
same method (shown in Algorithm 2) as for constructing its
complement, M¬HC1

e . Namely, the formula Φe ∧ ΦHC1 is
constructed and then put into GNF. The result is shown in
Fig. 4(b).

As Mp is constructed using the formula ΦM ∧ Φp, its set
of concretizations is exactly the subset of concretizations of
the original M for which the property holds; thus, Mp �M .

V. EXPERIMENTS

We conducted a preliminary empirical study to assess the
feasibility and scalability of our approach to reasoning using
partial models. More specifically, we attempted to answer the
following research questions:
RQ1: How feasible is reasoning with sets of models with

the partial model representation in comparison to the
classical approach?

RQ2: How sensitive are the partial modeling representation
and reasoning techniques to the varying degree of
uncertainty?

To get answers to RQ1 and RQ2, we set up experiments
with parameterized random inputs to simulate various cate-
gories of realistic reasoning settings.
Experimental setup. The reasoning tasks described in
Sec. IV are operationalized using two fundamental tasks:
T1: Check the satisfiability of the formulas ΦM ∧ ΦP and

ΦM ∧ ¬ΦP (for OP2, OP3a and OP3b).
T2: Construct a new partial model in GNF that has a PNF

formula ΦM ∧ ΦP (for OP3c with ¬ΦP and OP4).

Algorithm 2 Get all concretizations that violate (satisfy) a
property.
Input: A partial model Min and a property C
Output: A partial model Mout abstracting exactly the con-

cretizations of Min that violate (satisfy) C.
1: Put Min in PNF, to get Φin.
2: Ground C, to get Φc
3: Construct Φout := Φin ∧ ¬Φc (Φout := Φin ∧ Φc)
4: Create Mout with the same vocabulary as Min and PNF

formula Φout
5: Put Mout in GNF and return it

We focus our experimental evaluation on T1 and T2 be-
cause they require the use of SAT-solving technology, as op-
posed to Construction (OP1) which is linear to the number of
input classical models and their elements (see Algorithm 1).
Specifically, to answer RQ1, we conducted two experiments:
E1 Compare the relative performance of doing reasoning

by running the task T1 to the performance of classical
reasoning by considering the set of concretizations repre-
sented by M .

E2 Compare the relative performance of running T2 to get
a partial model representing the subset of concretizations
that satisfy a property, to the performance of incremen-
tally collecting all the classical models as satisfying as-
signments of the formula ΦM ∧ ΦP .

To answer RQ2, we executed the experiments E1 and E2 with
randomly generated experimental inputs that were parameter-
ized to allow for different sizes, both with respect to model
size and the size of the set of concretizations.

Experimental inputs. The metamodel of typed models cor-
responds to additional constraints in their propositional en-
coding. This makes the problem easier for the SAT solver,
as it constrains the search space. We chose to use untyped
models for inputs to our experiments, as the least constrained
and thus the most difficult for the SAT solver.

We considered the following experimental parameters:
1) size of the partial model, 2) size of its set of concretiza-
tions, 3) quantification (e.g., existential, universal, mixed) of
the property, and 4) result of property checking (True, False,
Maybe). To manage the multitude of possible combinations
of these, we discretized the domain of each parameter into
categories.

We defined four size categories, based on the total number
of elements (nodes and edges) in the partial model: Small
(S), Medium (M), Large (L) and Extra-Large (XL). Based
on pilot experiments, we defined ranges of reasonable values
for each size category and selected a representative exemplar.
The ranges of the categories and the selected exemplars for
each category are shown in Table II.

In a similar manner, we defined four categories (S, M, L,
XL) for the size of the set of concretizations of the generated
model. The size of this set reflects the degree of uncertainty
encoded in the partial model, so that the category S corre-
sponds to little uncertainty over which alternative to chose,



Table II
CATEGORIES OF THE SIZE OF MODELS.

