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Abstract. Current approaches to software model checking can be di-
vided into over-approximation-driven (OD) and under-approximation-
driven (UD). OD approaches maintain an abstraction of the transition
relation of a program and use abstract reachability to build an induc-
tive invariant (or find a counterexample). At the other extreme, UD ap-
proaches attempt to construct inductive invariants by generalizing from
finite paths through the control-flow graph of the program.

In this paper, we present Ufo, an algorithm that unifies OD and UD
approaches in order to leverage both of their advantages. Ufo is param-
eterized by the degree to which over- and under-approximations drive
the analysis. At one extreme, Ufo is a novel interpolation-based (UD)
algorithm that generates interpolants to label (refine) multiple program
paths using a single SMT solver query. At the other extreme, Ufo uses
an abstract domain to drive the analysis, while using interpolants to
strengthen the abstraction.

We have implemented Ufo in LLVM and applied it to programs
from the Competition on Software Verification. Our experimental results
demonstrate the utility of our algorithm and the benefits of combining
UD and OD approaches.

1 Introduction

In recent years, we have witnessed a divergence in software model checking tech-
niques. Traditionally, as promoted by the SLAM project [3], software model
checkers implemented a variant of the counterexample-guided abstraction refine-
ment (CEGAR) [11] loop, where over-approximating abstractions of programs
are computed. In cases where spurious counterexamples are introduced by over-
approximation, refinement is used to eliminate them. We henceforth categorize
such techniques as over-approximation-driven (OD). OD techniques mainly rely
on predicate abstraction [16] for computing an abstract post operator. In the
refinement stage, new predicates (facts) are added to build more precise abstrac-
tions. OD techniques can supply us with efficient safety proofs, when relatively
coarse abstractions are sufficient to prove correctness. Unfortunately, it is often
the case that a large number of predicates is required to reach a deep error
or to compute an inductive invariant, causing the abstraction step to be very
expensive.

On the other hand, under-approximation-driven (UD) software model check-
ing techniques are becoming more popular. Such techniques attempt to con-



struct a program invariant by generalizing from finite program paths. For ex-
ample, in [24], McMillan uses Craig Interpolants, derived from proofs of un-
satisfiability of paths to an error location, to compute program invariants. In
our previous work [2], we used predicate abstraction to generalize symbolic pro-
gram executions. Note that Synergy [17] and Dash [4] are considered under-
approximation-driven according to our categorization, as they use weakest-
precondition computations along infeasible symbolic paths to refine a partition
of the state space with the goal of computing an invariant. Testing in these
techniques only acts as a way of choosing which symbolic paths to examine.
UD techniques avoid the expensive step of computing an abstract post operator,
giving them an advantage over OD techniques. Unfortunately, due to the fact
that they are not driven by an abstract domain, they may have to examine a
large number of program paths to compute an inductive invariant or find an
erroneous execution.

In this paper, our goal is to resolve the disconnect between OD and UD
approaches to software model checking. Specifically, we present Ufo, a software
model checking algorithm for sequential programs that is parameterized by the
degree to which over- and under-approximations drive the analysis. Ufo makes
two contributions: (1) it combines UD and OD approaches, and (2) at the UD
extreme, it is a novel interpolation-based algorithm that generates interpolants
to label (refine) multiple program paths using a single SMT solver query. This
allows Ufo to exploit an SMT solver’s ability to enumerate program executions,
giving it an advantage over other interpolation-based algorithms, e.g., [24, 23],
that explicitly enumerate program paths.

We have implemented Ufo in the LLVM compiler infrastructure [22] and
experimented with various instantiations of it on benchmarks from the Compe-
tition on Software Verification [5]. Our experimental results show the utility of
our interpolation-based algorithm. Moreover, they show that augmenting Ufo
with an abstract domain (e.g., predicate abstraction) often outperforms both
the OD and UD extremes.

The rest of the paper is organized as follows: In Sec. 2, we illustrate the
operation of Ufo on an example. In Sec. 3, we provide the definitions and
notation used in the paper. In Sec. 4, we present the Ufo algorithm. In Sec. 5, we
present the refinement procedure. In Sec. 6, we describe our Ufo implementation
and present our experimental evaluation. In Sec. 7, we place Ufo in the context
of related work. Finally, in Sec. 8, we conclude the paper and outline directions
for future work.

2 Overview
The core of Ufo is a UD algorithm parameterized by an abstract Post operator
and a novel interpolation-based refinement procedure. In this section, we illus-
trate the novel parts of Ufo by instantiating Post to always return true, the
weakest admissible Post. In practice, we also instantiate Post with Boolean
and Cartesian predicate abstractions.

Consider function foo shown in Fig. 1(a), which takes n as a parameter. We
want to prove that location 8 with label ERROR is unreachable for any value of n.



foo(int	  n):
1	  i	  =	  0,	  x	  =	  0;
2	  while	  (i	  <	  n)
3	  	  	  	  if	  (i	  <=	  2)
4	  	  	  	  	  	  	  x	  =	  0;
	  	  	  	  	  else
5	  	  	  	  	  	  	  x	  =	  i;
6	  	  	  	  i	  =	  i	  +	  1;
7	  if	  (x	  <	  0)
8	  	  	  	  ERROR:	  	  	  	  
9	  return;
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Fig. 1. (a) Safe function foo. ARGs for foo (b) 1st iteration; (c) after refinement.

