
TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Matching and Merging of Variant
Feature Specifications

Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela Zave

Abstract—Model Management addresses the problem of man-
aging an evolving collection of models, by capturing the re-
lationships between models and providing well-defined oper-
ators to manipulate them. In this article, we describe two
such operators for manipulating feature specifications described
using hierarchical state machine models: Match, for finding
correspondences between models, and Merge, for combining
models with respect to known or hypothesized correspondences
between them. Our Match operator is heuristic, making use
of both static and behavioural properties of the models to
improve the accuracy of matching. Our Merge operator preserves
the hierarchical structure of the input models, and handles
differences in behaviour through parameterization. This enables
us to automatically construct merges that preserve the semantics
of hierarchical state machines. We report on tool support for
our Match and Merge operators, and illustrate and evaluate our
work by applying these operators to a set of telecommunication
features built by AT&T.

Index Terms—Model Management, Match, Merge, Hierarchi-
cal State Machines, Statecharts, Behaviour preservation, Vari-
ability modelling, Parameterization.

I. INTRODUCTION

Model-based development involves construction, integra-
tion, and maintenance of complex models. For large-scale
projects, modelling is often a distributed endeavor involving
multiple teams at different organizations and geographical
locations. These teams build multiple inter-related models,
representing different perspectives, different versions across
time, different variants in a product family, different develop-
ment concerns, etc. Identifying and verifying the relationships
between these models, managing consistency, propagating
change, and integrating the models are major challenges.
These challenges are collectively studied under the heading
of Model Management [1].

Model management aims to provide appropriate constructs
for specifying the relationships between models, and system-
atic operators to manipulate the models and their relationships.
Such operators include, among others, Match, for finding
correspondences between models, Merge, for putting together
a set of models with respect to known relationships between
them, Slice, for producing a projection of a model based on a
given criterion, and Check-Property, for verifying models and
relationships against the properties of interest [2], [3], [1].

Shiva Nejati and Mehrdad Sabetzadeh are with Simula Research Laboratory,
Lysaker, Norway. Email: {shiva,mehrdad}@simula.no.

Marsha Chechik and Steve Easterbrook are with the Department of
Computer Science, University of Toronto, Toronto, ON, Canada. Email:
{chechik,sme}@cs.toronto.edu.

Pamela Zave is with AT&T Laboratories–Research, Florham Park, NJ,
USA. Email: pamela@research.att.com

Among these operators, Match and Merge play a central
role in supporting distribution and coordination of modelling
tasks. In any situation where models are developed indepen-
dently, Match provides a way to discover the relationships
between them, for example, to compare variants [4], to identify
inconsistencies [5], to support reuse and refactoring [6], [7],
and to enable web-service recovery [8]. Sophisticated Match
tools, e.g., Protoplasm [9], can handle models that use dif-
ferent vocabularies and different levels of abstraction. Merge
provides a way to gain a unified perspective [10], to understand
interactions between models [11], and to perform various types
of analysis such as synthesis, verification, and validation [12],
[13].

Many existing approaches to model merging concentrate
on syntactic and structural aspects of models to identify
their relationships and to combine them. For example, Mel-
nik [3] studies matching and merging of conceptual database
schemata; Mehra et al. [14] propose a general framework
for merging visual design diagrams; Sabetzadeh and East-
erbrook [15] describe an algebraic approach for merging
requirements viewpoints; and Mandelin et al. [4] provide a
technique for matching architecture diagrams using machine
learning. These approaches treat models as graphical artifacts
while largely ignoring their semantics. This treatment provides
generalizable tools that can be applied to many different
modelling notations, and which are particularly suited to early
stages of development, when models may have loose or flex-
ible semantics. However, structural model merging becomes
inadequate for later stages of development where models have
rigorous semantics that needs to be preserved in their merge.
Furthermore, such outlook leaves unused a wealth of semantic
information that can help better mechanize the identification
of relationships between models.

In contrast, research on behavioural models concentrates
on establishing semantic relationships between models. For
example, Whittle and Shumann [16] use logical pre/post-
conditions over object interactions for merging sequence dia-
grams; and Uchitel and Chechik [12] and Fischbein et al. [13]
use refinement relations for merging consistent and partial
state machine models so that their behavioural properties
are preserved. These approaches, however, do not make the
relationships between models explicit and do not provide
means for computing and exploring alternative relationships.
This can make it difficult for modellers to guide the merge
process, particularly when there is uncertainty about how the
contents of different models should map onto one another, or
when the models are defined at different levels of abstraction.

In this article, we present an approach to matching and

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Call logger - basic

Link
Callee

Wait

Timer
Started

Log
Failure

Log
Success

setup [zone=source]/
callee = participant

callee?Ack

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

s0

s1
s2

s3

s4

Initialize Links

Start

setup [zone=target]/
callee = subscriber

s5

s6 s7

Link
Subscriber

Link
Participant

Pending

Timer
Started

Log
Failure

Log
Success

setup [zone=target]

setup [zone=source]

participant?Ack

subscriber?Ack

redirectToVoicemail
[zone=target]

participant?Reject [zone=source] OR
participant?Unavail [zone=source] OR

participant?TearDown [zone=source] OR
subscriber?Reject [zone=target] OR
subscriber?Unavail [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

Log
Voicemail

t0

t1 t2

t3
t4

t5

t6

Call logger - voicemail

Start

t7 t8

Variables ``subscriber'', ``participant'', and ``callee'' are port variables.
A label ``p?e'' on a transition indicates that the transition is triggered by event
``e'' sent from port ``p''.

These variants are examples of DFC ``feature boxes'', which can be instantiated in the ``source zone'' or the ``target zone''. Feature boxes instantiated in the source
zone apply to all outgoing calls of a customer, and those instantiated in the target zone apply to all their incoming calls. The conditions ``zone = source'' and ``zone
= target'' are used for distinguishing the behaviours of feature boxes in different zones.

Fig. 1. Simplified variants of the call logger feature.

merging variant feature specifications described as Statechart
models. Merging combines structural and semantic informa-
tion present in the Statechart models and ensures that their
behavioural properties are preserved. In our work, we separate
identification of model relationships from model integration
by providing independent Match and Merge operators. Our
Match operator includes heuristics for finding terminological,
structural, and semantic similarities between models. Our
Merge operator parameterizes variabilities between the input
models so that their behavioural properties are guaranteed to
be preserved in their merge. We report on tool support for our
Match and Merge operators, and illustrate and evaluate our
work by applying these operators to a set of telecommunica-
tion features built by AT&T.

A. Motivating Example
Domain. We motivate our work with a scenario for maintain-
ing variant feature specifications at AT&T. These executable
specifications are modules within the Distributed Feature Com-
position (DFC) architecture [17], [18], and form part of a
consumer voice-over-IP service [19]. The features are specified
as Statecharts.

One feature of the voice-over-IP service is “call logging”,
which makes an external record of the disposition of a call
allowing customers to later view information on calls they
placed or received. At an abstract level, the feature works as
follows: It first tries to setup a connection between the caller
and the callee. If for any reason (e.g., the caller hanging up
or the callee not responding), a connection is not established,
a failure is logged; otherwise, when the call is completed,
information about the call is logged.

Initially, the functionality was designed only for basic phone
calls, for which logging is limited to the direction of a call,

P1 After a connection is set up, a successful call will be logged
if the subscriber or the participant sends Accept

P2 After a connection is set up, a voicemail will be logged
if the call is redirected to the voicemail service

Fig. 2. Sample behavioural properties of the models in Figure 1: P1
represents an overlapping behaviour, and P2 – a non-overlapping one.

the address location where a call is answered, success or
failure of the call, and the duration if it succeeds. Later,
a variant of this feature was developed for customers who
subscribe to the voicemail service. Incoming calls for these
customers may be redirected to a voicemail resource, and
hence, the log information should include the voicemail status
as well. Figure 1 shows simplified views of the basic and
voicemail variants of this feature. To avoid clutter, we combine
transitions that have the same source and target states using
the disjunction (OR) operator.

In the DFC architecture, telecom features may come in
several variants to accommodate different customers’ needs.
The development of these variants is often distributed across
time and over different teams of people, resulting in the
construction of independent but overlapping models for each
feature. For example, consider the two properties described in
Figure 2. Property P1 holds in both variants shown in Figure 1
because both can log a successful call: P1 holds via the path
from s4 to s6 in the basic variant, and via the path from t4 to
t6 in voicemail. This property represents a potential overlap
between the behaviours of these variants. In contrast, property
P2 only holds in voicemail (via the path from t4 to t8) but
not in basic. This property illustrates a behavioural variation
between the variants shown in Figure 1.

Goal. To reduce the high costs associated with verifying

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

and maintaining independent models, we need to identify
correspondences between variant models so that developers
can obtain a single unified model.

B. Contributions of this article

Applications of Match and Merge arise in a number of
different contexts, one of which is illustrated by our motivating
example. Implementing Match and Merge involves answering
several questions. Particularly, what criteria should we use for
identifying correspondences between different models? How
can we quantify these criteria? How can we construct a merge
given a set of models and their correspondences? How can
we distinguish between shared and non-shared parts of the
input models in their merge? What properties of the input
models should be preserved by their merge? In this article, we
address these questions for models expressed as Statecharts.
This article extends and refines an earlier version of this work
which appeared in [20], making the following contributions:
• A description of a versatile Match operator for hierarchi-

cal state machines. Our Match operator uses a range of
heuristics including typographic and linguistic similarities
between the vocabularies of different models, structural
similarities between the hierarchical nesting of model
elements, and semantic similarities between models based
on a quantitative notion of behavioural bisimulation. We
apply our Match operator to a set of telecom feature spec-
ifications developed by AT&T. Our evaluation indicates
that the approach is effective for finding correspondences
between real-world models.

• A description of a Merge operator for Statechart mod-
els. We provide a procedure for constructing behaviour-
preserving merges that also respect the hierarchical struc-
turing and parallelism of the input models. We use this
Merge operator for combining variant telecom features
from AT&T based on the relationships computed by our
Match operator between the features.

• Tool support for our Match and Merge
operators. Our tool, named TReMer+
(http://se.cs.toronto.edu/index.php/TReMer) [21], enables
establishing relationships between models – identified
manually or based on results of our Match operator –
and computes the result of Merge for each identified
relationship.

The rest of this article is organized as follows. Section II
provides an overview of our Match and Merge operators. Sec-
tion III outlines our assumptions and fixes notation. Section IV
introduces our Match operator, and Section V – our Merge
operator. Section VI describes tool support for the two oper-
ators. Section VII presents an evaluation of effectiveness for
the Match operator, and Section VIII assesses the soundness
of the Merge operator. Section IX compares our contributions
with related work and discusses the results presented in this
article. Finally, Section X concludes the article.

II. OVERVIEW OF OUR APPROACH

Figure 3 provides an overview of our framework for in-
tegrating variant feature specifications. The framework has

Fig. 3. A framework for integrating variant feature specifications.

two main steps. In the first step, a Match operator is used
to find relationships between the input models. In the second
step, an appropriate Merge operator is used to combine the
models with respect to the relationships computed by Match.
This framework enables the explicit distinction between the
identification of model relationships and model integration –
the Match and Merge operators are independent, but they are
used synergistically to allow us to hypothesize alternative ways
of combining models, and to compute the result of merge for
each alternative.

Our ultimate goal is to provide automated tool support
for the framework in Figure 3. Among these two operators,
Match has a heuristic nature. Since models are developed
independently, we can never be entirely sure about how these
models are related. At best, we can find heuristics that can
imitate the reasoning of a domain expert. In our work, we use
two types of heuristics: static and behavioural. Static heuristics
use structural and textual attributes, such as element names,
for measuring similarities. For the models in Figure 1, static
heuristics would suggest a number of good correspondences,
e.g., the pairs (s6, t6), and (s7, t7); however, these heuristics
would miss several others, including (s3, t3), (s3, t2) and
(s4, t4). These pairs are likely to correspond not because they
have similar static characteristics, but because they exhibit
similar dynamic behaviours. Our behavioural heuristic can find
these pairs.

To obtain a satisfactory correspondence relation, we use a
combination of static and behavioural heuristics. Our Match
operator produces a correspondence relation between states
in the two models. For the models in Figure 1, it may yield
the correspondence relation shown in Figure 8(b). Because
the approach is heuristic, the relation must be reviewed by a
domain expert and adjusted by adding any missing correspon-
dences and removing any spurious ones. In our example, the
final correspondence relation approved by a domain expert is
shown in Figure 8(d).

Unlike matching, merging is not heuristic, and in situations
where the purpose of merge is clear, this operator is entirely
automatable. Given a pair of models and a correspondence
relation between them, our Merge operator automatically pro-
duces a merge that:

1) preserves the behavioural properties of the input models.
Figure 10 shows the merge of the models of Figure 1
with respect to the relation in Figure 8(d). This merge
is behaviour-preserving. That is, any behaviour of the
input models is preserved in the merge model (either

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

through shared or non-shared behaviours). For example,
the property P1 in Figure 2 that shows an overlapping
behaviour between the models in Figure 1 is preserved
in the merge as a shared behaviour (denoted by the path
from state (s4, t4) to (s6, t6)).

2) distinguishes between shared and non-shared behaviours
of the input models by attaching appropriate guard
conditions to non-shared transitions. In the merge, non-
shared transitions are guarded by boldface conditions
representing the models they originate from. For exam-
ple, the property P2 in Figure 2 which holds over the
voicemail variant but not over the basic, is represented
as a parameterized behaviour in the merge (denoted by
the transition from (s4, t4) to t8), and is preserved only
when its guard holds.

3) respects the hierarchical structure and parallelism of the
input models, providing users with a merge that has the
same conceptual structure as the input models.