Size of Model S M L XL
Nodes (0,10] (10, 20] (20, 40] (40, 80]
Elements (0,110] (110, 420] (420, 1640] (1640, 6480]
Exemplar 30 240 930 2550

Table III
CATEGORIES OF THE SIZE OF THE CONCRETIZATION SET.

Size of Set S M L XL
Concretizations (0,10] (10, 75] (75, 150] (150, 300]
Exemplar 5 50 100 200

and the category XL corresponds to extreme uncertainty.
Based on pilot experiments, we defined reasonable ranges
and selected a representative exemplar for each category, as
shown in Table III.

We also defined four property types (based on the quan-
tification of FOL formulas): “fully existential” (E), “fully
universal” (A) and two “mixed” categories: “exists-forall”
(EA) and “forall-exists” (AE). Additionally, we considered
the three possible results that can be yielded by property
checking – True, Maybe and False.
Implementation. We implemented tooling support to ran-
domly generate inputs based on the experimental properties
outlined in Sec. V. Specifically, we generate propositional
formulas expressed in the input format of the MathSAT 4
SMT Solver [3]. Each such propositional formula Φr is
a conjunction of the form Φr = Φa ∧ Φc ∧ Φp, where
Φa represents the annotations of the elements of the partial
model, Φc – its set of concretizations and Φp – the property
being checked. We describe these below.

For each random partial model, we considered a complete
graph whose elements are in the model’s finite vocabulary of
N1 nodes andN2

1 edges. Each element is randomly annotated
as True or False, and N2 elements are annotated as Maybe.
Each element in the model is represented by a boolean vari-
able. The formula Φa captures the set of variables that make
up the model as well as their annotations. In particular, Φa is a
conjunction of N1(N1 + 1) terms, one for each element. If an
element α is annotated as True, its corresponding term is the
non-negated variable vα. If it is annotated as False, its term
is ¬vα, and if it is annotated as Maybe– (vα ∨ ¬vα). This
tautological disjunction is necessary for vα to be considered
by the SAT solver even if it doesn’t appear elsewhere in Φr.

Each model is accompanied by the formula Φc that cap-
tures its set of concretizations. Φc is a disjunction of N3

unique sub-formulas representing individual concretizations.
Each one is a conjunction of the N2 Maybe variables, a ran-
dom number of which is negated. This way, each sub-formula
defines an allowable configuration of Maybe elements.

Defining specific values for N1 and N3, we were able to
generate models for each of the combinations of the parame-
ters in Tables II and III.

To generate formulas Φp that simulate grounded FOL
properties, we used property “templates”. For example, to
capture the FOL formula φex = ∃x, y : x ⇒ y, we created

VAR v0, v1, v2, v0_v0, v0_v1, v0_v2, v1_v0,
v1_v1, v1_v2, v2_v0, v2_v1, v2_v2 : BOOLEAN
FORMULA
# Start of Φa
v0 and (v1 or (not v1)) and (v2 or (not v2)) and
(not v0_v0) and (not v0_v1) and (v0_v2 or
(not v0_v2)) and (not v1_v0) and (not v1_v1) and
(not v1_v2) and (not v2_v0) and (not v2_v1) and
(not v2_v2) and (
# Start of Φc
((v1 and v2 and (not v0_v2)) or
(v1 and (not v2) and (not v0_v2)) or
((not v1) and v2 and v0_v2)))
# Start of Φp
and not (
(not v0 implies not v1_v0) and (not v1_v0 implies not v2)
and (not v1 implies not v0_v2))

Figure 5. A randomly generated input in MathSAT’s encoding language.

the template “X implies Y”. Given a partial model with
elements represented by the set of variables {v1, v2, v3, v4},
the propositional formula that corresponds to grounding φex
over the vocabulary of the model is created as a randomly
instantiated disjunction of copies of the template, e.g., “(v3
implies v2) or (v1 implies v4)”. To run experiments, our goal
was creating templates for realistic properties such as the
ownership relationship. E.g., the template “(not X) implies
(not Y)” indicates that Y cannot exist without its “owner”
element, X .