Constructing the ARG. Ufo starts by constructing an Abstract Reachability
Graph (ARG) for the program. The ARG for foo is shown in Fig. 1(b). Each
node in the ARG relates to a location in foo. For example, nodes v2 and v′2
represent location 2. Ufo associates a label {ϕi} for each node vi, where ϕi is
an over-approximation of the set of reachable states at vi.

Ufo expands the ARG using the recursive iteration strategy [8]. That is, the
innermost loop is unrolled first. In our example, Ufo starts by creating nodes
v1 and v2. Following the recursive iteration strategy, it enters the loop, creating
nodes v3, v4, v5, v6, and v′2. All nodes are initially labelled with true, the weakest
possible over-approximation.

Upon reaching node v′2, Ufo adds v′3 and v7 as children of v′2. At this point,
the label of v′2 is subsumed by the one of v2. We say that v′2 is covered by v2
and show it as the bold back-edge in Fig. 1(b). Therefore, Ufo exits the loop
and goes on to process node v7, adding v8 (ERROR node) and v9.

Refining the ARG. Once the ARG has been completely expanded, Ufo checks
if the label on the ERROR node v8 is UNSAT. The label is true, which means
that there is a potential execution to location 8 that either does not enter the
loop at v2 or takes one iteration before exiting through v′2. To check if such an
execution exists, Ufo constructs a formula representing all executions in the
ARG: for each node vi that can reach v8, it creates the following formula µi:

µ1 : cv1 ⇒ (i0 = 0 ∧ x0 = 0 ∧ cv2) µ5 : cv5 ⇒ (x2 = i0 ∧ x3 = x2 ∧ cv6)
µ2 : cv2 ⇒ ((i0 < n ∧ cv3

) ∨ (i0 ≥ n ∧ x4 = x0 ∧ cv7)) µ6 : cv6 ⇒ (i1 = i0 + 1 ∧ cv′2)
µ3 : cv3 ⇒ ((i0 ≤ 2 ∧ cv4) ∨ (i0 > 2 ∧ cv5)) µ′2 : cv′2 ⇒ (i1 ≥ n ∧ x4 = x3 ∧ cv7)
µ4 : cv4 ⇒ (x1 = 0 ∧ x3 = x1 ∧ cv6) µ7 : cv7 ⇒ (x4 ≥ 0 ∧ cv8)



For example, µ2 specifies that if control reaches node v2 (represented by the
Boolean control variable cv2), then either i0 < n and control goes to v3, or
i0 ≥ n and control goes to v7. To avoid naming conflicts, each time a variable
appears on the left hand side of an assignment, it is given a fresh subscript (e.g.,
x becomes x1 in µ4).

The formula cv1∧µ1∧· · ·∧µ7 is UNSAT. Hence, there is no feasible execution
in the ARG that can reach v8. At this point, Craig interpolants [13] are used
to relabel the ARG. Given a pair of formulas (A,B) s.t. A ∧ B is UNSAT,
an interpolant for (A,B) is a formula I s.t. A ⇒ I, I ⇒ ¬B, and I is over
the variables shared between A and B. To derive a new label for v7, Ufo sets
A = cv1 ∧ µ1 ∧ · · · ∧ µ′2 and B = µ7. A possible interpolant I for (A,B) is
cv7 ∧ x4 ≥ 0. To remove the instrumentation variable cv7

, Ufo sets it to true. It
also removes the subscript from x4 to arrive at a formula x ≥ 0 over program
variables. The new labels generated by interpolants are shown in Fig. 1(c). In
Sec. 5, we formalize the process of deriving labels from interpolants and prove
that for any edge (vi, vj) in the ARG, the resulting labels for vi and vj form a
Hoare triple with respect to the program statement on the edge.

Note that in Fig. 1(c), v8 is labelled with {false} and v′2 is still covered,
since its label x ≥ 0 is subsumed by the label on v2. Therefore, Ufo terminates
execution declaring foo safe. When applied to this example, the algorithm in [24]
requires at least two refinements, as the control-flow graph (CFG) is unrolled into
a tree, thus creating two paths to ERROR through each branch of the conditional
statement (location 3). Ufo, on the other hand, unrolls the CFG into a DAG
and exploits the power of SMT solvers for enumerating paths.

3 Abstract Reachability Graphs

Here, we present the notation and definitions used in the rest of the paper.

Programs. A program P is a tuple (L, ∆, en, err,Var), where L is a finite set of
control locations, ∆ is a finite set of actions, en ∈ L is the entry location of P ,
err ∈ L is the error location, and Var is the set of variables of program P . An
action (`1, T, `2) ∈ ∆ represents an edge in the control flow graph of P , where
`1, `2 ∈ L and T is a program statement. We assume that there does not exist
an action (`1, T, `2) ∈ ∆ s.t. `1 = err.

A program statement is either an assume statement assume(Q), where Q
is a Boolean expression over Var, or an assignment statement x = E, where
x is a variable in Var and E is an expression over the variables in Var. We
use the notation JT K to denote the standard semantics of a program statement
T . For example, for an assignment statement x = x + 1, Jx = x + 1K is x′ =
x+ 1 ∧ ∀y ∈ Var · y 6= x⇒ y′ = y. For a formula φ, we use φ′ to denote φ with
all variables replaced by their primed versions.

