
Partial models: A position paper

Michalis Famelis Shoham Ben-David Marsha Chechik Rick Salay

University of Toronto
Toronto, Canada

{famelis,shoham,chechik,rsalay}@cs.toronto.edu

ABSTRACT
Model-based software development inevitably involves deal-
ing with incomplete information. Yet, MDE methodolo-
gies rarely, if ever, address uncertainty in a systematic way.
Drawing inspiration from the field of behavioural model-
ing [6, 4], we propose to use partial models as first-class
development artifacts to abstract, reason with, visualize and
manipulate sets of possible alternative models. Aiming to
set up a research agenda for a systematic and robust treat-
ment of uncertainty in MDE, we discuss how uncertainty
can be captured by partial models, and how these models
can be validated and correctly refined.

1. INTRODUCTION
The vision of model driven software development is to

create a seamless process during which models are incre-
mentally refined from requirements to generated code. Of
course, as any other software development endeavor, this
process needs to handle making decisions in the presence of
incomplete and uncertain information. Uncertainty can be
injected during the MDE life-cycle due to a variety of rea-
sons such as unclear requirements allowing multiple design
alternatives [12], alternative resolutions to inconsistency [8,
3], multiple stakeholder opinions [9], and many others.

Current MDE methodologies do not specifically address
the handling of incomplete information in a robust way. In
fact, model transformations (including those that generate
correct by construction model refinements) can only be ap-
plied to concrete models, and thus incompleteness is consid-
ered to be undesirable and needs to be removed as quickly
as possible. Otherwise, the development either halts or pro-
ceeds in an ad-hoc way that does not guarantee correctness.

Reasoning with incomplete information has been studied
extensively in the context of behavioural modeling and ver-
ification [2, 5, 1, 6, 4]. Our goal is much larger: we aim to
produce an approach to adapt existing modeling formalisms
and transformations to take uncertainty into account in a
systematic and sound way, aiming to encompass heteroge-
neous modeling languages, a variety of different kinds of un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-4503-0914-1 ...$10.00.

certainty, and, most importantly, focus on MDE-style trans-
formations.

In this paper, we propose the adoption of partial models,
i.e., abstractions of sets of alternative modeling solutions,
as first-class development artifacts to capture uncertainty.
Partial models can be visualized to ensure human compre-
hension, and transformations can be lifted from concrete
to partial models. Further, partial models enable efficient
reasoning tasks such as property checking. Finally, partial
models support refinement aimed to reduce the degree of
uncertainty (we call it uncertainty-removing (UR), to differ-
entiate it from the standard detail-adding (DA) refinement),
culminating in concrete models.

Connection to workshop theme. From the perspec-
tive of modeling and verification, the novelty in this ap-
proach is the use of such concepts as abstraction, refine-
ment and property preservation, developed by the verifica-
tion community [2, 5, 1], to reason about MDE-type models.
Additionally, the partial model representation allows us to
reason about a set of models as efficiently as about each con-
cretization. From the perspective of model transformation,
our approach has the advantages of removing the need to
resolve uncertainty too early, solely in order to continue de-
velopment. In addition, partial modeling allows us to define
UR refinement as a systematic generic refinement mecha-
nism with well understood properties.

Paper organization. The rest of the paper is organized
as follows: Section 2 illustrates the key motivating example
of how partial models can be used to support software devel-
opment. The remainder of the paper discusses the research
agenda, including questions that need to be answered, cur-
rent status of our work and some future steps. Specifically,
Section 3 discusses the representation of partial models, Sec-
tion 4 examines reasoning, Section 5 looks at various kinds of
transformations of partial models and the associated prop-
erty preservation, and Section 6 concludes the paper.

2. EXAMPLE
We motivate and explain our approach using a model (M)

of a simple network controller shown in Figure 1(a). The
model includes a class diagram that contains the class Con-

troller, and a state machine diagram that describes the
behavior of the class. The controller can be switched on and
off. While it is connected, it remains in the On state and if
it becomes disconnected, it warns the user by beeping.

In our scenario, there are two developers: Alice manages
the architecture and Bob the behavioral components. There
is also a consistency requirement (C1) dictating that there
should not be any sink states. Bob easily identifies that the

Figure 1: (a) An inconsistent model M . (b)-(d) Al-
ternative repairs of M . (e) A partial model P cap-
turing alternatives in (b)-(d). Dashed elements are
optional.

network controller model is inconsistent with respect to C1:
the state Warning has no outgoing transitions.

We assume that inconsistency fixing is done using repair
rules [7, 8], and that two such rules for dealing with C1
exist: (R1) “Add a transition from the sink state to some
other state” and (R2) “Delete the sink state”. Fixing is done
semi-automatically, whereby Bob applies these rules, taking
care to maintain the semantic integrity of the model.