Each template was repeated N6 times, with N6 large
enough so that Φp contains N4 variables, out of which
N5 correspond to Maybe elements. Preliminary results by
pilot experiments indicated that these parameters did not
significantly affect the observed times and therefore in the
generated inputs we fixed them to N4 = 0.1 × N1 and
N5 = min(N2, 0.05×N1).

To create properties in the FE (“fully existential”) category,
the template is repeated as a series of N6 disjunctions and
for FA properties – as a series of N6 conjunctions. EA
properties were generated as N7 disjunctions of conjunctions
of N8 instantiations of the template, where N7 and N8 were
random numbers s.t.N7×N8 = N6. Similarly, AE properties
were comprised of N7 conjunctions of disjunctions of N8

instantiations of the template.

Fig. 5 shows an example of an input formula generated
randomly using a FA “ownership property” .

Methodology. We conducted a series of experiments gen-
erating inputs along the dimensions specified by three pa-
rameters: model size, size of set of concretizations and type
of property. For each combination of the parameters, we
produced inputs using the selected exemplar values shown in
Tables II and III.We did multiple runs for each combination
and then picked at least 3 runs for each data-point that
produced results in each of the three possible return values
(True, Maybe, False).

For each run, we used the generated input to execute the
two experiments, E1 and E2. For each, we recorded the
speedup Sp = Tc

Tpm
, where Tc and Tpm were the times to do

a task with sets of classical models and with partial models.



Figure 6. Speedup versus model size for different degrees of uncertainty: (a) experiment E1, (b) experiment E2.

Results. The experiments1 did not show dramatic differences
in speedup between the different property and return types.
The biggest difference in speedup for E1 was recorded in the
AE category between properties that return Maybe (21.65)
and those that return False (29.13), for M-sized models with
L sets of concretizations. For E2, the biggest difference in
speedup was recored for S-sized models with XL sets of
concretizations, for properties that return Maybe, between
the EA (0.36) and AE categories (5.62). This indicates that
property and return types are not the prime determinants for
the performance of our approach.

The size of the partial model and the size of the set of
concretizations had a much larger effect on the recorded
variance of speedup. The ranges of speedups for E1 and E2
are shown in Fig. 6(a, b), respectively. The plotted values are
averages for type of property and return value for each com-
bination of model size and size of set of concretizations. This
indicates that these parameters are the most important factors
for studying the effectiveness of partial model reasoning.

Fig. 6(a) shows that for verification and simple diagnos-
tic tasks, such as producing a counter-example, there is a
significant speedup from using partial models. The smallest
speedups were observed in the inputs with S sets of con-
cretizations (between 2.45 for S-sized models and 2.59 for L-
sized models). The increase from these values was dramatic
for M, L and XL sets of concretizations. For these categories,
the smallest speedup was 19.72 for XL-sized models with M
sets of concretizations and the biggest speedup was 30.49 for
M-sized models with XL sets of concretizations.

For more complex tasks, such as property-driven refine-
ment, the effect of the size of concretizations, as shown in
Fig. 6(b), seems to be the determinant parameter, as the
technique offers a speedup greater than 1 for larger sets of
concretizations. Our approach was significantly slow for S
sets of concretizations (the largest speedup being 0.05 for M-
sized models). Moderate speedups were only recorded for XL
sets of concretizations and smaller models (3.30 for S, 2.25
for M and 1.78 for L). This points to the conclusion that for
more complex tasks, speedup is best for smaller models with
larger sets of concretizations.

1All results available at http://www.cs.toronto.edu/∼famelis/icse12.html

These observations, lead us to the conclusion that, regard-
ing RQ1 (feasibility), there is a significant net gain from
using our approach for tasks like verification and counter-
example guided diagnosis, whereas for tasks like property-
driven refinement there are certain cases where it is preferable
to use the classical approach.