We say that a program P is safe iff there does not exist a feasible execution
that starts in en and reaches err through the actions in ∆.

Weak Topological Ordering. A Weak Topological Ordering (WTO) [8] of a
directed graph G = (V,E) is a well-parenthesized total-order, denoted ≺, of V



without two consecutive “(” s.t. for every edge (u, v) ∈ E:

(u ≺ v ∧ v 6∈ ω(u)) ∨ (v � u ∧ v ∈ ω(u)),

where elements between two matching parentheses are called a component, the
first element of a component is called a head, and ω(v) is the set of heads of all
components containing v.

Let v ∈ V , and U be the innermost component that contains v in the WTO.
We write WtoNext(v) for an element u ∈ U that immediately follows v, if it
exists, and for the head of U otherwise.

Let Us be a component with head v. Suppose that Us is a subcomponent of
some component U . If there exists a u ∈ U s.t. u 6∈ Us and u is the first element in
the total-order s.t. v ≺ u, then WtoExit(v) = u. Otherwise, WtoExit(v) = w,
where w is the head of U . Now suppose that Us is not a subcomponent of any
other component, then WtoExit(v) = u, where u is the first element in the
total-order s.t. u 6∈ Us and v ≺ u. Intuitively, if the WTO represented program
locations, then WtoExit(v) is the first control location visited after exiting
the loop headed by v. For example, for function foo in Fig. 1(d), a WTO of
the control locations is 1 (2 3 4 5 6) 7 8 9, where 2 is the head of the com-
ponent comprising the while loop. WtoNext(2) = 3,WtoNext(6) = 2, and
WtoExit(2) = 7. Note that WtoNext and WtoExit are partial functions
and we only use them where they have been defined.

Abstract Reachability Graphs (ARGs). Let P = (L, ∆, en, err,Var) be a
program. A Reachability Graph (RG) of P is a tuple (V,E, ven, ν, τ), where
(V,E, ven) represents a directed acyclic graph (DAG) rooted at the entry node
ven ∈ V , ν : V → L is a map from nodes to control locations of P , where
ν(ven) = en, and τ : E → ∆ is a map from edges to actions of P s.t. for every
edge (u, v) ∈ E, there exists an action (ν(u), τ(u, v), ν(v)) ∈ ∆.

An Abstract Reachability Graph (ARG) A of P is a tuple (U,ψ,v,vt), where
U = (V,E, ven, ν, τ) is an RG of P , ψ is a map from nodes V to formulas over
Var, v is the ancestor relation over the nodes of U , and vt is a fixed linearization
of the topological ordering of the nodes of U . A node v s.t. ν(v) = err is called
an error node.

A node v ∈ V is covered iff there exists a node u ∈ V that dominates v and
there exists a set of nodes X ⊂ V , where ψ(u)⇒ ∨

x∈X ψ(x) and ∀x ∈ X · x <
u ∧ ν(x) = ν(u). A node u dominates v iff all paths from ven to v pass through
u. Every node v dominates itself.

Definition 1 (Well-labeledness of ARGs). An ARG A = (U,ψ,v,vt),
where U = (V,E, ven, ν, τ), for a program P = (L, ∆, en, err,Var) is well-labelled
iff (1) ψ(ven) ≡ true; and (2) ∀(u, v) ∈ E,ψ(u) ∧ Jτ(u, v)K⇒ ψ(v)′.

An ARG is safe iff for all v ∈ V s.t. ν(v) = err, ψ(v) ≡ false. An ARG is complete
iff for all uncovered nodes u, for all (ν(u), T, `), there exists an edge (u, v) s.t.
ν(v) = ` and τ(u, v) = T .

Theorem 1 (Program Safety). If there exists a safe, complete, and well-
labelled ARG for a program P , then P is safe.
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Fig. 2. High level description of Ufo.

1: func UfoMain (Program P ) :
2: create node ven
3: ψ(ven)← true, ν(ven)← en
4: marked(ven)← true
5: labels← ∅
6: while true do
7: ExpandArg()
8: if ψ(verr) is UNSAT then
9: return SAFE

10: labels← Refine()
11: if labels = ∅ then
12: return UNSAFE
13: clear AH and FN

14: func GetFutureNode (` ∈ L) :
15: if FN(`) exists then
16: return FN(`)

17: create node v
18: ψ(v)← true; ν(v)← `
19: FN(l)← v
20: return v

21: func ExpandNode (v ∈ V ) :
22: if v has children then
23: for all (v, w) ∈ E do
24: FN(ν(w))← w

25: else
26: for all (ν(v), T, `) ∈ ∆ do
27: w ← GetFutureNode(`)
28: E ← E ∪ {(v, w)}; τ(v, w)← T

29: func ExpandArg () :
30: v ← ven
31: while true do
32: ExpandNode(v)
33: if marked(v) then
34: marked(v)← false
35: ψ(v)←

∨
(u,v)∈E Post(u, v)

36: for all (v, w) ∈ E do marked(w)← true

37: else if labels(v) bound then
38: ψ(v)← labels(v)
39: for all {(v, w) ∈ E | labels(w) unbound} do
40: marked(w)← true

41: if v = verr then break

42: if ν(v) is head of a component then
43: if ψ(v)⇒

∨
u∈AH(ν(v)) ψ(u) then

44: erase AH(ν(v)) and FN(ν(v))
45: l←WtoExit(ν(v))
46: v ← FN(l); erase FN(l)
47: for all {(v, w) ∈ E |6 ∃u 6= v · (u,w) ∈ E} do
48: erase FN(ν(w))

49: continue
50: add v to AH(ν(v))

51: l←WtoNext(ν(v))
52: v ← FN(l); erase FN(l)

Fig. 3. The Ufo Algorithm. Implementation of Refine is presented in Sec. 5.