The rules can be applied to the network controller model
in three ways, resulting in three distinct alternative resolu-
tions: 1) use R1 to add a transition from Warning to On,
2) use R1 to add a transition from Warning to Off, or 3) use
R2 to delete the state Warning. Bob interprets each of these
alternatives to ensure that the resulting state machine is
meaningful and modifies the class diagram accordingly. If
the state Warning is retained, returning to On signifies recov-
ery, as shown in Figure 1(b). Turning the network controller
Off logs an error message, as shown in Figure 1(c). If Warn-
ing is deleted, a disconnect causes the controller to beep and
shut down, as shown in Figure 1(d).

Which of the choices should Bob make? We assume that

at this stage in the development, the requirements regarding
whether the network controller should have recovery capa-
bilities are still unclear. Additionally, Bob needs to have Al-
ice approve any modifications to the architectural model, as
they could have unwanted consequences to the Controller

class’s inheritance hierarchy. Faced with these uncertainties,
Bob can either halt development, waiting for the uncertainty
to be lifted, or make a guess and choose one of the three al-
ternatives, therefore risking having to undo his work. Yet
another option for Bob, the one we advocate here, is to cap-
ture all possible ways of fixing the inconsistency in a single
partial model, P , shown in Figure 1(e), and proceed with
development using it as the primary development artifact.

Visualization. The partial model P is presented in pseudo-
concrete UML syntax for brevity. It contains elements that
are tagged as optional, indicated visually by dashed lines. It
is also accompanied by a propositional formula, Φp, which
describes the allowed combinations of the optional elements.
Each such combination represents a concretization of the
partial model, i.e., a concrete model that can be derived
from P by removing all uncertainty. In this example, P has
exactly three concretizations, corresponding to the three al-
ternative repaired models.

Analysis. Bob can use P to check properties. For exam-
ple, the result of checking property C1 is True, as none of the
concretizations of P have a sink state. Thus, the outcome of
checking C1 is interpreted as “property holds regardless of
how the partial model will be concretized”. Suppose an ad-
ditional requirement (C2) dictates that multiple transitions
with exactly the same source and target states should not
exist. Checking C2 on P results in Maybe, as it holds for
some concretizations of P (those in Figures 1(b) and 1(c))
but not for others (the one in Figure 1(d)). Thus, the out-
come of checking C2 is interpreted as “it depends on how
this model will get concretized”.

Detail-adding refinements. Bob can also use P to
continue development. For example, a useful detail-adding
(DA) refinement is to elaborate the Warning state to pe-
riodically check if the controller is still disconnected. Bob
can do it directly on P to get the new model P ′, shown in
Figure 2(a). In P ′, two sub-states, Poll and Notify, have
been added to Warning. To implement the waiting function-
ality, Bob also needs Alice to add a PollingTimer class to
the architectural diagram. A required property of all detail-
adding refinements is the transformation property T1: they
should result in models with“more information” than the in-
put model1 (Section 5 discusses the use of T1 for reasoning).
The transformation from P to P ′ satisfies this property, as
the set of concretizations of P ′ only contains transformed
versions of all of the concretizations of P .

Refactoring. Refactoring is a transformation character-
ized by the transformation property T2: it should not add or
remove details. Alice can do it directly on the partial model
P ′. A classic refactoring is making the public instance vari-
able disconnected private and only accessible via the get-
ter method isDisconnected(). The resulting model P ′′ is
shown in Figure 2(b). The transformation between P and
P ′′ satisfies T2 for the same reasons as T1.

Uncertainty-reducing refinements. Finally, once more
information becomes available, Bob and Alice can apply
uncertainty-reducing (UR) refinements to derive a less par-

1For behavioral models, this is called simulation.

Figure 2: (a) The model P ′ after detail-adding re-
finement of P . (b) Refactored model P ′′ (Φp′′ = Φp′).
(c) Concretization M ′ of the partial model after
uncertainty-removing refinement.

tial and ultimately concrete model from P ′′. In our scenario,
after negotiation with the client and between each other,
they decided to keep the Warning state and implement the
polling system designed by Bob. The result of the UR refine-
ment is the model M ′ in Figure 2(c). The transformation
property T3 for UR refinements is that optional elements
can be kept optional, removed or made mandatory (see Sec-
tion 5 about how T3 is used for reasoning). T3 holds for the
transformation between P ′′ and M ′ as all optional elements
are either made mandatory or removed. A UR refinement
such as this, that does not retain any optional elements is
called a concretization refinement. Additionally, checking
M ′ for properties C1 and C2 yields True for the former, as
expected, but also True for the latter. Subsequent develop-
ment can continue using M ′, whereas P ′′ can be archived as
a record of the design alternatives considered so that they
can be revisited if needed.