III. ASSUMPTIONS AND BACKGROUND

The Statechart language [22] is a common notation for de-
scribing hierarchical state machines and is a de-facto standard
for specifying intra-object behaviours of software systems.
Below, the syntax of this language is formalized [23].

Definition 1 (Statecharts): A Statecharts model is a tuple
(S, ŝ, <h, E, V,R), where S is a finite set of states; ŝ ∈ S is an
initial state; <h is an AND-OR tree defining the state hierarchy
tree (or hierarchy tree, for short); E is a finite set of events; V
is a finite set of variables; and R is a finite set of transitions,
each of which is of the form 〈s, e, c, α, s′, prty〉, where s, s′ ∈
S are the transition’s source and target, respectively, e ∈ E is
the triggering event, c is an optional predicate over V , α is
a sequence of zero or more actions that generate events and
assign values to variables in V , and prty is a number denoting
the transition’s priority.

We write a transition 〈s, e, c, α, s′, prty〉 as s
e[c]/α−→ prty s

′.
Each state in S can be either an atomic state or a superstate.
A superstate can be an AND-state or an OR-state. The
substates of an AND-state are executed in parallel and can
be active simultaneously, whereas the substates of an OR-
state are executed sequentially, and at each time only one
state can be active. For example, in Figure 4(a), Record Voice
Mail is an OR-state with two substates: Initialize and Place
Call that are executed sequentially, while Place Call is an
AND-state with two parallel substates Record Voicemail and
Transparent Links. The hierarchy tree <h is an AND-OR tree
that defines a partial order on states with the top superstate
as root and the atomic states as leaves. The hierarchy tree
for the model in Figure 4(a) is shown in Figure 4(b). In
the Statechart of the basic call logger model in Figure 1,
s0 is the root, s2 through s7 are leaves, and s1 is an OR-
state. The set ŝ of initial states is {s0, s1, s2}. The set E
of events is {setup, Ack, Accept,Reject, TearDown}, and the set
V of variables is {callee, zone, participant, subscriber}. The only
actions in Figure 1 are callee=participant and callee=subscriber.
These actions assign values participant and subscriber to the
variable callee, respectively.

Initialize

Record
Voicemail

Transparent
Links

Record Voice Mail

Place Call

(a) Record
Voice Mail

(b)

Initialize Place Call

OR

Record
Voicemail

Record
Voicemail

AND

Fig. 4. Parallel Statecharts: (a) An example, and (b) the hierarchy tree
corresponding to (a).

s1

a

s0
a

a

b

c

s′
0

cs′
1

(a) (b)s2

s3

bs′
2

Fig. 5. (a) Prioritizing transitions to eliminate non-determinism in ECharts:
Transition s1 → s3 has higher priority than transition s0 → s2, and (b) the
flattened form of the Statecharts in (a).

Implementations of the Statechart language differ on how
they define the semantics of inter- and intra-machine com-
munication, and how they resolve non-determinism in the
language [23]. The implementation of the AT&T features is
based on a Statechart dialect, called ECharts [24], and makes
the following choices regarding these issues:
• Inter- and intra-machine communication. ECharts

does not permit actions generated by a transition of
a Statechart to trigger other transitions of the same
Statechart [25]. That is, an external event activates at
most one transition, not a chain of transitions. Therefore,
notions of macro- and micro-steps coincide in ECharts.

• Non-determinism. In Statecharts, it may happen that a
state and some of its proper descendants have outgoing
transitions on the same event and condition, but to dif-
ferent target states. For example, in Figure 5(a), states s0
and s1 have transitions labelled a to two different states,
s2 and s3, respectively. This makes the semantics of this
Statechart model non-deterministic because it is not clear
which of the transitions, s0 → s2 or s1 → s3, should
be taken upon receipt of the event a. In ECharts, cer-
tain types of non-determinism are resolved by assigning
global priorities (using prty) to transitions that have the
same event and condition. For example, in Figure 5(a), it
is assumed that the inner transitions have a higher priority
than the outer transitions, and hence, on receipt of a, the
transition from s1 to s3 is activated. The models shown
in Figure 1 are already deterministic, i.e., any external
event triggers at most one transition in them. Thus, no
further prioritization is required1.

Note that our Matching and Merging techniques are gen-
eral and can be applied to various Statechart dialects. In
order to demonstrate that the Merge operator is semantic-
preserving, one needs to explicitly identify how the above

1Note that the ECharts semantics is not fully deterministic. In particular,
the ECharts priority rules do not resolve non-determinism in AND-states.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

semantic variation points are resolved in a particular Statechart
implementation. Our proof for semantic preservation of Merge
(see Appendix XI-C) can carry over to other dialects.

In addition, we make the following assumptions
on how behavioural models are developed in
our context. Let M1 = (S1, ŝ, <

1
h, E1, V1, R1) and

M2 = (S2, t̂, <
2
h, E2, V2, R2) be Statechart models.

• We assume that the sets of events, E1 and E2, are drawn
from a shared vocabulary, i.e., there are no name clashes,
and no two elements represent the same concept. This
assumption is reasonable for design and implementation
models because events and variables capture observable
stimuli, and for these, a unified vocabulary is often
developed during upstream lifecycle activities. Note that
this assumption is also valid for variables in V1 and V2
that appear in the guard conditions, i.e., the environmental
(input) variables.

• Since M1 and M2 describe variant specifications of the
same feature, they are unlikely to be used together in
the same configuration of a system, and hence, unlikely
to interact with one another. Therefore, we assume that
actions of either M1 or M2 cannot trigger events in the
other model. For example, the only actions in the State-
chart in Figure 1 are callee=participant and callee=subscriber.
These actions do not cause any interaction between the
Statechart models in Figure 1. Hence, the models in
Figure 1 are non-interacting. For a discussion on dis-
tinctions between models with interacting vs. overlapping
behaviours, see Section IX.

IV. MATCHING STATECHARTS

Our Match operator (Figure 6) uses a hybrid approach
combining static matching, S (Section IV-A), and behavioural
matching, B (Section IV-B). Static matching is independent
of the Statechart semantics and combines typographic and
linguistic similarity degrees between state names, respectively
denoted T and G, with similarity degrees between state
depths in the models’ hierarchy trees, denoted D. Behavioural
matching (B) generates similarity degrees between states based
on their behavioural semantics. Each matching is defined as a
total function S1 × S2 → [0..1], assigning a normalized value
to every pair (s, t) ∈ S1×S2 of states. The closer a degree is
to one, the more similar the states s and t are (with respect to
the similarity measure being used). We aggregate the static and
behavioural heuristics to generate the overall similarity degrees
between states (Section IV-C). Given a similarity threshold, we
can then determine a correspondence relation ρ over the states
of the input models (Section IV-C).

A. Static Matching

Static matching, S , is calculated by combining typographic
(T), linguistic (G), and depth (D) similarities. In this article,
we use the following formula for the combination:

S = 4·max(T ,G)+D
5

 Correspondence
Relation ()ρ

+ Translation

Threshold

M1,M2

Static Matching ()

Behavioural Matching ()

S

B

Typographic Matching ()

Linguistic Matching ()

Depth Matching ()

T
G

D

Match

Fig. 6. Overview of the Match operator.

The typographic, linguistic and depth heuristics are described
below.

Typographic Matching (T) assigns a value to every pair
(s, t) by applying the N-gram algorithm [26] to the name
labels of s and t. Given a pair of strings, this algorithm
produces a similarity degree based on counting the number
of their identical substrings of length N. We use a generic
implementation of this algorithm with trigrams (i.e., N = 3).
For example, the result of trigram matching for some of the
name labels of the states in Figure 1 is as follows:

trigram(“Wait”, “Pending”) = 0.0
trigram(“Log Success”, “Log Failure”) = 0.21
trigram(“Log Success”, “Log Success”) = 1.0
trigram(“Link Callee”, “Link Participant”) = 0.18

Linguistic Matching (G) measures similarity between name
labels based on their linguistic correlations, to assign a nor-
malized similarity value to every pair of states. We employ
the freely available WordNet::Similarity package [27] for this
purpose. WordNet::Similarity provides implementations for a va-
riety of semantic relatedness measures proposed in the Natural
Language Processing (NLP) literature. In our work, we use the
gloss vector measure [28] – an adaptation of the popular cosine
similarity measure [29] used in data mining for computing a
similarity degree between two words based on the available
dictionary and corpus information. For a given pair of words,
the gloss vector measure is a normalized value in [0..1].

In many cases, the name labels whose relatedness is being
measured are phrases or short sentences, e.g., “Log Success”
and “Log Failure” in Figure 1. In these cases, we need an
aggregate measure that computes degrees for name labels
expressed as sentences or phrases. To this end, we use a simple
measure from natural language processing [26], described
below.

We treat each name label as a set of words (which implies
that the parts of speech of the words in the name labels are
ignored) and compute the gloss vector degrees for all word
pairs of the input labels. We then find a matching between
the words of the input labels such that the sum of the degrees
is maximized. This optimization problem is easily cast into
the maximum weighted bipartite graph matching problem, also
known as the assignment problem [30]. The nodes on each side

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

system busy

component in use

0.45
0.18

0.16

0.36
0.370.1

set of words in
2nd label

set of words in
1st label

Fig. 7. Weighted bipartite graph induced by a pair of name labels (“system
busy” and “component in use”).

of the bipartite graph are the words in one of the input labels.
There is an edge e with weight w between word x of the first
input label and word y of the second input label if the degree
of relatedness between x and y is w. The result of maximum
weighted bipartite matching is a set of edges e1, . . . , ek such
that no two edges have the same node (i.e., word) as an
endpoint, and the sum

∑k
i=1 weight(ei) is maximal. If the

input name labels are for a pair of states (s, t), linguistic
similarity between s and t is given by the following:

G(s, t) =
2×∑k

i=1 weight(ei)

N1 +N2

where N1 and N2 are the number of words in each of the two
name labels being compared.

As an example, suppose we want to compute a degree of
similarity between the labels “system busy” and “component
in use”. Figure 7 shows the weighted bipartite graph induced
by the two labels. The weight assigned to each edge denotes
the gloss vector degree for the two words connected by the
edge. The maximal weight match is achieved when “system”
is matched to “component”, and “busy” is matched to “use”,
giving us a match value of 2× (0.45 + 0.37)/(2 + 3) ≈ 0.33.

Depth Matching (D) uses state depths to derive a similarity
heuristic for models that are at the same level of abstraction.
This captures the intuition that states at similar depths are more
likely to correspond to each other and is computed as follows:

D(s, t) = 1− |depth(s)−depth(t)|
max(depth(s),depth(t))

where depth(s) and depth(t) are respectively the position
of states s and t in the state hierarchy tree orderings < of
their corresponding input models. For example, in Figure 1,
depth(s2) is 2 and depth(t1) is 1, and D(s2, t1) = 0.5.

B. Behavioural Matching

Behavioural matching (B) provides a measure of similarity
between the behaviours of different states. Our behavioural
matching technique draws on the notion of bisimilarity be-
tween state machines [31]. Bisimilarity provides a natural
way to characterize behavioural equivalence. Bisimilarity is
a recursive notion and can be defined in a forward and
backward way [32]. Two states are forward bisimilar if they
can transition to (forward) bisimilar states via identically-
labelled transitions; and are (forward) dissimilar otherwise.

Dually, two states are backward bisimilar if they can be
transitioned to from (backward) bisimilar states via identically-
labelled transitions; and are (backward) dissimilar otherwise.

Bisimilarity relates states with precisely the same set of
behaviours, but it cannot capture partial similarities. For exam-
ple, states s4 and t4 in Figure 1 transit to (forward) bisimilar
states s7 and t7, respectively, with transitions labelled partic-
ipant?Reject[zone=source], participant?TearDown[zone=source], sub-
scriber?Reject[zone=target], and subscriber?TearDown[zone=target].
However, despite their intuitive similarity, s4 and t4 are dissim-
ilar because their behaviours differ on a few other transitions,
e.g., the one labelled redirectToVoicemail[zone=target].

Instead of considering pairs of states to be either bisimilar
or dissimilar, we introduce an algorithm for computing a quan-
titative value measuring how close the behaviours of one state
are to those of another. Our algorithm iteratively computes a
similarity degree for every pair (s, t) of states by aggregating
the similarity degrees between the immediate neighbors of s
and those of t. By neighbors, we mean either successor/child
states (forward neighbors) or predecessor/parent states (back-
ward neighbors) depending on which bisimilarity notion is
being used. The algorithm iterates until either the similarity
degrees between all state pairs stabilize, or a maximum number
of iterations is reached.

In the remainder of this section, we describe the algorithm
for the forward case. The backward case is similar. We use
the notation s

a→ s′ to indicate that s′ is a forward neighbor
of s. That is, s has a transition to s′ labelled a, or s′ is child
of s where a is a special label called child. Note that s can be
either an AND-state or an OR-state. Treating children states
as neighbors allows us to propagate similarities from children
to their parents and vice versa.

We denote by Bi(s, t) the degree of similarity between
states s and t after the ith iteration of the matching algorithm.
Initially, all states of the input models are assumed to be
bisimilar, so B0(s, t) is 1 for every pair (s, t) of states. Users
may override the default initial values, for example, assigning
zero to those tuples that they believe would not correspond to
each other. This enables users to apply their domain expertise
during the matching process. Since behavioural matching is
iterative, user input gets propagated to all tuples and can hence
induce an overall improvement in the results of matching.

For proper aggregation of similarity degrees between states,
our behavioural matching requires a measure for comparing
transition labels. A transition label is made up of an event and,
optionally, a condition and an action. We compare transition
labels using the N-gram algorithm augmented with some
simple semantic heuristics. This algorithm is suitable because
of the assumption that a shared vocabulary for observable
stimuli already exists. The algorithm assigns a similarity value
L(a, b) in [0..1] to every pair (a, b) of transition labels.