Regarding RQ2 (sensitivity to degree of uncertainty), the
observations point to the conclusion that the speedup offered
by our approach is positively correlated to the degree of
uncertainty. In fact, the greatest speedups were observed for
inputs that had bigger sizes of sets of concretizations. For
smaller levels of uncertainty, explicitly handling the set is
more efficient.

Threats to Validity. The most important threat to validity
stems from the use of experimental inputs that were randomly
generated. The formulas that we created for properties were
randomly grounded and were generated from a few arbitrarily
defined templates.

Another threat to validity is induced by our choice to use
a few exemplar values of the experimental parameters in
order to manage the combinatorial explosion of options. It is
evident that more experimentation is required, to generalize
our results and further investigate effects of the experimental
parameters that may not have been made obvious by our set
of experiments.

To compensate for these threats to validity, we additionally
conducted a Case Study, to triangulate our experimental re-
sults with experience from applying our technique to a real
world application. The size of the models that we extracted
from the Case Study fell in the XL category, with M and L
sets of concretizations, whereas the properties were in the
FE category and returned True and Maybe. The observed
speedups (detailed in the next section) )were consistent with
our experimental results.

VI. CASE STUDY

Problem Description. In this case study, we aim to illustrate
the following MDE software maintenance scenario: An engi-
neer is given the task of fixing a software defect by modifying
its UML model which will subsequently be used to construct
the modified software (e.g., via a transformation). However,



after creating the modifications to the model, the engineer
finds that some model constraints are violated and thus the
software cannot be constructed. For example, she may have
modified a sequence diagram without properly synchronizing
it with the structural aspects (e.g., classes) of the model.
To help her resolve these constraint violations, she uses a
tool that can automatically propose different model repair
alternatives (e.g., [12]). Suppose the engineer is uncertain
about which alternative to choose because their relative merits
are unclear – and thus she would like to reason with the set
of alternatives to help her make the choice and possibly even
defer the decision until more information is available. In this
case study, we apply the partiality techniques developed in
this paper to show how they could help her in this scenario
and to illustrate the feasibility of the approach.

We use an open source project UMLet [23], which is a
simple Java-based UML editor, as the software on which our
user is requested to perform a maintenance task. This project
has also been used by Van Der Straeten et al. for finding
model inconsistencies with a model finder [24]. The goal of
the maintenance task is to fix the following bug, referred to
as Issue 10 on the online issue log [22]: “copied items should
have a higher z-order priority”. That is, if the user copies and
then pastes an item within the editor, it is not the topmost
item if it overlaps with other existing items. Thus, any fix to
the bug must satisfy the following property P1: “Each item
that is pasted from the clipboard must have z-order = 0.” The
paste functionality is implemented in UMLet by instantiating
the class Paste and invoking its execute operation. Fig. 7
shows a fragment of the sequence diagram, generated from
the code using the Borland TogetherJ tool [1] for execute
with the circled portion representing a bug fix we propose.
The full sequence diagram has 12 objects, 53 messages and
8 statement blocks. Although UMLet has 214 classes in
total, we restrict ourselves to a slice that covers the sequence
diagram for execute consisting of 6 classes (plus 5 Java library
classes) with 44 operations. Of the 12 objects in the sequence
diagram, 5 are instances of Java library classes and 7 – of
UMLet classes. In the fragment shown, the for loop statement
block iterates through every item in the clipboard (indexed
by variable e) and adds it to the editor window (represented
by the object pnl:DrawPanel). When an entity is added to a
DrawPanel, the z-order is not set to 0 by default, causing the
bug. In our proposed fix (shown in the dashed circle), we cre-
ate a transient object positioner and tell it to moveToTop(e),
using the Swing operation setComponentZOrder.