The proof of this theorem follows from Theorem 1 in [24].

4 The UFO Algorithm

In this section, we describe our verification algorithm Ufo that takes a program
P with a designated error location verr and determines whether verr is reachable.
The output of the algorithm is either an execution of P that ends in verr, or
a complete, well-labeled, and safe ARG of P . The novelty of Ufo lies in its



combination of UD and OD techniques. Fig. 2 illustrates the two main states
of ufo: (1) exploring (OD), and (2) generalizing (UD). Exploring an ARG is
done by unwinding the CFG while computing node labels using an abstract post
operator Post. Generalizing is done by guessing (typically using interpolants) a
safe labelling of the current ARG from a proof of infeasibility of unsafe executions
in A.

The pseudo-code for the algorithm is given in Fig. 3. Function ExpandArg
(line 29) is responsible for the exploration, and Refine (line 10) is used for
generalization. Note that ufo is parameterized by Post (line 35) – more precise
Post makes it more OD-like and less precise Post – more UD-like. We present
the main parts of the algorithm in this section, and an implementation of Refine
in Sec. 5.

Main Loop. UfoMain is the main function of Ufo. It receives a program
P = (L, ∆, en, err,Var) as input and attempts to prove that P is safe (or unsafe)
by constructing a complete, well-labelled, and safe ARG for P (or by finding an
execution to err). The function ExpandArg is used to construct an ARG A =
(U,ψ,v,vT ) for P . By definition, it always constructs a complete, well-labelled
ARG. Line 8 of UfoMain checks if the result of ExpandArg is a safe ARG
by checking whether the label on the node verr is satisfiable (by construction,
verr is the only node in A s.t. ν(verr) = err). If ψ(verr) is UNSAT, then A is
safe, and Ufo terminates by declaring the program safe (following Theorem 1).
Otherwise, Refine is used to compute new labels. In Definition 2, we provide
a specification of Refine that maintains the soundness of Ufo. In Sec. 5, we
present a refinement algorithm satisfying Definition 2.

Definition 2 (Specification of Refine). If there exists a feasible execution
to verr in A, then Refine returns an empty map (labels = ∅). Otherwise, it
returns a map from nodes to labels s.t. labels(verr) ≡ false, labels(ven) ≡ true,
and ∀(u, v) ∈ E′ · labels(u) ∧ Jτ(u, v)K ⇒ labels(v)′, where E′ is E restricted to
edges along paths to verr. That is, the labeling precludes erroneous executions and
maintains well-labelledness of A (per Definition 1).

Constructing the ARG. ExpandArg adopts a standard recursive iteration
strategy [8] for unrolling a CFG into an ARG. To do so, it makes use of a
weak topological ordering (WTO) [8] of program locations. A recursive iteration
strategy starts by unrolling the innermost loops until “stabilization”, i.e., until
a loop head is covered, before exiting to the outermost loops. We assume that
the first location in the WTO is en and the last one is err.

ExpandArg maintains two global maps: AH (active heads) and FN (future
nodes). For a loop head l, AH(l) is the set of nodes V` ⊆ V for location l that
are heads of the component being unrolled. When a loop head is covered (line
43), all active heads belonging to its location are removed from AH (line 44).
FN maps a location to a single node and is used as a worklist, i.e., it maintains
the next node to be explored for a given location. Example 1 demonstrates the
operation of ExpandArg.



Example 1. Consider the process of constructing the ARG in Fig. 1(b) for func-
tion foo in Fig. 1(a). When ExpandArg processes node v′2 (i.e., when v = v′2
at line 31), AH(2) = {v2}, since the component (2 3 4 5 6) representing the loop
is being unrolled and v2 is the only node for location 2 that has been processed.
When Ufo covers v′2 (line 43), it sets AH(2) = ∅ (line 44) since the component
has stabilized and Ufo has to exit it. Here, WtoExit(2) = 7, so Ufo continues
processing from node v7 = FN(7) (the node for the first location after the loop).

Suppose Refine returned a new label for node v. When ExpandArg updates
ψ(v) (line 38), it marks all of its children that do not have labels in labels. This is
used to strengthen the labels of v’s children w.r.t the refined over-approximation
of reachable states at v, using the operator Post (line 35). ExpandArg only
attempts to cover nodes that are loop heads. It does so by checking if the label
on a node v is subsumed by the labels on AH(ν(v)) (line 43). If v is covered,
Ufo exits the loop (line 45); otherwise, it adds v to AH(ν(v)).