Having described the initialization data (B0) and transition
label comparison (L), we now describe the computation of
B. For every pair (s, t) of states, the value of Bi(s, t) is
computed from (1) Bi−1(s, t); (2) similarity degrees between
the forward neighbors of s and those of t after step i− 1; and
(3) comparison between the labels of transitions relating s and
t to their forward neighbors.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

We formalize the computation of Bi(s, t) as follows. Let
s
a→ s′. To find the best match for s′ among the forward neigh-

bors of t, we need to maximize the value L(a, b)× Bi−1(s′, t′)

where t b→ t′.
The similarity degrees between the forward neighbors of s

and their best matches among the forward neighbors of t after
i− 1th iteration is computed by

X =
∑
s

a→s′
max

t
b→t′L(a, b)× Bi−1(s′, t′)

And the similarity degrees between the forward neighbors of
t and their best matches among the forward neighbors of s
after iteration i− 1 are computed by

Y =
∑
t

a→t′
max

s
b→s′L(a, b)× Bi−1(s′, t′)

We denote the sum of X and Y by Sumi(s, t).
The value of Bi(s, t) is computed by first normalizing

Sumi(s, t) and then computing its average with Bi−1(s, t):

Bi(s, t) = 1
2

(Sumi(s,t)
|succ(s)|+|succ(t)| + B

i−1(s, t)
)

In the above formula, |succ(s)| and |succ(t)| are the number
of forward neighbors of s and t, respectively. The larger the
Bi(s, t), greater is the similarity of the behaviours of s and
t. For backward behavioural matching, we perform the above
computation for states s and t, but consider their backward
neighbours instead of their forward neighbours.

The above computation is performed iteratively until the
difference between Bi(s, t) and Bi−1(s, t) for all pairs (s, t)
becomes less than a fixed ε > 0. If the computation does not
converge, the algorithm stops after some predefined maximum
number of iterations. Finally, we compute behavioural similar-
ity, B, as the maximum of forward behavioural and backward
behavioural matching.

C. Combining Similarities and Translating them to Corre-
spondences

To obtain the overall similarity degrees between states, we
need to combine the results from different heuristics. There
are several approaches to this, including linear and nonlinear
averages, and machine learning techniques. Learning-based
techniques have been shown to be effective when proper
training data is available [4]. Since such data was not present
for our case study, our current implementation uses a simple
approach based on linear averages. To produce an overall
combined measure, denoted C, we take an average of B with
static matching, S (described in Section IV-A). Figure 8(a)
illustrates C for the models in Figure 1.

To obtain a correspondence relation between input Stat-
echart models M1 and M2, the user sets a threshold for
translating the overall similarity degrees into a binary relation
ρ. Pairs of states with similarity degrees above the threshold
are included in ρ, and the rest are left out. In our example, if we
set the threshold value to 60%, we obtain the correspondence
relation ρ shown in Figure 8(b).

s0 s1 s2 s3 s4 s5 s6 s7

t0 .87 .63 .54 .03 .08 .07 .57 .58

t1 .48 .70 .92 .17 .17 .26 .20 .23

t2 .08 .18 .17 .65 .30 .31 .31 .29

t3 .07 .19 .17 .66 .30 .32 .30 .30

t4 .07 .15 .17 .23 .64 .30 .30 .30

t5 .08 .15 .25 .22 .24 1.0 .04 .28

t6 .58 .45 .17 .22 .30 .30 1.0 .63
t7 .56 .45 .17 .22 .31 .28 .62 1.0
t8 .55 .45 .17 .22 .30 .35 .62 .62

(a) Combined C matching results for the models
in Figure 1.

(s0, t0), (s2, t1), (s3, t2), (s3, t3), (s4, t4), (s5, t5), (s6, t6),
(s7, t7), (s1, t0), (s1, t1), (s6, t7), (s6, t8), (s7, t6), (s7, t8)

(b) A correspondence relation ρ.

(s0, t0), (s2, t1), (s3, t2), (s3, t3), (s4, t4), (s5, t5), (s6, t6),
(s7, t7), (s6, t7), (s6, t8), (s7, t6), (s7, t8)

(c) The relationship in (b) after applying sanity checks of Section V-A.

(s0, t0), (s4, t4), (s2, t1), (s5, t5), (s3, t2), (s6, t6), (s3, t3), (s7, t7)

(d) The relations in (c) after user revisions.

Fig. 8. Results of matching for call logger.

Since matching is a heuristic process, the resulting binary
correspondence relation (ρ) should be reviewed and, if neces-
sary, manually adjusted by the user. For example, in Figure 1,
since states s6 and s7 of basic and states t6, t7 and t8 of
voicemail do not have any outgoing transitions, there is a high
degree of (forward) behavioural similarity between them, and
hence, all the pairs (s6, t6), (s6, t7), (s6, t8), (s7, t6), (s7, t7),
and (s7, t8) appear in ρ in Figure 8(b). Among these pairs,
however, only (s6, t6) and (s7, t7) are valid correspondences
according to the user. We assume the user would remove the
rest of the pairs from ρ. As we discuss in Section V-A, the
relation ρ may need to be further revised before merging to
ensure that the resulting merged model is well-formed.

V. MERGING STATECHARTS

In this section, we describe our Merge operator for State-
charts. The input to this operator is a pair of Statechart models
M1 and M2, and a correspondence relation ρ. The output is
a merged model if ρ satisfies certain sanity checks (discussed
in Section V-A). These checks ensure that merging M1 and
M2 using ρ results in a well-formed (i.w., structurally sound)
Statechart model. If the checks fail, a subset of ρ violating the
checks is identified.

A. Sanity Checks for Correspondence Relations
To produce structurally sound merges, we need to ensure

that ρ passes certain sanity checks before applying the Merge
operator:

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

s
s′ t′

t

s

t′
t

s0 snsi

t′′

sk

✘
s t
s0 snsi

✘

t0 tmtj tk

✘

(a) (b)

(c)

· · · · · · · · ·

· · · · · · · · · · · · · · ·

Fig. 9. Example violation of sanity checks: (a) and (c) violations of AND-
states integrity rules, and (b) violation of relational adequacy.

1) The initial states of the input models should correspond
to one another. If ρ does not match ŝ to t̂, we add to the
input models new initial states ŝ′ and t̂′ with transitions
to the old ones. We then simply add the tuple (ŝ′, t̂′)
to ρ. Note that we can lift the behavioural properties of
the models with the old initial states to those with the
new initial states. For example, instead of evaluating a
temporal property p at ŝ (respectively t̂), we check AXp
at ŝ′ (respectively t̂′), where AX denotes the universal
next-time operator – we borrow it from the commonly-
used temporal logic CTL [33].

2) The correspondences in ρ must respect the input models’
hierarchy trees. That is, ρ must satisfy the following
conditions:

a) (monotonicity) For every (s, t) ∈ ρ, if ρ relates a
proper descendant of s (respectively t) to a state x
in M2 (respectively M1), then x must be a proper
descendant of t (respectively s).

b) (relational adequacy) For every (s, t) ∈ ρ, either
the parent of s is related to an ancestor of t, or the
parent of t is related to an ancestor of s by ρ.

c) (AND-states integrity rules)

i) For every (s, t) ∈ ρ, if s (respectively t) is
an AND-state, t (respectively s) has to be an
AND-state as well.

ii) Let s be an AND-state, and let s0, . . . , sn be
parallel sub-states of s. Then, if ρ maps a
proper descendant of si; (0 ≤ i ≤ n) to a
state t′, (1) there must be some ancestor of t′

mapped to si by ρ, and (2) it cannot map a
proper descendant of sk (0 ≤ k 6= i ≤ n) to
t′′, where t′′ can reach t′, or can be reached
from t′, or is a child or an ancestor of t′. See
Figure 9(a).

iii) Let s and t be AND-states, let s0, . . . , sn be
parallel sub-states of s, and let t0, . . . , tm be
parallel sub-states of t. If ρ maps a proper

descendant of si (0 ≤ i ≤ n) to a proper
descendant of tj (0 ≤ j ≤ m), then (1) it has to
map si to tj and s to t, and (2) it cannot map
another proper descendant of si (respectively
tj) to a proper descendant of tk (0 ≤ k 6= j ≤
m) (respectively sk (0 ≤ k 6= i ≤ n)). See
Figure 9(c).

Monotonicity ensures that ρ does not relate an ancestor
of s to t (respectively t to s) or to a child thereof. Re-
lational adequacy ensures that ρ does not leave parents
of both s and t unmapped; otherwise, it would not be
clear which state should be the parent of s and t in the
merge. Note that descendant, ancestor, parent, and child
are all with respect to each model’s hierarchy tree, <h.
AND-states integrity rules ensure that ρ never maps an
AND-state to a non-parallel state, and further, that it
never maps a pair of states in the same parallel region
to states in different parallel regions or vice versa. The
latter condition is to ensure that the resulting merge
never has transitions crossing parallel regions.

Pairs in ρ that violate any of the above conditions are
reported to the user. In our example, the relation shown in
Figure 8(b) has three monotonicity violations: (1) s0 and its
child s1 are both related to t0; (2) t0 and its child t1 are both
related to s1; and (3) s1 and its child s2 are both related to t1.
Our algorithm reports {(s0, t0), (s1, t0)}, {(s1, t0), (s1, t1)},
and {(s1, t1), (s2, t1)} as conflicting sets. Suppose that the
user addresses these conflicts by eliminating (s1, t0) and
(s1, t1) from ρ. The resulting relation, shown in Figure 8(d),
passes all sanity checks and can be used for merge. Consider
the example shown in Figure 9(b). In this example, states s and
t are related but their parents are not. Since it is not possible
to have multiple parents for single states in the merged model,
this is a violation of the relational adequacy condition.

B. Merge Construction

Let M1 and M2 be Statechart models. To merge them,
we first need to identify their shared and non-shared parts
with respect to ρ. A state x is shared if it is related to
some state by ρ, and is non-shared otherwise. A transition
r = 〈x, a, c, α, y, prty〉 is shared if x and y are respectively
related to some x′ and y′ by ρ, and further, there is a transition
r′ from x′ to y′ whose event is a, whose condition is c, whose
priority is prty , and whose action is α′ such that either α = α′,
or α and α′ are independent. A pair of actions α and α′ are
independent if executing them in either order results in the
same system behaviour [33]. For example, z = x and y = x
are two independent actions, but x = y+ 1 and z = x are not
independent. r is non-shared otherwise.

The goal of the Merge operator is to construct a model
that contains shared behaviours of the input models as normal
behaviours and non-shared behaviours as variabilities. To rep-
resent variabilities, we use parameterization [34]: Non-shared
transitions are guarded by conditions denoting the transitions’
origins, before being lifted to the merge. Non-shared states can
be lifted without any provisions – these states are reachable
only via non-shared (and hence, guarded) transitions.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

(Link Callee,
Link Subscriber)

(Link Callee,
 Link Participant)

(Wait,
Pending)

(Timer Started,
Timer Started)

(Log Failure,
Log Failure)

(Log Success,
Log Success)

setup [zone =target]/
callee = subscriber

setup [zone=source] /
callee=participant

participant?Ack
[ID=voicemail]

subscriber?Ack
[ID=voicemail]

redirectToVoicemail
[zone=target,
ID=voicemail]

participant?Reject [zone=source] OR
participant?Unavail [zone=source, ID=voicemail]OR

participant?TearDown [zone=source] OR
subscriber?Reject [zone=target] OR

subscriber?Unavail [in target-zone, ID=voicemail] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

Log
Voicemail

(s0, t0)

callee?Ack
[ID=basic]

callee?Ack
[ID=basic]

Call logger - (basic, voicemail)

(Start,
Start)

Initialize Linkss1

(s2, t1)
(s3, t2)

(s3, t3)

(s4, t4)

(s5, t5)

(s6, t6) (s7, t7) t8

Fig. 10. Resulting merge for the call logger variants in Figure 1.

ts
s� t�

(s, t)
(s�, t�)

=⇒
ts

s�
(s, t)

=⇒ s�

s
s� t� (s�, t�)

=⇒
s s

s� =⇒
s
s�

(a) (b)

(c) (d)

Fig. 11. Merging different OR-state patterns (note that part (d) refers to the
case where both s and s′ are non-shared).

Below, we describe our procedure for constructing a merge.
We denote by M1 +ρ M2 = (S+, ŝ+, <

+
h , E+, V+, R+) the

merge of M1 and M2 with respect to ρ – a correspondence
relation between these models.
• States and Initial State. (S+ and ŝ+) The set S+ of

states of M1 +ρ M2 has one element for each tuple in
ρ and one element for each state in M1 and M2 that is
non-shared. The initial state of M1 +ρ M2, ŝ+, is the
tuple (ŝ, t̂).

• Events and Variables. (E+ and V+) The set E+ of
events of M1 +ρ M2 is the union of those of M1 and
M2. The set V+ of variables of M1+ρM2 is the union of
those of M1 and M2 plus a reserved enumerated variable
ID that accepts values M1 and M2.

• Hierarchy Tree. (<+
h) The hierarchy tree <+

h

of M1 +ρM2 is computed as follows:
(I) OR-states. Let s be an OR-state in M1 (the case for
M2 is symmetric), and let s′ be a child of s.

– if s is mapped to t by ρ,
∗ if s′ is mapped to a child t′ of t by ρ, make (s′, t′)

a child of (s, t) in M1 +ρM2 (see Figure 11(a)).
∗ otherwise, if s′ is non-shared, make s′ a child of

(s, t) in M1 +ρM2 (see Figure 11(b)).
– otherwise, if s is non-shared
∗ if s′ is mapped to a state t′ by ρ, make (s′, t′) a

child of s in M1 +ρM2 (see Figure 11(c)).

s t
si tj

=⇒

(s, t)

(si, tj)

s
tsi

=⇒

(s, t)
si

s
si

=⇒

st′
(si, t

′)

s
si

=⇒

s
si

(b)

(a)

(c)

(d)

· · · · · · · · · · · · · · ·· · ·

· · · · · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Fig. 12. Merging different AND-state patterns (note that part (d) refers to
the case where both s and s′ are non-shared).