Inconsistencies and the Partial Model. Our fix is conceptu-
ally correct but it violates two consistency rules required for
code generation:

1) ClasslessInstance: Every object must have a class. Pos-
sible repairs:
• RC1: Remove the object.
• RC2:(obj) Replace the object with an existing object

obj that has a class.
• RC3:(cls) Assign the object to the existing class cls.
• RC4: Assign the object to a new class.

 
self e:GridElement 

elem:AddElement 

pnl:DrawPanel 

positioner 

1:execute(handler) 

1.36:getX() 

1.38:getY() 

1.37:* 

1.39:* 

1.40:AddElement(e,x,y,zoom) 

1.41:execute(handler) 

1.42:new 

1.43:moveToTop(self, e) 

1.44:setComponentZOrder(e,0) 

handler:DiagramHandler 

for 
*GridElement e:this.entities+ 

sd: Paste.execute 

Figure 7. Our fix for the execute operation of the UMLet paste function.

2) DanglingOperation: The operation used by a message
in a sequence diagram must be an operation of the class
of the receiving object. Possible repairs:
• RD1: Put the operation into the receiving object’s

class.
• RD2:(op) Change the operation to the operation op

that is already in the receiving object’s class.
• RD3: Remove the message.

ClasslessInstance and DanglingOperation are both based
on [21]. In our case, the positioner object violates Class-
lessInstance and the message with operation moveToTop vio-
lates DanglingOperation because it is not in positioner’s class
(since positioner has no class).

If we apply all possible repairs, we get a set of alternative
ways to fix the inconsistency, summarized as follows:

1) Positioner can be removed (RC1), can be replaced by
one of the existing 7 objects (RC2), can be assigned to
one of the existing 6 classes (RC3), or can be an instance
of a new class (RC4).

2) The operation moveToTop can be added to the posi-
tioner’s class (RD1), can be changed to one of the other
44 operations depending on positioner’s class (RD2), or
can be removed (RD3).

Only certain repairs are mutually compatible – for example,
RC1 cannot be used with RD2 since the latter depends on
positioner’s class but the former removes positioner entirely.
There are 220 alternatives in total for all valid combinations.

If we construct a partial model to represent this set of
alternatives, all the model elements in the proposed fix in
Fig. 7 become Maybe since they are present in some al-
ternatives and absent in others. Furthermore, based on the
compatible combinations of repairs, the may formula portion
of the partial model is expressed as

φM = Choose((φRC1 ∧ φRD3),
(φRC2(e) ∧ φRD1), (φRC2(e) ∧ φRD2(getX)), . . . ),

where Choose( φ1, . . . , φn ) is a logical function that holds
when exactly one of {φi}1≤i≤n hold. Each of the formulas



for the individual repairs can be further expanded and ex-
pressed in terms of the UML 2 metamodel [16]. For example,
φRC2(e) represents the condition that object positioner is
replaced by object e in Fig. 7, expressed as

φRC2(e) = covered(receiveEvent(Message 1.43)) = Lifeline e

which says that the lifeline covered by the receiving event of
message 1.43 is the one for object e:GridElement.
Analysis. Having defined a partial model whose set of con-
cretizations are the possible alternative ways of making our
bug fix consistent with the required rules, we can use the
techniques discussed in Sec. IV to reason about the alterna-
tives using properties. The first question is whether any of
the alternatives “break” the paste functionality. For example,
consider the property P2: “Whenever an item is pasted, a new
item is created in the editor window” which should hold if the
paste functionality is implemented correctly. To check this
against the partial model, we encode it into a propositional
formula φP2 over the UML metamodel in the same way as
the repair formulas. Due to lack of space, we limit ourselves
to a high-level description of the encoding: “φP2 holds iff
in the sequence diagram for execute there exists an iteration
over the items in the clipboard (e.g., a for block) that creates
a copy of each item using the operation CloneFromMe() and
later adds the item to the editor window using the command
AddElement”. Only the AddElement portion is visible in the
fragment in Fig. 7.