Post Operator. Ufo is parameterized by the abstract operator Post. For
sound implementations of Ufo, Post should take an edge (u, v) as input and
return a formula φ s.t. ψ(u)∧ Jτ(u, v)K⇒ φ′, thus maintaining well-labelledness
of the ARG. In the UD case, Post always returns true, the weakest possible ab-
straction. In the combined UD+OD case, Post is driven by an abstract domain,
e.g., based on predicate abstraction.

Theorem 2 (Soundness). Given a program P , if Ufo run on P terminates
with SAFE, the resulting ARG A is safe, complete, and well-labelled. If Ufo
terminates with UNSAFE, then there exists an execution that reaches err in P .

5 Refinement

In this section, we present our refinement procedure Refine. It begins by com-
puting a formula ϕ, called an ARG condition, representing all executions in a
given ARG. If ϕ is unsatisfiable, Refine invokes an interpolation-based algo-
rithm is to compute new labels for the ARG.

ARG Condition. Given an ARG A with an entry and an error nodes ven, verr,
respectively, we define ArgCond as follows:

ArgCond(verr) , cu1
∧ µ1 ∧ · · · ∧ µn, (1)

where µi = (cui ⇒
∨

(ui,w)∈E

(cw ∧ encode(ui, w))), (2)

u1 = ven, and u1, . . . , un is the sequence of all nodes, excluding verr, that can reach
verr in A, ordered by vt, and cui

is a fresh Boolean control variable representing
the node ui.

If encode(·, ·) is true, then ArgCond(verr) is satisfiable iff there exists a path
from ven to verr in A. encode(u, v) is a formula describing the semantics of an
edge (u, v) that is used to restrict satisfying assignments of ArgCond(verr) to



feasible executions. For example, for function foo in Fig. 1(a), we encode the
statement on edge (v4, v6) as follows: encode(v4, v6) = (x1 = 0∧x3 = x1). where
x1 is a fresh name for variable x, and x3 = x1 is used to equate the name of x
at node v6 (which is x3) with the value of x after executing this edge.

For the purpose of presentation, we provide a simplified definition of encode.
In practice, we use the SSA-based encoding defined in [18]. Let SVar = {xv | x ∈
Var ∧ v ∈ V } be the set of variables that can appear in encode(·, ·). That is, for
each variable x ∈ Var and node v ∈ V , we create a symbolic variable xv ∈ SVar.
The map SMap : SVar→ Var associates each xv with its program variable x. The
predicate inScope : SVar × V is defined so that inScope(xu, v) holds iff u = v.
If inScope(xu, v) holds, we say that xu is in-scope at node v; otherwise, it is
out-of-scope at v.

Definition 3 (encode). For an edge (u, v) ∈ E: If τ(u, v) is an assignment
statement x = E, then encode(u, v) = (xv = E[x ← xu]) ∧ ∀y ∈ Var · y 6=
x⇒ yv = yu. If τ(u, v) is an assume statement assume(Q), then encode(u, v) =
Q[x← xu | x ∈ var(Q)]∧∀y ∈ Var · yv = yu, where var(Q) is the set of variables
appearing in Q.

For example, for an edge (u, v) ∈ E s.t. τ(u, v) is x = x + 1, encode(u, v) =
xv = xu + 1 ∧ yv = yu, assuming Var = {x, y}.
Lemma 1. Given an ARG A, there exists a total onto map from satisfying
assignments of ArgCond(verr) to feasible program executions from ven to verr.

Labels from Interpolants. Given an ARG A with error node verr, when
ArgCond(verr) is unsatisfiable, Refine must return a set of labels for the nodes
of the ARG that satisfy well-labelledness conditions and the specification of Re-
fine (Definitions 1 and 2). We now show how to extract such labels from an
interpolant sequence of ArgCond(verr). For a sequence of formulas A1, . . . , An

s.t.
∧

i∈[1,n]Ai is UNSAT, an interpolant sequence [24, 10] I1, . . . , In+1 is defined

as follows: (1) I1 ≡ true, (2) ∀i ∈ [1, n] ·Ii∧Ai ⇒ Ii+1, (3) Ii is over the variables
shared between A1, . . . , Ai−1 and Ai, . . . , An, and (4) In+1 ≡ false.

Let I1, . . . , In+1 be an interpolant sequence for the sequence of formulas (cu1∧
µ1) ∧ µ2 ∧ · · · ∧ µn constituting ArgCond(verr). By definition, an interpolant
Ii is an over-approximation of the set of states at nodes in ui, . . . , un that are
directly reachable from states at nodes in u1, . . . , ui−1. For node ui, this includes
all states reachable at ui since all incoming edges to ui are from nodes that are
topologically before it, i.e., u1, . . . , ui−1.

Example 2. Consider node v′2 in Figure 1(c). An interpolant for v′2 is I ′2 = (cv′2 ∧
x3 ≥ 0) ∨ (cv7 ∧ x4 ≥ 0). Informally, I ′2 specifies that either execution reaches
v′2 with x4 ≥ 0, or it reaches v7 with with x4 ≥ 0. v7 states appear in the
formula because v7 is directly reachable from node v2 which comes before v′2 in
the topological order. ut

For each node ui, our goal is to extract the set of reachable states at ui from
the interpolant Ii. For instance, for node v′2 from Example 2, we want to extract



x3 ≥ 0, the set of reachable states at v′2, from the interpolant I ′2. To do so, we
use the following transformation:

Clean(Ii) ,

∀{x | x ∈ var(Ii) ∧ ¬inScope(x, ui)} · ∀{cuj | uj ∈ V } · I[cui ← >], (3)

where var(Ii) is the set of variables appearing in Ii.