∗ otherwise, if s′ is non-shared, make s′ a child of
s in M1 +ρM2 (see Figure 11(d)).

(II) AND-states. Let s be an AND-state in M1 (the case
for M2 is symmetric), and let s0, . . . sn be parallel sub-
states of s.

– Let t be an AND-state in M2, and let t0, . . . tm be
parallel sub-states of t. If s is mapped to t by ρ,
make (s, t) an AND-state in M1 +ρM2 and
∗ if si(0 ≤ i ≤ n) is mapped to tj (0 ≤ j ≤ m) of t

by ρ, make (si, tj) a child of (s, t) in M1 +ρM2

(see Figure 12(a)).
∗ otherwise, if si (0 ≤ i ≤ n) is non-shared, make
si a child of (s, t) in M1+ρM2 (see Figure 12(b)).

– otherwise, if s is non-shared
∗ if si (0 ≤ i ≤ n) is mapped to a state t′ by
ρ, make (si, t

′) a child of s in M1 +ρ M2 (see
Figure 12(c)).

∗ otherwise, if si (0 ≤ i ≤ n) is non-shared, make
si a child of s in M1 +ρM2 (see Figure 12(d)).

• Transition Relation. (R+) The transition relation R+

of M1 +ρ M2 is computed as follows. Let r =
〈s, a, c, α, s′, prty〉 be a transition in M1 (the case for
M2 is symmetric).

– (Shared Transitions) if r is shared, add to R+ a
transition corresponding to r with event a, condition
c, action α (if α = α′) or action α;α′ (if α 6= α′),
and priority prty .
Note that according to the definition of shared tran-

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

sitions, α and α′ are independent. Moreover, based
on our assumptions in Section III, M1 and M2 do
not interact, i.e., α does not trigger any transition of
M2, and similarly, α′ does not trigger any transition
of M2. Hence, the order of concatenation of α and
α′ in the merged model is not important. Moreover,
in case α = α′, we keep only one copy of α in the
merge. Hence, the merge does not execute the same
action twice.

– (Non-shared Transitions) otherwise, if r is non-
shared, add to R+ a transition corresponding to r
with event a, condition c ∧ [ID = M1], action α,
and priority prty .

As an example, Figure 10 shows the resulting merge for the
models of Figure 1 with respect to the relation ρ in Figure 8(d).
The conditions shown in boldface in Figure 10 capture the
origins of the respective transitions. For example, the transition
from (s4, t4) to t8 annotated with the condition ID=voicemail
indicates a variable behaviour that is applicable only for clients
subscribing to voicemail.

Our definition of shared transitions is conservative in the
sense that it requires such transitions to have identical events,
conditions, and priorities in both input models. This is neces-
sary in order to ensure that merges are behaviourally sound and
do not introduce additional non-determinism. However, such
a conservative approach may result in redundant transitions
which arise due to logical or unstated relationships between the
events and conditions used in the input models. For example,
in Figure 10, the transitions from (s2, t1) to (s3, t2) and
to (s3, t3) fire actions callee = subscriber and callee=participant,
respectively. Thus, in state (s3, t3), the value of callee is equal
to participant, and in state (s3, t2) – to subscriber. This allows
us to replace the event callee?Ack[ID=basic] on transition from
(s3, t2) to (s4, t4) by subscriber?Ack[ID=basic] and merge the
two outgoing transitions from (s3, t2) into a single transition
with label subscriber?Ack. Similarly, the two transitions from
(s3, t3) to (s4, t4) can be merged into one transition with label
participant?Ack. Identifying such redundancies and addressing
them requires human intervention.

VI. TOOL SUPPORT

We have implemented our Match and Merge operators,
respectively described in Sections IV and V, as part of a
tool called TReMer+. TReMer+ additionally provides imple-
mentations for the structural merge approach in [15] and
the consistency checking approach in [35], [21] which we
do not discuss here. TReMer+ consists of approximately
18,200 lines of Java code, of which 8,750 lines implement
the graphical user interface, 8,450 lines implement the tool’s
core functions (model matching, model merging, traceability,
and serialization), and 1,000 lines implement the glue code
for interacting with an external consistency rule checker. The
Merge operator described in this article accounts for approx-
imately 1,200 lines of the code – and the Match operator
for approximately 2,000 lines, excluding the handling of the
operators’ input and output. The implementation of N-gram
and linguistic matching [26], approximately 1,000 lines, is

reused from existing open-source implementations. We have
used TReMer+ for matching and merging the sets of variant
Statechart models obtained from AT&T. Our tool and the
material for the case studies conducted with it are available at
http://se.cs.toronto.edu/index.php/TReMer+.

The main characteristic of TReMer+ is that it enables
developers to make the relationships between models explicit
and to treat these relationships as first-class artifacts [1]. Such
a treatment makes it possible to build alternative relationships
between models – identified manually or based on results of
our Match operator – and study the result of merge for each
alternative.

Figure 13 shows how our Match and Merge operators are
applied in TReMer+: Given a pair of variant models, the
user has a choice between defining a relationship manually
or getting automated assistance from the Match operator. If
the Match operator is applied, the user can still manually
revise the computed relationship as she finds appropriate.
The input models along with a (user-defined or user-adjusted)
relationship are then used to compute a merge, presented to
the user for further analysis. This may lead to the discovery
of new element mappings or the invalidation of some of the
existing ones. The user may then want to start a new iteration
by revising the relationship and executing the subsequent
activities.

Define/Revise
Relationship

Compute
Merge

Relationship

Merged Model

Variant
Models

User

Compute
Match

Candidate
relationship

Fig. 13. Tool support overview.

In the remainder of this section, we illustrate our tool
using the variant models in Figure 1. First, the input models
are specified using the tool’s graphical editing environment.
The user can then construct a relationship using the tool’s
mapping window, a snapshot of which is shown in Figure 14.
In this window, the input models are shown side-by-side. The
user has the option to invoke the Match operator from the
Tools menu to automatically compute a mapping between the
states of the two models. This same window allows users to
graphically specify or revise the state mappings. To establish
a mapping, the user first clicks on a state of the model on
the left and then on a state of the model on the right. To
unmap a state, the user clicks on that state followed by a right-
click. To show the desired relationship, we have augmented
the screenshot with a set of dashed lines indicating the related
states. The relationship shown in the snapshot is the one given
in Figure 8(d). Note that the tool represents hierarchical states
using an arrow with a hollow tail from each sub-state to its
immediate super-state. For example, the arrow from start to
initialize Link (right side of Figure 14) indicates that initialize Link
is the immediate super-state of start. The merge computed by
the tool with respect to the relationship defined above is shown

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

in Figure 15. As seen from the figure, non-shared behaviours
are guarded by conditions denoting the input model exhibiting
those behaviours.

VII. PROPERTIES OF MATCH

Our approach to matching is valuable if it offers a quick way
to identify appropriate matches with reasonable accuracy, in
particular in situations where matches are hard to find by hand,
for example, where the models are complex, or the developers
are less familiar with them. Here, we present some steps to
evaluate our Match operator. First, we discuss its complexity
to show that it scales, and then we assess this operator by
measuring the accuracy of the relationships it produces, when
compared to the assessment of a human expert.

A. Complexity of Match

Let n1 and n2 be the number of states in the input
models, and let m1 and m2 be the number of transitions in
these models. The space and time complexities of computing
typographic and linguistic similarity scores between individual
pairs of name labels are negligible and bounded by a constant,
i.e., the largest value of similarity scores of the state names.
Note that since the set of states names is finite and determined,
we can compute such a bound. The space complexity of
Match is then the storage needed for keeping a state similarity
matrix and a label similarity matrix (L in Section IV-B) and is
O(n1×n2+m1×m2). The time complexity of static matching
is O(n1×n2) and of behavioural matching – O(c×m1×m2),
where c is the maximum allowed number of iterations for the
behavioural matching algorithm.

B. Evaluation of Match

As with all heuristic matching techniques, the results of our
Match operator should be reviewed and adjusted by users to
obtain a desired correspondence relation. In this sense, a good
way to evaluate a matcher is by considering the number of
adjustments users need to make to the results it produces. A
matcher is effective if it neither produces too many incorrect
matches (false positives) nor misses too many correct matches
(false negatives).

We use two well-known information retrieval metrics [36],
namely, precision, and recall, to capture this intuition. Preci-
sion measures quality (i.e., a low number of false positives)
and is the ratio of correct matches found to the total number of
matches found. Recall measures coverage (i.e., a low number
of false negatives) and is the ratio of the correct matches found
to the total number of all correct matches. For example, if
our matcher produces the relationship in Figure 8(b) and the
desired relation is as shown in Figure 8(d), the precision and
recall are 8/14 (57%) and 8/8 (100%), respectively.

A good matching technique should produce high precision
and high recall. However, these two metrics tend to be
inversely related: improvements in recall come at the cost
of reducing precision and vice versa. In many circumstances,
either precision or recall is more important than the other.
For example, a web searcher would like every result on the

TABLE I
NUMBER OF STATES AND TRANSITIONS OF THE STUDIED VARIANT

MODELS.

Feature Variant I Variant II All Correct
states # transitions # states # transitions Matches

Call Logger 18 40 21 63 11
Remote Identification 24 44 19 31 12

Parallel Location 28 71 33 68 16

first page to be relevant (high precision), but perhaps is not
interested in retrieving all the relevant documents (recall can
be low). In contrast, in most retrieval tasks for software
engineering applications, software developers are willing to
tolerate a small decrease in precision if it can bring about a
comparable increase in recall [37]. We expect this to be true
for model matching as well, especially for large models: it
is easier for users to remove incorrect matches rather than
find missing ones. For example, consider the desired relation
in Figure 8(d): when our matcher produces the relation in
Figure 8(b), its precision and recall rates are 0.57 and 1.0,
respectively. While the precision may seem low, consider that
our matcher already excluded 58 false matches from the 64
incorrect possibilities in Figure 1. Of course, precision should
not be too low – anything under 50% is an indication that
more than half of the found matches are incorrect, and in the
worst case, this means that the users require more effort to
remove incorrect matches and find the missing ones than to
do the entire matching manually!

We evaluated the precision and recall of our Match operator
by applying it to a set of Statechart models describing different
telecom features at AT&T. The fifth author of this article
acted as the domain expert for assessing correct matches. We
studied three pairs of models, describing variant specifications
of telecom features at AT&T. One of these is the call logger
feature described in Section I-A. Simplified versions of the
variants of this feature were shown in Figure 1. The other
two features are remote identification and parallel location.
Remote identification is used for authenticating a subscriber’s
incoming calls. Parallel location, also known as find me, places
several calls to a subscriber at different addresses in an attempt
to find her.

In Table I, we show some characteristics of the studied mod-
els. For example, the first variant of the remote identification
feature has 24 states and 44 transitions, and the second one has
19 states and 31 transitions. The correct relation (as identified
manually by our domain expert) consists of 12 pairs of states.
The Statechart models of these features are available in [38].

To compare the overall effectiveness of static matching,
behavioural matching, and their combination, we computed
their precision and recall for thresholds ranging from 0.95
down to 0.5. The results are shown in Figure 16. As stated
earlier in Section IV-C, threshold refers to the cutoff value used
for determining the correspondence relation from the similarity
degrees. The three diagrams at the top of Figure 16 represent
the precision values for the three case studies in Table I,
and the three diagrams at the bottom of that figure represent
the recall values for those case studies. For example, when
threshold is set to 0.9, the precision values for the combined,
static, and behavioural matchings for the remote identification

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Fig. 14. Relationship between the models in Figure 1.