3. REPRESENTING PARTIAL MODELS
We now discuss how to represent sets of models as partial

models. There are two key questions: (Q1) What kinds of

sets of concrete models can be efficiently abstracted into a
single partial model, i.e., what kinds of uncertainty can be
captured this way? (Q2) How can we efficiently construct
partial models, avoiding the enumeration of all possible al-
ternatives and what are the circumstances under which a
construction is feasible?

In our example in Section 2, we used a particular kind
of partiality, called May partiality, formally defined in [10],
which allows certain modeling elements to be tagged as op-
tional. Constructing a May partial model from a set of
alternative models entails merging the vocabularies of the
different alternatives and identifying differing elements, like
we did in constructing the partial model P in Figure 1(e).
Some elements are mandatory for all concretizations, while
others are optional. A propositional formula (Φp for P) is
added to the partial model to capture the set of the allow-
able configurations of optional elements. In our example,
the state Warning is tagged as optional, as it is not allowed
in all possible configurations of the partial model.

P and other partial models we work with are “model like”
(as opposed to being expressed in a generic description lan-
guage such as first-order logic), in that they are structurally
similar to the concrete models they abstract and hence are
easy to understand. This allows partial models to remain
first-class development artifacts within the framework of ex-
isting MDE approaches. Other forms of partiality that can
be captured in “model-like” partial models exist as well. For
example, when a model is known to be incomplete, the par-
tial model represents the set of its possible completions. An-
other case occurs when it is not clear whether certain model
elements should be distinct, and the partial model represents
all possible ways to merge these elements. These and other
partiality types and their combinations are described in [10].

We are currently working on constructing partial May
models using symbolic model transformation, with a prelim-
inary implementation using Kodkod [11]. The construction
avoids building all concrete models and then merging them,
and thus remains scalable and efficient. Our specific empha-
sis is on capturing alternatives which result from applying
multiple repair rules.

4. REASONING WITH PARTIAL MODELS
Partial models are formal artifacts that enable reasoning.

The key question here is: (Q3) What kinds of properties can
be (efficiently!) checked on partial models?

In order to facilitate reasoning, we translate the visual
rendering of partial models presented in the examples of
Section 2 into a symbolic one and appropriately combine it
with the formula representing the constraints on the model.
A SAT solver is then used to check whether the model entails
the property.

For example, to check whether the property C2 holds for
the partial model P , shown in Figure 1(e), we first trans-
late P into the propositional formula Φ = Φp ∧ Control ∧
Off ∧ . . . ∧ Controller ∧ on() ∧ . . . that extends Φp with
all the mandatory elements in P . Then we express C2 as a
propositional formula ΦC2. Checking the property is there-
fore reduced to checking satisfiability of the propositional
expressions Φ ∧ ¬ΦC2 and Φ ∧ ΦC2, using a SAT solver.

The above approach allows us to reason about all con-
cretizations together, using one or two queries to the SAT
solver. For May models, our checking returns the answer
Maybe iff the partial model has a concretization where the

property is True, and another one where the property is
False 2 This is the case for C2, as the SAT solver returns a
satisfying assignment for Φ∧¬ΦC2 (the concretization shown
in Figure 1(d)) and one for Φ ∧ ΦC2 (one of the concretiza-
tions shown in Figures 1(b-c)).

There are more questions stemming from the method out-
lined above: (Q4) What types of properties can be effec-
tively checked using this method? (Q5) Is SAT-solving the
best alternative for reasoning about various types of partial
models? (Q6) What useful feedback can we give to the user
as the result of our analysis?

5. TRANSFORMING PARTIAL MODELS
Transformation is an essential part of any MDE method-

ology. The key questions that need to be answered here are:
(Q7) Are there transformations specific to partial models?
(Q8) How can existing transformations be adapted to op-
erate on partial models? (Q9) How are the properties of
partial models affected by the different transformations?

Special Transformations. Partial models are closely
associated with a particular vertical transformation, that
we call uncertainty-removing (UR) refinement. A UR re-
finement makes a model “less partial” by resolving some or
all of its uncertainty. For May partiality, this is ensured
by the property T3 which prescribes that the removal of
uncertainty is achieved by making some optional elements
of the model mandatory or deleting them. Similar correct-
ness properties can be defined for other kinds of partiality.
Since the removal of uncertainty is “problem-” and “domain-
independent”, UR refinement is a generic refinement mecha-
nism, with well understood properties [10]. A UR refinement
that completely removes uncertainty is called a concretiza-
tion, e.g., going from the partial model P ′′ in Figure 2(b) to
the concrete model M ′ in Figure 2(c).