Example 3. Continuing Example 2, Clean(I ′2) = ∀x4, cv7 ·I[cv′2 ← >] = x3 ≥ 0.
x4 is quantified out since it is out-of-scope at v′2. By replacing each variable y in
the resulting formula with SMap(y), we get the label {x ≥ 0} for v′2, as shown
in Figure 1(c).

By definition, Clean(Ii) is a formula over the variables in-scope at ui. Theo-
rem 3 states that the labels produced by Clean result in a safe ARG and satisfy
well-labelledness properties. That is, for any two nodes ui, uj , where there is an
edge (ui, uj), the labels produced for ui and uj form a Hoare triple w.r.t the
statement τ(ui, uj) encoded as encode(ui, uj).

Theorem 3. Let I ′k = Clean(Ik). (a) If k = 1, then I ′k ≡ true, and if k =
n, then I ′k ≡ false. (b) For any two nodes ui, uj ∈ V s.t. (ui, uj) ∈ E, I ′i ∧
encode(ui, uj)⇒ I ′j, where I ′j = Clean(Ij).

Proof. Part (a) follows from the definition of an interpolant sequence.
Part (b):

Ii ∧ µi ∧ · · · ∧ µj−1 ⇒ Ij
(set cui to > and logic)

⇒ Ii[cui ← >] ∧ cuj ∧ encode(ui, uj) ∧ µi+1 ∧ · · · ∧ µj−1 ⇒ Ij
(let Π = {cui+1 , . . . , cuj−1})

⇒ Ii[cui ← >, Π ← ⊥] ∧ cuj ∧ encode(ui, uj)⇒ Ij
(set cuj to >)

⇒ Ii[Π ← ⊥, cui ← >, cuj ← >] ∧ encode(ui, uj)⇒ Ij [cuj ← >]
(use (∀x.f)⇒ f)

⇒ I ′i ∧ encode(ui, uj)⇒ Ij [cuj ← >]
(out-of-scope variables of uj are not in the antecedent)

⇒ I ′i ∧ encode(ui, uj)⇒ I ′j ut
Finally, Refine returns the labeling map {ui 7→ Clean(Ii)

′ | i ∈ [1, n+ 1]},
where un+1 = verr and Clean(Ii)

′ = Clean(Ii)[x← SMap(x) | x ∈ SVar].
In summary, our refinement technique uses a single SMT query ϕ to decide

feasibility of all unsafe executions of an ARG A. When ϕ is unsatisfiable, it
extracts a new labeling for A that rules out all infeasible unsafe executions from
an interpolant sequence of ϕ .

6 Implementation and Evaluation

Implementation. We have implemented Ufo in the LLVM compiler infras-
tructure [22] and used it to verify properties of C programs from the 2012



Competition on Software Verification [5]. We used MathSat4 [9] for SMT-
checking and interpolation, and Z3 [25] for quantifier elimination. Our implemen-
tation, benchmarks, and complete experimental results are available at http:

//www.cs.toronto.edu/~aws/ufo.

We used LLVM to heavily optimize all input programs prior to analysis.
Because the benchmarks are meant for verification tools, these optimizations
might be unsound with respect to the intended verification semantics. However,
in all but one case (pipeline), our verification results are as expected: we find
a bug in buggy programs, and prove safety of safe ones. Furthermore, we have
implemented a proof and a counterexample checker that verify that the results
produced by UFO are sound with respect to our semantics of C. All results
discussed here have been validated by an appropriate checker.

Evaluation. For the evaluation, we used the ntdrivers-simplified,
ssh-simplified, and systemc benchmarks from [5], and the pacemaker bench-
marks from [1]. Overall, we had 105 C programs: 48 safe and 57 buggy. All ex-
periments were conducted on an Intel Xeon 2.66GHz processor running a 64-bit
Linux, with a 300 second time and 4GB memory limits per program, respectively.

We have evaluated 5 configurations of Ufo: (1) a pure UD, called uUfo,
where Post always returns true; (2) with Cartesian predicate abstraction, called
cpUfo; (3) with Boolean predicate abstraction, called bpUfo; (4) a pure OD
with Cartesian predicate abstraction, called Cp, and a pure OD with Boolean
predicate abstraction, called Bp. Note that Boolean predicate abstraction is
more precise, but is exponentially more expensive than Cartesian abstraction.

The results are summarized in Table 1. For each configuration, we show the
number of instances solved (#Solved), number of safe (#Safe) and unsafe
(#Unsafe) instances solved, number of unsound results (#Unsound), where
a result is unsound if it does not agree with the benchmark categorization in [5],
and the total time.

On these benchmarks, cpUfo performs significantly better than all other
configurations, both in total time and number of instances solved. The uUfo
configuration is a close second. We have also compared our results against the
UD tool Wolverine [21] that implements a version of Impact [24] algorithm.
All configurations of Ufo perform significantly better than Wolverine.