Fig. 15. Merge with respect to the relationship in Figure 14.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Call Logger
P

re
c
is

io
n

Threshold

Threshold

Call Logger PrecisionCall Logger PrecisionCall Logger PrecisionCall Logger Precision Remote Identification PrecisionRemote Identification PrecisionRemote Identification Precision Parallel Location PrecisionParallel Location PrecisionParallel Location Precision

Static Behavioural Combined Static Behavioural Combined Static Behavioural Combined

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.64 0.35 1 0.6 0.4 0.83 0.5 0.3 0.75

0.43 0.25 1 0.5 0.24 0.81 0.33 0.15 0.7

0.44 0.12 0.8 0.48 0.22 0.79 0.28 0.1 0.51

0.45 0.18 0.53 0.44 0.25 0.7 0.24 0.12 0.53

0.44 0.17 0.42 0.43 0.26 0.57 0.21 0.09 0.34

0.39 0.2 0.27 0.4 0.28 0.55 0.19 0.18 0.32

0.3 0.15 0.22 0.38 0.2 0.39 0.19 0.1 0.14

0.25 0.16 0.24 0.35 0.32 0.42 0.19 0.12 0.22

0.2 0.1 0.12 0.22 0.23 0.26 0.18 0.08 0.13

0.17 0.1 0.17 0.17 0.18 0.24 0.12 0.05 0.12

Call Logger RecallCall Logger RecallCall Logger Recall Remote Identification RecallRemote Identification RecallRemote Identification Recall Parallel Location RecallParallel Location RecallParallel Location Recall

0.42 0.82 0.62 0.62 0.9 0.85 0.38 0.71 0.59

0.42 0.8 0.62 0.65 0.9 0.85 0.5 0.74 0.68

0.62 0.78 0.72 0.69 0.9 0.9 0.62 0.74 0.78

0.62 0.9 0.79 0.71 0.88 1 0.66 0.82 0.88

0.65 0.92 0.78 0.8 0.9 1 0.68 1 0.85

0.64 0.95 0.82 0.79 0.9 1 0.7 1 0.83

0.66 0.93 0.84 0.78 0.88 1 0.7 1 1

0.7 0.92 0.85 0.78 0.98 1 0.72 1 1

0.74 0.92 0.85 0.85 0.98 1 0.78 1 1

0.79 0.92 0.84 0.84 0.98 1 0.81 1 1

Call Logger Precisio2Call Logger Precisio2Call Logger Precisio2 Remote Identificaiton Precisio2Remote Identificaiton Precisio2Remote Identificaiton Precisio2 Parallel Location Precision2Parallel Location Precision2Parallel Location Precision2

1 0.9 0.88

1 0.9 0.85

0.9 0.85 0.62

0.77 0.8 0.65

0.62 0.72 0.5

0.5 0.68 0.45

0.35 0.54 0.3

0.35 0.59 0.35

0.25 0.45 0.25

0.28 0.4 0.23

0.7099236641221 0.8432270916335 0.6351674641148

0.7099236641221 0.8362348178138 0.6865384615385

0.7448275862069 0.8600806451613 0.663

0.678972972973 0.875 0.7212371134021

0.6066666666667 0.7990654205607 1.2222222222222

0.4883823529412 0.7857142857143 0.5420408163265

0.433125 0.6573033707865 1.109375

0.4601503759399 0.6847826086957 0.4583333333333

0.2807339449541 0.5131578947368 0.3095238095238

0.3630508474576 0.4864864864865 0.2903225806452

Call Logger Precision-RecallCall Logger Precision-RecallCall Logger Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

1 0.62 0.35 0.82 0.64 0.42

1 0.62 0.25 0.8 0.43 0.42

0.8 0.72 0.12 0.78 0.44 0.62

0.53 0.79 0.18 0.9 0.45 0.62

0.42 0.78 0.17 0.92 0.44 0.65

0.27 0.82 0.2 0.95 0.39 0.64

0.22 0.84 0.15 0.93 0.3 0.66

0.24 0.85 0.16 0.92 0.25 0.7

0.12 0.85 0.1 0.92 0.2 0.74

0.17 0.84 0.1 0.92 0.17 0.79

Remote Identification Precision-RecallRemote Identification Precision-RecallRemote Identification Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

0.83 0.85 0.4 0.9 0.6 0.62

0.81 0.85 0.24 0.9 0.5 0.65

0.79 0.9 0.22 0.9 0.48 0.69

0.7 1 0.25 0.88 0.44 0.71

0.57 1 0.26 0.9 0.43 0.8

0.55 1 0.28 0.9 0.4 0.79

0.39 1 0.2 0.88 0.38 0.78

0.42 1 0.32 0.98 0.35 0.78

0.26 1 0.23 0.98 0.22 0.85

0.24 1 0.18 0.98 0.17 0.84

Parallel Location Precision-RecallParallel Location Precision-RecallParallel Location Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

0.75 0.59 0.3 0.71 0.5 0.38

0.7 0.68 0.15 0.74 0.33 0.5

0.51 0.78 0.1 0.74 0.28 0.62

0.53 0.88 0.12 0.82 0.24 0.66

0.34 0.85 0.09 1 0.21 0.68

0.32 0.83 0.18 1 0.19 0.7

0.14 1 0.1 1 0.19 0.7

0.22 1 0.12 1 0.19 0.72

0.13 1 0.08 1 0.18 0.78

0.12 1 0.05 1 0.12 0.81

Static
Behavioural
Combined

0%

11%

23%

34%

45%

56%

68%

79%

90%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Remote Identification

P
re

c
is

io
n

Threshold

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Parallel Location

P
re

c
is

io
n

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Call Logger

R
e
c
a
ll

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Remote Identification

R
e
c
a
ll

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Parallel Location

R
e
c
a
ll

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Precision After Adjustment

P
re

c
is

io
n

Threshold

Parallel Location
Remote Identificatoin
Call Logger

Fig. 16. Results of static, behavioural, and combined matching.

case study are 81%, 50%, and 24%, respectively. In our study
we observed that among the three pairs of model variants, the
parallel location variants had the largest overlap, i.e., the high-
est number of tuples in their correspondence relation, while
the call logger variants had the least overlap. Furthermore, the
hierarchy trees of the parallel location variants were the most
similar in terms of the height of the hierarchy trees.

In the studied models, states with typographically similar
names were likely to correspond. Hence, typographic matching
and, by extension, static matching have high precision. How-
ever, static matching misses several correct matches, and hence
has low recall. Behavioural matching, in contrast, has lower
precision, but high recall. When the threshold is set reasonably
high, combined matching has precision rates higher than those
of static and behavioural matching on their own. This indicates
that static and behavioural matching are filtering out each
other’s false positives. Recall remains high in the combined
approach, as static matching and behavioural matching find
many complimentary high-quality matches.

The results in Figure 16 show that for each of the studied
models, our combined matcher can achieve high precision
(above 75%) for some thresholds, and high recall (above
95%) for some other thresholds. To be able to compare the
precision and recall values across different experiments, we
use another metric known as F-Measure [36] which computes
the harmonic mean of recall and precision and therefore is
often used for comparative purposes. In this paper, we use a
definition of F-Measure, known as F2-Measure, which weighs
recall values more highly than precision.

F2-Measure =
3× Precision× Recall

(2× Precision) + Recall

This weighting is appropriate in our domain where it is

important to recall as many of the correct matches as possible.
Table II (columns 1 to 5 from left) presents recall, precision

and threshold values that yield maximal F2-Measure values
across our three case studies. The maximal F2-Measure values
are obtained when threshold is set between 0.8 and 0.9. The
precision values in the table range between 51% and 100%,
and their corresponding recall values – between 62% and
100%.

As we anticipated, trying to improve our matcher’s precision
and recall by tweaking the heuristics behind it resulted in
improving one at the expense of the other. For instance,
when we let the behavioural heuristics run for relatively few
iterations (< 10), the result has higher precision but lower
recall because more iterations are needed to properly propagate
the similarity values in order to identify all of the correct
matches. On the other hand, running the behavioural heuristics
for a relatively large number of iterations (> 100) causes
a higher recall but a lower precision. Instead, we suggest
the following strategy aimed at improving both precision and
recall: (1) adjust the matcher’s heuristics to optimize recall;
and (2) identify and prune false positives using the sanity
checks defined in Section V-A. For example, applying these
to the relation in Figure 8(b) results in the removal of the
tuples (s1, t0) and (s1, t1) (see Figure 8(c)). This leads to
an increase in precision from 8/14 (57%) to 8/12 (67%) and
recall remains the same, i.e., 8/8 (100%). Figure 17 shows
the precision values of the combined matcher for the three
studied models after applying the sanity checks. Note that the
three curves in this figure correspond to the three case studies,
rather than to the static/behavioural/combined algorithms as in
Figure 16. Compared to the results in Figure 16, this method-
ology yields a 5%-25% improvement in precision across the
different thresholds. The last two columns in Table II represent

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE II
TRADEOFF POINTS BETWEEN PRECISION AND RECALL VALUES FOR THE STUDIED VARIANT MODELS.

Feature Threshold Precision Recall F2-Measure Precision F2-Measure
after Sanity Checks after Sanity Checks

Call Logger 0.9 100% 62% 0.71 100% .71
0.85 80% 72% 0.74 90% .77
0.8 54% 80% 0.68 77% .78

Remote Identification 0.9 81% 85% 0.84 90% .86
0.85 79% 90% 0.86 85% .88
0.8 70% 100% 0.87 80% .92

Parallel Location 0.9 70% 68% 0.69 85% .73
0.85 51% 78% 0.66 62% .72
0.8 53% 88% 0.72 65% .79

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Call Logger

P
re

c
is

io
n

Threshold

Threshold

Call Logger PrecisionCall Logger PrecisionCall Logger PrecisionCall Logger Precision Remote Identification PrecisionRemote Identification PrecisionRemote Identification Precision Parallel Location PrecisionParallel Location PrecisionParallel Location Precision

Static Behavioural Combined Static Behavioural Combined Static Behavioural Combined

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.64 0.35 1 0.6 0.4 0.83 0.5 0.3 0.75

0.43 0.25 1 0.5 0.24 0.81 0.33 0.15 0.7

0.44 0.12 0.8 0.48 0.22 0.79 0.28 0.1 0.51

0.45 0.18 0.53 0.44 0.25 0.7 0.24 0.12 0.53

0.44 0.17 0.42 0.43 0.26 0.57 0.21 0.09 0.34

0.39 0.2 0.27 0.4 0.28 0.55 0.19 0.18 0.32

0.3 0.15 0.22 0.38 0.2 0.39 0.19 0.1 0.14

0.25 0.16 0.24 0.35 0.32 0.42 0.19 0.12 0.22

0.2 0.1 0.12 0.22 0.23 0.26 0.18 0.08 0.13

0.17 0.1 0.17 0.17 0.18 0.24 0.12 0.05 0.12

Call Logger RecallCall Logger RecallCall Logger Recall Remote Identification RecallRemote Identification RecallRemote Identification Recall Parallel Location RecallParallel Location RecallParallel Location Recall

0.42 0.82 0.62 0.62 0.9 0.85 0.38 0.71 0.59

0.42 0.8 0.62 0.65 0.9 0.85 0.5 0.74 0.68

0.62 0.78 0.72 0.69 0.9 0.9 0.62 0.74 0.78

0.62 0.9 0.79 0.71 0.88 1 0.66 0.82 0.88

0.65 0.92 0.78 0.8 0.9 1 0.68 1 0.85

0.64 0.95 0.82 0.79 0.9 1 0.7 1 0.83

0.66 0.93 0.84 0.78 0.88 1 0.7 1 1

0.7 0.92 0.85 0.78 0.98 1 0.72 1 1

0.74 0.92 0.85 0.85 0.98 1 0.78 1 1

0.79 0.92 0.84 0.84 0.98 1 0.81 1 1

Call Logger Precisio2Call Logger Precisio2Call Logger Precisio2 Remote Identificaiton Precisio2Remote Identificaiton Precisio2Remote Identificaiton Precisio2 Parallel Location Precision2Parallel Location Precision2Parallel Location Precision2

1 0.9 0.88

1 0.9 0.85

0.9 0.85 0.62

0.77 0.8 0.65

0.62 0.72 0.5

0.5 0.68 0.45

0.35 0.54 0.3

0.35 0.59 0.35

0.25 0.45 0.25

0.28 0.4 0.23

0.7099236641221 0.8432270916335 0.6351674641148

0.7099236641221 0.8362348178138 0.6865384615385

0.7448275862069 0.8600806451613 0.663

0.678972972973 0.875 0.7212371134021

0.6066666666667 0.7990654205607 1.2222222222222

0.4883823529412 0.7857142857143 0.5420408163265

0.433125 0.6573033707865 1.109375

0.4601503759399 0.6847826086957 0.4583333333333

0.2807339449541 0.5131578947368 0.3095238095238

0.3630508474576 0.4864864864865 0.2903225806452

Call Logger Precision-RecallCall Logger Precision-RecallCall Logger Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

1 0.62 0.35 0.82 0.64 0.42

1 0.62 0.25 0.8 0.43 0.42

0.8 0.72 0.12 0.78 0.44 0.62

0.53 0.79 0.18 0.9 0.45 0.62

0.42 0.78 0.17 0.92 0.44 0.65

0.27 0.82 0.2 0.95 0.39 0.64

0.22 0.84 0.15 0.93 0.3 0.66

0.24 0.85 0.16 0.92 0.25 0.7

0.12 0.85 0.1 0.92 0.2 0.74

0.17 0.84 0.1 0.92 0.17 0.79

Remote Identification Precision-RecallRemote Identification Precision-RecallRemote Identification Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

0.83 0.85 0.4 0.9 0.6 0.62

0.81 0.85 0.24 0.9 0.5 0.65

0.79 0.9 0.22 0.9 0.48 0.69

0.7 1 0.25 0.88 0.44 0.71

0.57 1 0.26 0.9 0.43 0.8

0.55 1 0.28 0.9 0.4 0.79

0.39 1 0.2 0.88 0.38 0.78

0.42 1 0.32 0.98 0.35 0.78

0.26 1 0.23 0.98 0.22 0.85

0.24 1 0.18 0.98 0.17 0.84

Parallel Location Precision-RecallParallel Location Precision-RecallParallel Location Precision-Recall

CombinedCombined BehaviouralBehavioural StaticStatic

0.75 0.59 0.3 0.71 0.5 0.38

0.7 0.68 0.15 0.74 0.33 0.5

0.51 0.78 0.1 0.74 0.28 0.62

0.53 0.88 0.12 0.82 0.24 0.66

0.34 0.85 0.09 1 0.21 0.68

0.32 0.83 0.18 1 0.19 0.7

0.14 1 0.1 1 0.19 0.7

0.22 1 0.12 1 0.19 0.72

0.13 1 0.08 1 0.18 0.78

0.12 1 0.05 1 0.12 0.81

Static
Behavioural
Combined

0%

11%

23%

34%

45%

56%

68%

79%

90%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Remote Identification

P
re

c
is

io
n

Threshold

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Parallel Location

P
re

c
is

io
n

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Call Logger

R
e
c
a
ll

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Remote Identification

R
e
c
a
ll

Threshold

0%

13%

25%

38%

50%

63%

75%

88%

100%

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Parallel Location

R
e
c
a
ll

Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

Precision After Adjustment

P
re

c
is

io
n

Threshold

Parallel Location
Remote Identificatoin
Call Logger

Fig. 17. Precisions rates for the case study models in Table I after applying
Sanity checks in Section V-A.

the improved precision values after applying sanity checks
and the corresponding F2-Measures for thresholds 0.9, 0.85
and 0.8. Note that applying sanity checks do not change
the recall values. It is possible that defining and applying
additional sanity checks (e.g., by adding domain specificity)
would improve precision even further.