We used the MathSAT implementation described in Sec. V
to verify this property (OP2), checking the queries φM ∧φP2

and φM ∧ ¬φP2. The result was True,indicating that all con-
cretizations satisfy the property. We also did the comparison
with doing this task using classical models as in Sec. V and
found a speedup of 30.68. Next we considered the critical
property P1 that is required for any fix to our bug. In this
case, OP2 yielded Maybe indicating that some but not all
concretizations are acceptable bug fixes. In this case, we
found a speedup of 31.23.

To investigate why some concretizations did not fix the
bug, we used our diagnosis technique (OP3c) to produce
the partial model representing the counterexamples to P1 by
setting the may formula to φM ∧ ¬φP1 and computing the
GNF. In the resulting may model, the moveToTop operation
is absent and thus moveToTop is necessary for P1 to hold.
This is reasonable since if this operation is not invoked, then
the z-order is never set to 0. In a similar way, we used
property-guided refinement (OP4) to refine our partial model
to represent only the satisfying concretizations by setting the
may formula φM∧φP2 and computing the GNF. The speedup
for these two tests were 0.19 and 0.05, respectively.

VII. RELATED WORK

A number of partial behavioral modeling formalisms, have
been studied in the context of abstraction (for verification) or
for capturing early design models [9]. For example, Modal
Transition Systems (MTSs) [10] allow introduction of uncer-
tainty about transitions on a given event, whereas Disjunctive
Modal Transition Systems (DMTSs) [11] add an additional

constraint that at least one of the possible transitions must be
taken in the refinement. These approaches compactly encode
an over-approximation of the set of possible LTSs and thus
reasoning over them suffers from information loss. Moreover,
the MTS and DMTS refinement mechanism allows resulting
LTS models to have an arbitrary number of states which is
different from the treatment provided in this paper, where
we concentrated only on “structural” partiality and thus state
duplication was not applicable.

Another relevant area is product line software develop-
ment [17] which captures the set of potential models by
identifying their commonalities and variabilities. Most ap-
proaches keep the expressions of variability in a separate
feature model but some incorporate these directly into the
model using notational extensions in the metamodel [13].
Featured Transition Systems (FTSs) [4] are most closely
related to the notion of partial models presented in this paper.
FTSs encode a set of products by annotating transitions with
specific features from a feature diagram (much like our may
formula), and differ from MTSs and DMTSs in that they
support precise representation and reasoning with a set of
models.

Our approach is distinct from related work in a number of
important ways. First, it applies to any kind of modeling lan-
guage (not just behavioral models) that can be defined using a
metamodel. Second, our viewpoint is the comprehensive han-
dling of uncertainty rather than just reasoning over variability.
In this context, partial models support changes in the level
of uncertainty, with tasks such as property-driven (OP4) and
more generally uncertainty-removing refinement [19]. Third,
partial models are first-class development artifacts that can be
manipulated throughout the software engineering life cycle
with detail-adding transformations that do not affect the level
of uncertainty [8]. Finally, the notion of partiality studied here
(where model elements can be optional or mandatory) is only
one of several kinds of partiality, developed in [20].

VIII. CONCLUSION AND FUTURE WORK

This paper presented an approach for reasoning in the
presence of uncertainty. We showed how to construct partial
models to represent sets of alternatives and how to use them
for reasoning. We evaluated the approach by running experi-
ments using randomly generated inputs and triangulated our
results with a case study dealing with alternative repairs to
inconsistency for a real world software project. Our evalua-
tion, while preliminary, showed that in the presence of high
degrees of uncertainty, using partial models offers significant
improvements for reasoning tasks.

Our work is part of a broader research agenda, outlined
in [7]. Our next steps include studying how partial models
can be used as first-class development items. In particular, we
want to investigate model transformation of partial models, as
well as the effects of transformation on the properties of the
concretizations.
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