Furthermore, we compared our tool against the results of the extensive study
reported in [7] for the state-of-the-art OD tools CpaChecker [7], Blast [6], and
SatAbs [12]. Both uUfo and cpUfo configurations are able to solve all buggy
transmitter examples. However, according to [7], CpaChecker, Blast, and
SatAbs are unable to solve most of these examples, even though they are run
on a faster processor with a 900s time limit and 16GB of memory. Additionally,
on the ntdrivers-simplified, uUfo, cpUfo and bpUfo perform significantly
better than all of the aforementioned tools.

Table 2 presents a detailed comparison between different configurations of
Ufo on 32 (out of 105) programs. In the table, we show time, number of itera-
tions (#Iter), and time spent in interpolation (#iTime) and post (#pTime),
respectively. Times taken by other parts of the algorithm (such as Clean) were



Algorithm #Solved #Safe #Unsafe #Unsound Total Time (s)

uUfo 78 22 56 0 8,289

cpUfo 79 22 57 1 7,838

bpUfo 69 17 52 1 11,260

Cp 49 10 39 0 15,363

Bp 71 19 52 1 10,018

Wolverine 38 18 20 5 19,753

Table 1. Summary of results on 105 C programs.

insignificant and are omitted. Cp configuration was not able to solve all but one
of these examples, and is omitted as well.

In this sample, cpUfo is best overall, however, it is often not the fastest
approach on any given example. This is representative of its performance over
the whole benchmark. As expected, both uUfo and cpUfo spend most of their
time in computing interpolants, while bpUfo and Bp spend most of their time
in predicate abstraction.

The results show that there is clearly a synergy between UD and OD-driven
parts of the analysis. For example, in toy1 BUG and s3 srvr 1a, predicate ab-
straction decreases the number of required iterations. Several of the buggy ex-
amples from the token ring family cannot be solved by a UD-only uUfo con-
figuration alone. However, there are also some interactions. For many of the safe
cases that require a few iterations, uUfo performs better than other combina-
tions. For many unsafe cases that bpUfo can solve, it performs much better
alone than in a combination.

In summary, our results show that the novel UD-driven algorithm that under-
lies Ufo (uUfo configuration) is very effective compared to the state-of-the-art
approaches. Furthermore, there is a clear synergy in combining UD and OD ap-
proaches, with cpUfo performing the best overall. However, there are also some
interactions where the combination does not result in the best of the individual
approaches. Managing these interactions effectively is the subject of future work.

7 Related Work

In this section, we place Ufo in the context of related work. Specifically, we
compare it with the most related UD and OD verification techniques.

Ufo is based on a novel interpolation-driven verification algorithm. It extends
Impact [24], by unrolling the program into a DAG instead of a tree and by
using a single SMT query to both discharge all infeasible unsafe executions and
to compute new labels. In effect, Ufo uses the SMT solver to enumerate acyclic
program paths, whereas Impact enumerates those paths explicitly. Furthermore,
Ufo extends Impact by using an abstract post operator during exploration.
As we show in our experiments, this can lead to fewer iterations and faster
verification.

We have recently developed an inter-procedural extension of Impact, called
Whale [1]. Whale works on loop-free recursive programs and uses interpolants
derived from DAG encodings of a procedure to compute procedure summaries.



uUfo cpUfo bpUfo Bp
Program Time Iter iTime Time #Iter iTime pTime Time Iter iTime pTime Time Iter iTime pTime

Unsafe Programs

kundu1 - - - 24.22 4 20.3 1.84 122.88 4 56.9 54.66 33.39 3 20.23 10.95

kundu2 1.24 2 1.16 2.74 2 2.08 0.6 8.15 2 1.2 5.66 8.6 2 3.49 4.3

s3 srvr 11 1.91 4 1.67 2.78 4 1.58 0.89 118.41 4 1.72 112.76 4.25 3 2.6 1.37

s3 srvr 12 4.17 4 3.85 5.07 3 3.44 1.36 5.36 3 3.58 1.44 8.19 3 5.85 1.91

token ring.08 12.34 4 11.84 13.5 4 11.07 1.91 19.64 3 3.7 14.62 14.15 3 1.85 11.12

token ring.09 12.54 4 11.98 22.66 4 19.72 2.35 - - - - 167.49 3 3.85 157.58

token ring.10 15.6 4 15.05 14.02 3 11.99 1.69 - - - - - - - -

token ring.11 29.69 4 29.08 22.47 4 18.52 3.19 156.76 3 4.57 145.99 66.59 3 4.21 58.68