VIII. PROPERTIES OF MERGE

Our approach to merge is useful if it produces semantically
correct results and scales well. Here, we discuss the complex-
ity of our Merge operator and assess it by proving that it
preserves the behavioural properties of the input models.

A. Complexity of Merge

The space complexity of Merge is linear in the size of the
correspondence relation ρ and the input models. Theoretically,
the size of ρ is O(n1×n2). In practice, we expect the size of ρ
to be closer to max(n1, n2), giving us linear space complexity
for practical purposes. This was indeed the case for our models
(see Table I). The time complexity of Merge is O(m1×m2).

B. Correctness of Merge

In this section, we prove that the merge procedure described
in Section V-B is behaviour-preserving (see Appendix XI-C for
a detailed formal proof). The proof is based on showing that

the merge is related to each of the input models via behaviour-
preserving refinement relations. Basing the notion of be-
havioural merge on refinement relations is standard [12], [39].
Such relations capture the process of combining behaviours
of individual models while preserving all of their agreements.
Our notion of merge and our behavioural formalisms, however,
have some notable differences with the existing work [12],
[39], summarized below.

Non-classical state machine formalisms have been previ-
ously defined to capture partiality [40]. Such models have
two types of transitions: for describing definite and partial
behaviours. In our work, in contrast, we use non-classical
state machines to explicitly capture behavioural variabilities.
Variant models differ on some of their behaviours, i.e., those
that are non-shared, giving rise to variabilities. We use param-
eterized Statecharts to explicitly differentiate between shared
behaviours, i.e., those that are common between all variants,
and non-shared behaviours, i.e., those that differ from one
variant to another. Specifically, in these Statechart models,
transitions labelled by a condition on the reserved variable
ID represent the non-shared behaviours, and the rest of the
transitions – the shared ones.

Definition 2 (Parameterized Statecharts): A parameterized
Statechart M is a tuple (S, ŝ, <h, E, V,R

shared , Rnonshared),
where M shared = (S, ŝ, <h, E, V,R

shared) is a Statechart
representing shared behaviours, i.e., containing the transi-
tions not labelled with ID, and Mnonshared = (S, ŝ, <h,
E, V,Rnonshared) is a Statechart representing non-shared be-
haviours, i.e., containing only the transitions with ID. We
denote the set of both shared and non-shared transitions of
a parameterized Statechart by Rall = Rshared ∪ Rnonshared ,
and we let Mall = (S, ŝ, <h, E, V,R

all).
When a partial model evolves and goes through refinement

steps, the definite behaviours remain intact, but the partial be-
haviours may turn into definite or prohibited behaviours [40].
We define a new notion of refinement over parameterized
Statechart models where (1) the non-shared behaviours are
preserved through refinement, but the shared ones may turn
into non-shared, and (2) the union of shared and non-shared
behaviours does not change by refinement. That is, a model
is more refined if it can capture more behavioural variabil-
ities without changing the overall union of commonalities
and variabilities. For example, the parameterized Statechart
in Figure 10 refines both models in Figure 1 because it
preserves all the behaviours of the models in Figure 1, and

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

further, it captures more behavioural variabilities. The models
in Figure 1 are parameterized Statecharts without non-shared
behaviour.

Since refinement relations are behaviour-preserving [31],
[41], for parameterized Statechart models M1 and M2 where
M1 refines M2, we have:

1) The set of behaviours of M2 is a subset of the set of
behaviours of M1. That is, as we refine, we do not lose
any behaviour.

2) The set of shared behaviours of M1 is a subset of the
set of shared behaviours of M2. That is, as we refine,
we may increase behavioural differences.

Theorem 1: Let M1 and M2 be (parameterized) Statechart
models, let ρ be a correspondence relation between M1 and
M2, and let M1 +ρ M2 be their merge as constructed in
Section V-B. Then, M1 +ρM2 refines both M1 and M2.

The above theorem proves that our merge procedure in
Section V-B generates a common refinement of M1 and M2.
The complete proof of this theorem is given in Appendix XI-C.
Given this theorem and the property-preservation result of
refinement relation mentioned above, we have:

(i) Behaviours of the individual input models, M1 and
M2, are present as either shared, i.e., unguarded, or
non-shared, i.e., guarded, behaviours in their merge,
M1 +ρ M2. Thus, the merge preserves all positive
traces of the input models. For example, the positive
behaviours P1 and P2 in Figure 2 are both preserved
in the merge in Figure 10: P1 as an unguarded
behaviours, and P2 an a guarded behaviour.

(ii) The set of shared, i.e., unguarded, behaviours of
M1 +ρ M2 is a subset of the behaviours of the
individual input models, M1 and M2. Therefore, any
behaviour absent from either input is absent from
the unguarded fragment of their merge. In other
words, any negative behaviour, i.e., safety property,
that holds over the input models also holds over the
unguarded fragment of their merge.

(iii) The guarded (non-shared) behaviours of the input
models M1 and M2 are preserved in M1 +ρ M2,
i.e., merge preserves behavioural disagreements. But
the unguarded (shared) behaviours of M1 and M2

may become non-shared in M1 +ρ M2, i.e., merge
can turn behavioural agreements into disagreements.
For example, the transition t4 to t7 in Figure 1
represents an unguarded (shared) behaviour of the
voicemail variant. But it turns into a guarded (non-
shared) behaviour in the merge, as exemplified by
the transition from (s4, t4) to t8 in Figure 10.

In short, the merge includes, in either guarded or unguarded
form, every behaviour of the input models. The use of param-
eterization for representing behavioural variabilities allows us
to generate behaviour-preserving merges for models that may
even be inconsistent.

A change in the correspondence relation (ρ) does not cause
any behaviours to be added to or removed from the merge,
but may make some guarded behaviours unguarded, or vice
versa. For example, if we remove the tuple (s7, t7) from the

(a) (b) (c) (d)

c

a b

c c

a b

M1 M2 M1+2 M ′
1+2

s0

s1

s2

t0

t1 t2

t3 t4

c c

a b
a[M1]

b[M1]

q0

q1
q2

q3
q4

r0

r1

r2

c

ba

Fig. 19. (a) model M1; (b) model M2; (c) M1+2: a possible merge of M1

and M2 that preserves their behaviours; and (d) M ′1+2: a possible merge of
M1 and M2 that preserves their structure.

correspondence relation ρ in Figure 8(d), the resulting merge
is the model in Figure 18. The model in this figure still
preserves every behaviour of the input models, but has more
parameterized behaviours, e.g., the transitions from (s4, t4) to
s7 and t7.

Our merge construction respects transition priorities, thus
ensuring that no new non-determinism is introduced. Section V
described our procedure for merging pairs of models. It can
be extended to n-ary merges by iteratively merging a new
input model with the result of a previous merge, except the
reserved variable ID (in the merge procedure of Section V-B)
will need to range over subsets of the input model indices.
In this case, the order in which the binary merges are applied
does not affect the final result.

IX. DISCUSSION

In this section, we compare our approach to related work,
and discuss the results presented in this article and the practical
considerations of some of our decisions.

A. Structural vs. Behavioural Merge

Approaches to model merging can be categorized into
two main groups based on the mathematical machinery that
they use to specify and automate the merge process [42]:
(1) approaches based on algebraic graph-based techniques,
and (2) approaches based on behaviour preserving relations.
Approaches in the first group view models as graphs, and
formalize the relationships between models using graph ho-
momorphisms that map models directly or indirectly through
connector models [15], [43]. These approaches, while being
general, are not particularly suitable for merging behavioural
models because model relationships are restricted to graph ho-
momorphisms which are tools for preserving model structure,
rather than behavioural properties.

We show the difference between structure-preserving and
behaviour-preserving merges using a simple example. Con-
sider the models M1 and M2 in Figures 19(a) and (b), and let
ρ = {(s0, t0), (s1, t1), (s1, t2), (s2, t3), (s2, t4)}. The model in
Figure 19(c) shows a merge of M1 and M2 that preserves the
structure of the input models: It is possible to embed each
of M1 and M2 into M1+2 using graph homomorphisms. This
merge, however, does not preserve the behaviours of M1 and
M2 because it collapses two behaviourally distinct states t1
and t2 into a single state r1 in the merge. The model in
Figure 19(d) is an alternative merge of M1 and M2 which is
constructed based on the notion of state machine refinement
as proposed in this current article: It can be shown that M ′1+2

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

(Link Callee,
Link Subscriber)

(Link Callee,
 Link Participant)

(Waiting,
Pending)

(Timer Started,
Timer Started)

Log Failure
(Log Success,
Log Success)

setup [zone =target]/
callee = subscriber

setup [zone=source] /
callee=participant

participant?Ack
[ID=voicemail]

subscriber?Ack
[ID=voicemail]

redirectToVoicemail
[zone=target,
ID=voicemail]

participant?Reject [zone=source, ID=basic] OR
participant?TearDown [zone=source, ID=basic] OR

subscriber?Reject [zone=target, ID=basic] OR
subscriber?TearDown [zone=target, ID=basic]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

Log
Voicemail

(s0, t0)

callee?Ack
[ID=basic]

callee?Ack
[ID=basic]

Call logger - (basic, voicemail)

(Start,
Start)

Initialize Linkss1

(s2, t1)
(s3, t2)

(s3, t3)

(s4, t4)

(s5, t5)

(s6, t6) t8

Log Failure

participant?Reject [zone=source, ID=voicemail] OR
participant?Unavail [zone=source, ID=voicemail]OR

participant?TearDown [zone=source, ID=voicemail] OR
subscriber?Reject [zone=target, ID=voicemail] OR

subscriber?Unavail [in target-zone, ID=voicemail] OR
subscriber?TearDown [zone=target, ID=voicemail]

s7 t7

Fig. 18. The merge of the models in Figure 1 with respect to the relation in Figure 8(d) when (s7, t7) is removed from the relation.

refines both M1 and M2. As shown in the figure, states t1 and
t2 are respectively lifted to two distinct states, q1 and q2, in
this merge. By basing merge on refinement, we can choose
to keep states in the merged model distinct even if ρ maps
them to one single state in the other model. The flexibility to
duplicate states of the source models in the merge is essential
for behaviour preservation but is not supported by the merge
approaches that are based on graph homomorphisms.

B. Merging Models with Behavioural Discrepancies

Approaches to behavioural model merging generally spec-
ify merge as a common behavioural refinement of the original
models. However, these approaches differ on how they handle
discrepancies between models both in their vocabulary and
their behaviours. [44] shows that behavioural common refine-
ments can be logically characterized as conjunction of the
original specifications when models are consistent and have
the same vocabulary. [13] introduces a notion of alphabet re-
finement that allows to merge models with different vocabulary
but consistent behaviours. The main focus of [13] is to use
merge as a way to elaborate partial models with unspecified
vocabulary or unknown, but consistent, behaviours. Huth and
Pradhan [45] merge partial behavioural specifications where
a dominance ordering over models is given to resolve their
potential inconsistencies. These approaches do not provide
support for merging models with behavioural variabilities such
as those presented in Figure 1.

C. Analytical Reasoning for Matching Transition Labels

We have explored the use of analytical reasoning for com-
paring transition labels. The N-gram algorithm, which is used
in this article for computing matching values for transition

labels, is not suitable for comparing complex mathematical
expressions. For example, it would find a rather small degree
of similarity between mathematical expressions (x ∧ y) ∨ z
and (x∨ z)∧ (y ∨ z), whereas analytical reasoning, e.g., by a
theorem prover, would identify these expressions as identical.
While we did not encounter the need for such analysis on our
case study, it might be necessary for such domains as web
services, where transition labels may include complex program
fragments.

D. Overlapping, Interacting and Cross-Cutting Behavioural
Models

Models which have been developed in a distributed manner
may relate to one another in a variety of ways. The nature of
the relationships between such models depends primarily on
the intended application of the models and how they were
developed [46]. The work presented in this article focuses
on merging a collection of inter-related models when rela-
tionships describe overlaps between the models’ behaviours.
Alternatively, relationships may describe shared interfaces
for interaction, in particular, when models are independent
components or features of a system, or the relationships may
describe ways in which models alter one another’s behaviour
(e.g., a cross-cutting model applied to other models) [47].
The former kind of relationships is studied in the model
composition literature where the goal is to assemble a set
of autonomous but interacting features that run sequentially
or in parallel (e.g., [33], [48], [17], [31], [11]). Unlike merge,
composition is concerned with how models communicate with
one another through their interfaces rather than how they
overlap in content. The latter relationships are studied in
the area of aspect-oriented development where the goal is to

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

weave cross-cutting concerns into a base system (e.g., [49],
[50], [51]). The focus of this article was on relationships
that capture overlaps between model behaviours, and not on
situations where model relationships describe interactions or
cross-cutting aspects.

E. Model Matching Techniques

Approaches to model matching can be exact or approx-
imate. Exact matching is concerned with finding structural
or behavioural conformance relations between models. Graph
homomorphisms are examples of the former, whereas simu-
lation and bisimulation relationships – of the latter. Finding
exact correspondences between models has applications in
many fields including graph rewriting, pattern recognition,
program analysis, and compiler optimization. However, it
is not very useful for matching distributed models because
the vocabularies and behaviours of these models seldom fit
together in an exact way, and thus, exact conformance relations
between these models are unlikely to be found.

Most domains use heuristic techniques for matching. These
techniques yield values denoting a likelihood of correspon-
dence between elements of different models. In database
design, finding correspondences between database schemata is
referred to as schema matching [52]. State-of-the-art schema
matchers, such as Protoplasm [9], combine several heuristics
for computing similarities between schema elements. Our
typographic and linguistic heuristics (Section IV-A) are very
similar to those used in schema matching, but our other
heuristics are tailored to behavioural models.