By satisfying the transformation property T3, a UR re-
finement reduces the number of concretizations of a partial
model. Therefore, any True (False) properties, i.e., proper-
ties that were True (False) for all its concretizations, remain
True (False). For the same reason, Maybe properties can be
changed into True or False or remain unaffected. This is
illustrated by the property C2 in our example, which evalu-
ates to Maybe in P , P ′ and P ′′, and to True in M ′.

Adapting Classical Transformations. In order to
adapt an existing transformation to partial modeling, we
need to specify how it affects the set of concretizations of its
input partial model. We formulate this as follows: if F is
the adapted version of a classical transformation F , and if
the partial model P ′ is the result of applying F to a partial
model P , then for each concretization p of P there exists a
concretization p′ of P ′ s.t. p′ is the result of applying F to
p. In other words, F is total and surjective.

We call the adapted version of classical refinements detail-
adding (DA) refinements. A DA refinement adds new infor-
mation to a partial model without removing uncertainty.
Recall one such refinement in Section 2: model P , shown
in Figure 1(e), became model P ′, shown in Figure 2(a).
While more detail was added to the state Warning, the model
did not become “less partial”. Additionally, in keeping with
property T1, the Warning state is only elaborated for those
concretizations of P that have it.

Certain classical transformations can be applied directly

2This form of analysis, which does not produce erroneous
Maybe answers is called thorough.

on partial models without the need for explicit adaptation.
We illustrated this with the refactoring of the model P ′ in
Figure 2(a) to the model P ′′ in Figure 2(b).

By satisfying the transformation property T1, a DA re-
finement only adds information and thus preserves True ex-
istential and False universal properties. For example, the
property C3: “there exists a state with a self-looping transi-
tion” is an existential property which holds in P . Thus, it is
guaranteed to hold in P ′.

We are currently working on an implementation to apply
partialized versions of DA transformations using symbolic
model transformation. Immediate follow-up questions are:
(Q10) How can adaptations of classical transformations be
systematized? (Q11) What are the conditions under which
classical transformations can be applied to partial models
without adaptation? Important future questions include:
(Q12) How are the properties of combinations of structural
and behavioral partial models affected by transformation?
(Q13) What effect does combining the different kinds of
refinement (UR and DA) have to property preservation?
(Q14) What properties are preserved if the transformation
also involves changes to the metamodel?

6. CONCLUSION
We have outlined a research agenda for developing a sys-

tematic and robust treatment of uncertainty in MDE. Our
approach consists of extending existing MDE methodolo-
gies by using partial models as first-class development arti-
facts. We illustrated how partial models can be represented
and how they can be used for reasoning, and for defining
property-preserving transformations.

7. REFERENCES
[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

“Counterexample-Guided Abstraction Refinement”. In
Proc. of CAV’00, pages 154–169, 2000.

[2] P. Cousot and R. Cousot. “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints”. In Proc. of
POPL’77, pages 238–252, 1977.

[3] A. Egyed, E. Letier, and A. Finkelstein. “Generating and
Evaluating Choices for Fixing Inconsistencies in UML
Design Models”. In Proc. of ASE’08, pages 99–108, 2008.

[4] D. Fischbein, G. Brunet, N. D’ippolito, M. Chechik, and
S. Uchitel. “Weak Alphabet Merging of Partial Behaviour
Models”. ACM TOSEM, 2011. in press.

[5] S. Graf and H. Säıdi. “Construction of Abstract State
Graphs with PVS”. In Proc. of CAV’97, pages 72–83, 1997.

[6] K. G. Larsen and B. Thomsen. “A Modal Process Logic”. In
Proc. of LICS’88, pages 203–210, 1988.

[7] T. Mens and R. V. D. Straeten. “Incremental Resolution of
Model Inconsistencies”. In Proc. of WADT’06, 2007.

[8] C. Nentwich, W. Emmerich, and A. Finkelstein.
“Consistency Management with Repair Actions”. In Proc.
of ICSE’03, pages 455–464, 2003.

[9] M. Sabetzadeh and S. Easterbrook. “View Merging in the
Presence of Incompleteness and Inconsistency”. J. of
Requirements Engineering, 11(3):174–193, 2006.

[10] R. Salay and M. Chechik. “Language Independent
Refinement using Partial Modeling”. Technical report,
Univ. of Toronto, 2011.

[11] E. Torlak and D. Jackson. “Kodkod: A Relational Model
Finder”. In Proc. of TACAS’07, pages 632–647, 2007.

[12] A. van Lamsweerde. Requirements Engineering - From
System Goals to UML Models to Software Specifications.
Wiley, 2009.