token ring.12 26.94 4 26.31 13.98 3 11.45 2.15 - - - - - - - -

token ring.13 36.56 4 35.76 34.17 4 29.38 4.02 - - - - - - - -

token ring.14 10.3 3 9.99 33.49 4 29.17 3.59 - - - - - - - -

token ring.15 51.79 4 51.11 34.19 4 29.18 4.17 - - - - - - - -

toy1 96.49 10 89.08 79 9 68.04 6.98 13.54 3 4.77 7.96 - - - -

toy2 12.83 5 12.24 60.73 8 50.71 6.14 - - - - - - - -

ddd3 0.66 4 0.5 0.19 2 0.04 0.11 0.18 2 0.03 0.11 0.27 2 0.05 0.2

Safe Programs

pc sfifo 1 - - - - - - - 3.51 3 2.24 0.79 - - - -

s3 clnt 1 11.03 10 8.18 15.68 10 8.2 4.5 - - - - 14.52 5 1.92 8.21

s3 clnt 2 16 10 11.35 20.02 10 10.86 4.67 - - - - - - - -

s3 clnt 3org 28.87 11 17.35 37.08 11 17.6 8.17 - - - - - - - -

s3 clnt 3 13.02 10 9.14 17.42 10 9.01 4.45 - - - - - - - -

s3 clnt 4 13.4 10 9.62 17.45 10 9.16 4.58 - - - - - - - -

s3 srvr 1a 5.2 10 2.95 5.16 8 2.32 1.07 0.76 4 0.17 0.39 0.43 3 0.07 0.26

s3 srvr 1b 1.37 7 1 2.9 7 1.71 0.69 0.89 5 0.47 0.28 - - - -

s3 srvr 2 171.15 17 116.82 184.01 17 112.65 18.65 - - - - - - - -

s3 srvr 3 133.07 17 99.96 147.55 17 98.69 16.02 - - - - 33.71 5 1.07 21.18

s3 srvr 4 - - - - - - - - - - - 8 4 0.74 5.36

s3 srvr 8 101.4 14 76.6 115.08 14 73.9 17.62 - - - - - - - -

token ring.01 98.18 18 81.58 23.64 10 17.72 1.78 0.69 4 0.27 0.23 0.69 4 0.19 0.31

token ring.02 - - - - - - - 2.15 4 0.71 0.7 2.63 4 1.06 0.59

token ring.03 - - - - - - - 76.18 4 4.74 37.66 - - - -

token ring.04 - - - - - - - - - - - 152.62 4 10.82 2.45

token ring.05 - - - - - - - - - - - 149.35 4 8.25 97.48

Table 2. Results of running Ufo on 33 programs from the benchmarks. All times are
in seconds.

The intra-procedural technique presented here is orthogonal to that of Whale,
and the interpolation-based refinement presented here is new. It would be inter-
esting to see if the combination of UD and OD in Ufo can be adapted to the
inter-procedural setting of Whale.

Dash [4] uses weakest-precondition (WP) over infeasible program paths to
partition (i.e., refine) a program’s state space. In contrast, Ufo refines multiple
program paths at the same time. Moreover, Ufo uses interpolants for refinement,
an approach that has been shown to provide more relevant predicates than WP-
based refinement [20]. We believe that our multi-path refinement strategy can
be easily implemented in Dash to generate test-cases for multiple frontiers or
split different regions at the same time.

At a high level, Ufo is similar to the abstract algorithm Smash [15], in
the sense that it combines over- and under-approximations. In [15], the only
instantiation of Smash that is experimented with is an under-approximation-
driven algorithm based on Dash [4], where no abstract domain is used. In this
paper, we have experimented with multiple instances of Ufo, ranging from UD
to OD. Other differences between Smash and Ufo include the fact that Ufo



refines multiple paths at the same time, whereas Smash considers a single path
at a time.

Lazy abstraction [19] is the closest OD algorithm to Ufo. Ufo can be seen as
extending lazy abstraction in two directions. First, Ufo unrolls a program into
a DAG (and not a tree). Second, it uses all the labels produced by interpolation,
and only applies predicate abstraction to the “frontier” nodes that are not known
to reach an error location.

We are not the first to apply interpolation to multiple program paths. In [14],
Esparza et al. use interpolants to find predicates that eliminate multiple spuri-
ous counterexamples simultaneously. Their algorithm uses an eager abstraction-
refinement loop, and a BDD-based interpolation procedure. In contrast, the re-
finement in Ufo uses an SMT-solvers-based interpolation procedure. It is not
clear whether BDD-based techniques of [14] can be efficiently adapted to the
SMT-based setting.

8 Conclusion

Software model checkers can be divided into over-approximation-driven (OD)
(e.g., Slam [3]) and under-approximation-driven (UD) (e.g., Impact [24]). An
OD software model-checker maintains an abstraction of the transition relation
of a program and uses abstract reachability to build an inductive invariant or
find a counterexample. A UD model checker avoids the (potentially expensive)
abstraction step, and instead attempts to guess an inductive invariant by gen-
eralizing from finite paths through the control-flow graph of the program. Until
now, combinations of these techniques have not been explored.

In this paper, we presented Ufo – a model checking algorithm that tightly
couples UD and OD approaches. At the core of Ufo is a UD algorithm that is
parameterized by an abstract Post operator, and a novel interpolation-based
refinement procedure. The refinement procedure uses a single SMT query to
decide feasibility of all unsafe executions in an unrolling of a program’s CFG.

We have implemented Ufo within LLVM [22], and experimented with two
variants of Post based on Boolean and Cartesian predicate abstractions. We
have evaluated our implementation on benchmarks from the Competition on
Software Verification [5]. Our results show that Ufo is very competitive com-
pared to the state-of-the-art. There is a clear synergy in combining UD and OD
approaches. However, there are also undesirable interactions. We believe that
this work opens new avenues for exploring combinations of UD- and OD-based
approaches to verification, a direction we hope to explore in the future.
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