Several approaches to matching have been proposed in
software engineering. Maiden and Sutcliffe [6] employ heuris-
tic reasoning for finding analogies between a problem de-
scription and already existing domain abstractions. Ryan and
Mathews [53] use approximate graph matching for finding
overlaps between concept graphs. Alspaugh et. al. [54] pro-
pose term matching based on project glossaries for finding
similarities between textual scenarios. Mandelin et. al. [4]
combine diagrammatic and syntactic heuristics for finding
matches between architecture models. Xing and Stroulia [55]
use heuristic-based name-similarity and structure-similarity
matchers to identify conceptually similar entities in UML
class diagrams. None of these approaches were specifically
designed for behavioural models and are either inapplicable
or unsuitable for matching Statechart models.

Some matching approaches deal with behavioural mod-
els of a different kind. For example, Kelter and Schmidt
[56] discuss differencing mechanisms specifically designed
for UML Statecharts. This work assumes that models are
developed centrally within a unified modelling environment.
Other approaches apply to independently-developed models.
Lohmann [57] and Zisman et. al. [8] define similarity measures
between web-services to identify candidate services to replace
a service in use when it becomes unavailable or unsuitable
due to a change. Quante and Koschke [58] propose similarity
measures between finite state automata generated by different
reverse engineering mechanisms to compare the effectiveness
of these mechanisms. Bogdanov and Walkinshaw [59] provide

an algorithm for comparing LTSs without relying on the initial
state or any particular states of the underlying models as the
reference point. None of these are applicable both to our
particular purpose (comparing different versions of the same
feature), and to our particular class of models (Statecharts
models). Further, the evaluation of our matching technique is
targeted at behavioural models built in the telecommunication
domain. To our knowledge, the usefulness and effectiveness of
model matching have not been studied in this context before.

In computer science theory, several notions of behavioural
conformance have been proposed to capture the behavioural
similarity between models with quantitative features such as
time or probability [60]. For these models, a discrete notion of
similarity, i.e., models are either equivalent or they are not, is
not helpful because minor changes in the quantitative data may
cause equivalent models to become inequivalent, even if the
difference between their behaviours is very minor. Therefore,
instead of equivalences that result in a binary answer, one
needs to use relations that can differentiate between slightly
different and completely different models. Examples of such
relations are stochastic or Markovian notions of behavioural
similarity (e.g., [61], [62]). Our formulation of behavioural
similarity (Section IV-B) is analogous to these similarity
relations. The goal of this work is to define a distance metric
over the space of (quantitative) reactive processes and study
the mathematical properties of the metric. Our goal, instead,
is to obtain a similarity measure that can detect pairs of states
with a high degree of behavioural similarity.

F. Model Merging Techniques

Model merging spans several application areas. In database
design, merge is an important step for producing a schema
capturing the data requirements of all the stakeholders [2].
Software engineering deals extensively with model merging –
several papers study the subject in specific domains, including
early requirements [15], static UML diagrams [63], [14],
[64], [65], [66], and declarative specifications [67]. None of
these were specifically designed for behavioural models and
are either inapplicable or unsuitable for matching Statechart
models. We compared our work with existing approaches for
merging behavioural models in Section IX-B.

There has also been work on defining languages for model
merging, e.g., the Epsilon Merging Language (EML) [10] and
Atlas Model Management Architecture (AMMA) [68]. EML
is a rule-based language for merging models with the same or
different meta-models. The language distinguishes four phases
in the merge process and provides flexible constructs for
defining the rules that should be applied in each phase. AMMA
facilitates modelling tasks such as merging using model trans-
formation languages defined between different meta-models.
Despite their versatility, the current version of EML and
AMMA do not formalize the conditions and consequences
of applying the merge rules, and hence, in contrast to our
approach, do not provide a formal characterization of the
merge operation when applied to behavioural models.

In this article, we focused on the application of behavioural
merge as a way to reconcile models developed independently.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Behavioural merge operation may arise in several other related
areas, including program integration [69] and merging declar-
ative specifications [67]. These approaches share the same
general motivation with our work which is preservation of
semantics and support for handling inconsistencies. However,
they are not targeted at consolidating variant specifications,
and further do not use Statecharts as the underlying notation.

Several approaches to variability modelling have been pro-
posed in software maintenance and product line engineering.
For example, [70] provides an elaborate view of modelling
variability in use-cases by distinguishing between aspects
essential for satisfying customers’ needs and those related to
the technical realization of variability. Our merge operator
makes use of parameterization for representing variabilities
between different models. This is a common technique in
modelling behavioural variability in Statechart models [34].
A similar parameterization technique has been used in [71]
for capturing variability in Software Cost Reduction (SCR)
tables [72].

In requirements and early design model merging, discrep-
ancies are often treated as inconsistencies [73], [12], [15].
Some of these approaches require that only consistent models
be merged [12]. Others tolerate inconsistency, and can rep-
resent the inconsistencies explicitly in the resulting merged
model [73], [15]. Our work is similar to the latter group
as we explicitly model variabilities between models using
parameterization.

Several approaches provide guidelines and methodologies
for building product lines out of legacy systems (e.g., [74]).
Most of these approaches rely on a manual review of code,
design and documentation of the system that can be time-
consuming. The ability to mine legacy product lines and
automate their translation to a product line model capturing
commonalities and variabilities is a necessity. Clearly, such
translations should preserve the set and behavior of existing
products, and, potentially, allow identification and addition of
new products to the product line. Our approach can provide
a basis for behaviour-preserving refactoring of product line
models from a set of existing (legacy) model variants [75].

G. Handling Additional Statechart Features
Our approach to Match and Merge can be systematically

extended to handle Statchart models with features other than
those discussed in the paper. The general strategy for im-
plementing such extensions is (1) to modify Definition 1 to
incorporate the new features in the Statechart base notation,
(2) to identify the additional sanity conditions (to be added
to those defined in Section V-A) so that the new features in
the original models are properly lifted to the merge, and (3)
to modify the Merge algorithm in Section V-B to deal with
shared aspects of the input models so that the merge remains
semantically sound. For example, one possible solution is to
constrain the model relationships via additional sanity checks
so that the new features always fall in the non-shared parts of
the input models. Although this solution works for arbitrary
features, it is too conservative. A better way is to study
the features one by one to identify less constraining sanity
conditions for each. Below, we include two examples:

• State entry/exit/in/during actions. For input models
with state actions, we constrain the relationships so that
they can only be one-to-one, i.e., a state in one model
cannot be mapped to more than one state in the other
model. This ensures that only one copy of every state
action in the input models is lifted to the merge, and
hence, these actions are executed the same number of
times in the merge as in the input models. As observed
in a study reported in [76], it is very common for models
to be related via one-to-one relationships, so this is not a
limiting restriction.

• Internal events. In this paper, we assumed that the input
models do not include internal events. That is, a transition
triggered by an external event cannot produce internal
events that may, in turn, trigger other transitions (see
Section III). Our approach can handle internal events if
the following two conditions hold: (1) The sanity checks
are extended to ensure that the relationships between
states in the original models are one-to-one. Hence, se-
quences of internal events are executed the same number
of times in the merge as in the input models. (2) The
definition of shared transitions in the merge algorithm in
Section V-B is changed so that a pair of shared transitions
has identical actions, i.e., α = α′, as well as identical
events, conditions, and priority. These shared transitions
are replaced in the merged model with one transition with
an action α. Since the action on the transition in the merge
is the same as in the corresponding transitions in the input
models, the sequences of internal events generated in the
merge by α are the same as in each of the input models.

Optionally, when extending the approach with additional
Statechart features, we can also augment the existing Match
heuristics with new heuristics designed specifically for these
new features. For example, we can choose to compute sim-
ilarity values based on the state entry/exit/in/during actions
and use these values to initialize the behavioural matching
in Section IV-B, i.e., we can consider these values to be
the behavioural matching similarities at iteration zero (this
approach is implemented in [75]).

H. Practical Limitations

Our work has a number of limitations which we list below.

Evaluation. Our evaluation in Section VII may not be a
comprehensive assessment of the effectiveness of our Match
operator: Firstly, in our evaluation, we assume that it is
possible to find a matching relationship which is agreeable
to all users. In practice, this may not be the case [3]. A more
comprehensive evaluation would require several independent
subjects to provide their desired correspondence relations,
and use these for computing an average precision and recall.
Secondly, matching results can be improved by proper user
guidance, which we did not measure here. More specifically, in
Section VII, we evaluated Match as a fully automatic operator.
In practice, it might be reasonable to use Match interactively,
with the user seeding it with some of the more obvious
relations, and pruning incorrect relations iteratively. We expect

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

that such an approach will improve accuracy. Alternatively,
a developer might prefer to assess the output of the Match
operator by computing merge and inspecting the resulting
model for validity. This way, each correspondence relation
is treated as a hypothesis for how the models should be
combined, to be adjusted if the resulting merge does not make
sense. We plan to investigate the feasibility of this approach
further.

Scalability and usability. Discussions in Sections VII-A and
VIII-A show that the computational complexity of our opera-
tors is not high. Since the space complexity of merge is linear
in the size of the input models, the size of the merge does not
grow as rapidly as the size of (parallel) compositions [33], and
hence, issues such as the state-explosion problem [33] do not
arise in our work. In our evaluation and experimentation with
the Match and Merge operators, the actual running times of
our algorithms were also negligible.

Although our matching and merging algorithms scale well
in terms of computational efficiency and space usage, there
are some issues regarding usability of our approach that may
limit its applicability to large models. In particular, currently
TReMer+ cannot preserve the layout of the source models, and
ignores all their visual cues during merge. We plan to address
this issue in the future. Another problem is the representa-
tion of model relationships. Visual representations are very
appealing but they may not scale well for complex operational
models such as large executable Statecharts. For such models,
it should be possible to express relationships symbolically
using logical formulas or regular expressions. This may lead to
a more compact and comprehensible representation of model
correspondences.

X. CONCLUSIONS AND FUTURE WORK

In this article, we presented an approach to matching and
merging of Statechart models. Our Match operator includes
heuristics that use both static and behavioural properties to
match pairs of states in the input models. Our evaluations show
that this combination produces higher precision than relying
on static or behavioural properties alone. Our Merge operator
produces a combined model in which variant behaviours of
the input models are parameterized using guards on their
transitions. The result is a merge that preserves the temporal
properties of the input models. We have also developed a
tool that implements both our Merge and Match operators and
enables seamless application of the two.

While our evaluation results demonstrate the effectiveness
of our approach, its practical utility can only be assessed by
more extensive empirical studies. The value of our tool is
likely to depend on factors such as the size and complexity
of the models, the user’s familiarity with the models, and the
user’s subjective judgment of the matching results. Our Merge
operator only applies to hierarchical state machine models.
Extending it to behavioural models described in different
notations, i.e., heterogeneous behavioural models, presents a
challenge. In future work, we plan to address this limitation
by developing ways to merge models at a logical level.

The work reported in this article is part of a larger ongoing
project on model management and its applications to software
engineering. A vision for this project has been presented in
[1]. Our current direction is to develop appropriate model
management operators for the suite of UML notations and
to provide a unifying framework for using these operators
in a cohesive way [77], [78]. Developing such a framework
involves a careful analysis of a wide range of concerns such
as assumptions about the nature of models and their intended
use, the details of the relationships between models (e.g., level
of granularity, semantics, representation), and the correctness
criteria expected from the model management operators. We
have already developed a preliminary classification of these
concerns for model management operators [79] and intend to
expand on and refine this classification in the future.

The ideas behind our work have already been picked up for
different purposes in different areas, most notably, in Product
line engineering for characterizing different notions of feature
composition [80] and for developing behaviour-preserving
methods to build product line models from products [75]; in
Web-service discovery for identifying candidate services to
repair or modify service compositions [57]; and, recently, in
computational cognitive modeling for managing and compos-
ing cognitive models with complex relationships [81].

Acknowledgments. We are grateful to Thomas Smith and
Gregory Bond for their help with our analysis of telecom
features and the ECharts language. We thank the TSE review-
ers and members of the Model Management Research Group
at the University of Toronto for their insightful comments.
Financial support was provided by the Natural Sciences and
Engineering Research Council of Canada, IBM, and the Re-
search Council of Norway under the ModelFusion project.

REFERENCES

[1] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh, “A manifesto for model merging,” in Workshop on Global
Integrated Model Management (GaMMa ’06) co-located with ICSE’06,
2006.

[2] P. Bernstein, “Applying model management to classical meta data
problems,” in Proceedings of the 1st Biennial Conference on Innovative
Data Systems Research, 2003, pp. 209–220.

[3] S. Melnik, Generic Model Management: Concepts And Algorithms, ser.
Lecture Notes in Computer Science. Springer, 2004, vol. 2967.

[4] D. Mandelin, D. Kimelman, and D. Yellin, “A Bayesian approach to
diagram matching with application to architectural models.” in ICSE
’06: Proceedings of the 28th International Conference on Software
Engineering, 2006, pp. 222–231.

[5] G. Spanoudakis and A. Finkelstein, “Reconciling requirements: A
method for managing interference, inconsistency and conflict,” Annals
of Software Engineering, vol. 3, pp. 433–457, 1997.

[6] N. Maiden and A. Sutcliffe, “Exploiting reusable specifications through
analogy,” Communications of the ACM, vol. 35, no. 4, pp. 55–64, 1992.

[7] J. Rubin and M. Chechik, “A declarative approach for model compo-
sition,” in Workshop on Model-driven Approaches in Software Product
Line Engineering co-located with SPLC’10, 2010, to appear.

[8] A. Zisman, G. Spanoudakis, and J. Dooley, “A framework for dynamic
service discovery,” in ASE, 2008, pp. 158–167.

[9] P. Bernstein, S. Melnik, M. Petropoulos, and C. Quix, “Industrial-
strength schema matching,” SIGMOD Record, vol. 33, no. 4, pp. 38–43,
2004.

[10] D. Kolovos, R. Paige, and F. Polack, “Merging models with the epsilon
merging language (eml),” in MoDELS, 2006, pp. 215–229.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[11] S. Nejati, M. Sabetzadeh, M. Chechik, S. Uchitel, and P. Zave, “Towards
compositional synthesis of evolving systems,” in SIGSOFT ’08/FSE-16:
Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2008, pp. 285–296.

[12] S. Uchitel and M. Chechik, “Merging partial behavioural models,”
in SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2004,
pp. 43–52.

[13] D. Fischbein, G. Brunet, N. D’Ippolito, M. Chechik, and S. Uchitel,
“Weak alphabet merging of partial behaviour models,” ACM Transac-
tions on Software Engineering and Methodology, 2010, to appear.

[14] A. Mehra, J. C. Grundy, and J. G. Hosking, “A generic approach to sup-
porting diagram differencing and merging for collaborative design,” in
ASE ’05: Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, 2005, pp. 204–213.

[15] M. Sabetzadeh and S. Easterbrook, “View merging in the presence of
incompleteness and inconsistency,” Requirements Engineering Journal,
vol. 11, no. 3, pp. 174–193, 2006.

[16] J. Whittle and J. Schumann, “Generating statechart designs from sce-
narios,” in ICSE ’00: Proceedings of 22nd International Conference on
Software Engineering. ACM Press, May 2000, pp. 314–323.

[17] M. Jackson and P. Zave, “Distributed feature composition: a virtual
architecture for telecommunications services,” IEEE Transactions on
Software Engineering, vol. 24, no. 10, pp. 831–847, 1998.

[18] P. Zave, “Modularity in Distributed Feature Composition,” in Software
Requirements and Design: The Work of Michael Jackson, B. Nuseibeh
and P. Zave, Eds. Good Friends Publishing, 2010.

[19] G. Bond, E. Cheung, H. Goguen, K. Hanson, D. Henderson, G. Karam,
K. Purdy, T. Smith, and P. Zave, “Experience with component-based
development of a telecommunication service,” in Proceedings of the
Eighth International Symposium on Component-Based Software Engi-
neering (CBSE), 2005, pp. 298–305.

[20] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and merging of statecharts specifications,” in ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering,
2007, pp. 54–64.

[21] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik, “Global
consistency checking of distributed models with TReMer+,” in ICSE
’08: Proceedings of the 30th International Conference on Software
Engineering, 2008, pp. 815–818.

[22] D. Harel and M. Politi, Modeling Reactive Systems With Statecharts :
The Statemate Approach. McGraw Hill, 1998.

[23] J. Niu, J. M. Atlee, and N. A. Day, “Template semantics for model-
based notations,” IEEE Transactions on Software Engineering, vol. 29,
no. 10, pp. 866–882, 2003.

[24] G. Bond, “An introduction to ECharts: The concise user
manual,” AT&T, Tech. Rep., 2008, available at: http://echarts.
org/Downloads/Download-document/An-Introduction-to-EChar%
ts-The-Concise-User-Manual-2008-05-20-v1.3-beta.html.

[25] G. Bond and H. Goguen, “ECharts: Balancing design and implementa-
tion,” AT&T, Tech. Rep., 2002, available at: http://echarts.org.

[26] C. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

[27] T. Pedersen, S. Patwardhan, and J. Michelizzi, “WordNet: similarity -
measuring the relatedness of concepts,” in AAAI ’04: Proceedings of
Association for the Advancement of Artificial Intelligence, 2004, pp.
1024–1025.

[28] S. Patwardhan and T. Pedersen, “Using WordNet-based context vectors
to estimate the semantic relatedness of concepts,” in EACL 2006 Work-
shop on Making Sense of Sense – Bringing Computational Linguistics
and Psycholinguistics Together, 2006, pp. 1–8.

[29] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, 2005.

[30] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

[31] R. Milner, Communication and Concurrency. New York: Prentice-Hall,
1989.

[32] R. D. Nicola, U. Montanari, and F. Vaandrager, “Back and forth bisimu-
lations,” in CONCUR ’90: Proceedings of 8th International Conference
on Concurrency Theory, ser. Lecture Notes in Computer Science, vol.
458, 1990, pp. 152–165.

[33] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[34] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-based Software Architectures, 1st ed. Addison Wesley,
2004.

[35] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and M. Chechik,
“Consistency checking of conceptual models via model merging,” in RE
’07: Proceedings of 15th IEEE International Requirements Engineering
Conference, 2007, pp. 221–230.

[36] M. McGill and G. Salton, Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[37] J. H. Hayes, A. Dekhtyar, and J. Osborne, “Improving requirements
tracing via information retrieval,” in RE ’03: Proceedings of the 11th
IEEE International Symposium on Requirements Engineering, 2003, pp.
138–147.

[38] S. Nejati, “Behavioural model fusion,” Ph.D. dissertation, University of
Toronto, 2008.

[39] A. Hussain and M. Huth, “On model checking multiple hybrid views,” in
Proceedings of 1st International Symposium on Leveraging Applications
of Formal Methods, 2004, pp. 235–242.

[40] K. Larsen and B. Thomsen, “A modal process logic,” in LICS ’88:
Proceedings of 3rd Annual Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1988, pp. 203–210.

[41] M. Huth, R. Jagadeesan, and D. A. Schmidt, “Modal transition systems:
A foundation for three-valued program analysis,” in ESOP ’01: Pro-
ceedings of 10th European Symposium on Programming, ser. Lecture
Notes in Computer Science 2028. Springer, 2001, pp. 155–169.

[42] M. Sabetzadeh, “Merging and consistency checking of distributed mod-
els,” Ph.D. dissertation, University of Toronto, 2008.

[43] H. Liang, Z. Diskin, J. Dingel, and E. Posse, “A general approach for
scenario integration,” in MoDELS, 2008, pp. 204–218.

[44] K. Larsen, B. Steffen, and C. Weise, “A constraint oriented proof
methodology based on modal transition systems,” in TACAS ’95: Pro-
ceedings of First International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science, vol. 1019. Springer, 1995, pp. 17–40.

[45] M. Huth and S. Pradhan, “Model-checking view-based partial specifica-
tions,” Electronic Notes Theoretical Computer Science, vol. 45, 2001.

[46] S. Nejati and M. Chechik, “Behavioural model fusion: An overview of
challenges,” in ICSE Workshop on Modeling in Software Engineering
(MiSE ’08), 2008.

[47] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing
the relationships between multiple views in requirements specification,”
IEEE Transaction on Software Engineering, vol. 20, no. 10, pp. 760–
773, 1994.

[48] J. Hay and J. Atlee, “Composing features and resolving interactions,”
in SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2000, pp.
110–119.

[49] A. Moreira, A. Rashid, and J. Araújo, “Multi-dimensional separation
of concerns in requirements engineering,” in RE ’05: Proceedings of
the 10th IEEE International Symposium on Requirements Engineering,
2005, pp. 285–296.

[50] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr., “N degrees of separation:
Multi-dimensional separation of concerns,” in ICSE ’99: Proceedings of
the 21st International Conference on Software Engineering, 1999, pp.
107–119.

[51] W. Harrison, H. Ossher, and P. Tarr, “General composition of soft-
ware artifacts,” in 5th International Symposium Software Composition
(SC’06), co-located with ETAPS’06, ser. Lecture Notes in Computer
Science, vol. 4089. Springer, 2006, pp. 194–210.

[52] E. Rahm and P. Bernstein, “A survey of approaches to automatic schema
matching,” The VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[53] K. Ryan and B. Mathews, “Matching conceptual graphs as an aid to
requirements re-use,” in RE ’93: Proceedings of IEEE International
Symposium on Requirements Engineering, 1993, pp. 112–120.

[54] T. Alspaugh, A. Antón, T. Barnes, and B. Mott, “An integrated scenario
management strategy,” in RE ’99: Proceedings of the 4th IEEE Interna-
tional Symposium on Requirements Engineering, 1999, pp. 142–149.

[55] Z. Xing and E. Stroulia, “Differencing logical uml models,” Autom.
Softw. Eng., vol. 14, no. 2, pp. 215–259, 2007.

[56] U. Kelter and M. Schmidt, “Comparing state machines,” in CVSM’08:
ICSE’08 Workshop on Comparison and versioning of software models,
2008, pp. 1–6.

[57] N. Lohmann, “Correcting deadlocking service choreographies using a
simulation-based graph edit distance,” in BPM ’08: Proceedings of the
6th International Conference on Business Process Management, 2008,
pp. 132–147.

[58] J. Quante and R. Koschke, “Dynamic protocol recovery,” in WCRE ’07:
Proceedings of the 14th Working Conference on Reverse Engineering,
2007, pp. 219–228.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[59] K. Bogdanov and N. Walkinshaw, “Computing the structural difference
between state-based models,” in WCRE ’09: Proceedings of the 2009
16th Working Conference on Reverse Engineering, 2009, pp. 177–186.

[60] F. van Breugel, “Abe ’08: Workshop on approximate behavioural equiv-
alences,” 2008.

[61] L. de Alfaro, M. Faella, and M. Stoelinga, “Linear and branching
metrics for quantitative transition systems,” in ICALP ’04: Proceedings
of the 31st International Colloquium on Automata, Languages and
Programming, 2004, pp. 97–109.

[62] O. Sokolsky, S. Kannan, and I. Lee, “Simulation-based graph similarity,”
in TACAS ’06: Proceedings of 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, vol. 3920. Springer, 2006, pp.
426–440.

[63] M. Alanen and I. Porres, “Difference and union of models,” in UML
’03: Proceedings of the 6th International Conference on The Unified
Modeling Language, ser. Lecture Notes in Computer Science, vol. 2863.
Springer, 2003, pp. 2–17.

[64] K. Letkeman, “Comparing and merging UML models in IBM
rational software architect,” IBM, Tech. Rep., 2006, http://www-
306.ibm.com/software/awdtools/architect/swarchitect/.

[65] A. Zito, Z. Diskin, and J. Dingel, “Package merge in UML 2: Practice
vs. theory?” in MoDELS ’06: Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems,
2006, pp. 185–199.

[66] A. Boronat, J. Carsı́, I. Ramos, and P. Letelier, “Formal model merging
applied to class diagram integration,” Electron. Notes Theor. Comput.
Sci., vol. 166, pp. 5–26, 2007.

[67] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 2,
pp. 256–290, 2002.

[68] M. D. D. Fabro, J. Bézivin, F. Jouault, and P. Valduriez, “Applying
generic model management to data mapping,” in BDA, 2005.

[69] S. Horwitz, J. Prins, and T. Reps, “Integrating noninterfering versions of
programs,” ACM Transaction on Programming Languages and Systems,
vol. 11, no. 3, pp. 345–387, 1989.

[70] G. Halmans and K. Pohl, “Communicating the variability of a software-
product family to customers,” Software and System Modeling, vol. 2,
no. 1, pp. 15–36, 2003.

[71] S. Faulk, “Product-line requirements specification (prs): An approach
and case study,” in RE ’01: Proceedings of the 6th IEEE International
Symposium on Requirements Engineering, 2001, pp. 48–55.

[72] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw, “SCR*: A toolset for
specifying and analyzing requirements,” in Annual Conf. on Computer
Assurance, 1995, pp. 109–122.

[73] S. Easterbrook and M. Chechik, “A framework for multi-valued reason-
ing over inconsistent viewpoints,” in ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, 2001, pp. 411–420.

[74] J. Bayer, J. Girard, M. Würthner, J. DeBaud, and M. Apel, “Transitioning
legacy assets to a product line architecture,” in ESEC / SIGSOFT FSE,
1999, pp. 446–463.

[75] J. Rubin and M. Chechik, “Quality of behavior-preserving product line
refactorings,” 2011.

[76] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman, A. Elkhodary, and
R. Rabbi, “An expressive aspect composition language for uml state
diagrams,” in MoDELS ’07: Proceedings of the 10th International
Conference on Model Driven Engineering Languages and Systems,
2007, pp. 514–528.

[77] R. Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. McCormick,
S. Nejati, M. Sabetzadeh, and P. Viriyakattiyaporn, “An eclipse-based
tool framework for software model management,” in ETX, 2007, pp.
55–59.

[78] R. Salay, “Using modeler intent in software engineering,” Ph.D. disser-
tation, University of Toronto, 2010.

[79] M. Chechik, S. Nejati, and M. Sabetzadeh, “A relationship-based
approach to model integration,” Innovations in Systems and Software
Engineering, 2011, (To Appear).

[80] A. Classen, P. Heymans, T. T. Tun, and B. Nuseibeh, “Towards safer
composition,” in ICSE Companion, 2009, pp. 227–230.

[81] “Researching and developing persistent and generative cognitive mod-
els,” http://palm.mindmodeling.org/pgcm/Welcome.html, 2010.

[82] R. Alur, S. Kannan, and M. Yannakakis, “Communicating hierarchical
state machines,” in ICALP ’99: Proceedings of the 26th International
Colloquium on Automata, Languages and Programming, ser. Lecture
Notes in Computer Science, vol. 1644. Springer, 1999, pp. 169–178.

[83] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive
systems,” ACM Transactions on Programming Languages and Systems,
vol. 2, no. 19, pp. 253–291, 1997.

Shiva Nejati is a research scientist at the Simula
Research Laboratory in Norway. She received her
B.Sc. from Sharif University of Technology (Iran) in
2000, and her M.Sc. and Ph.D. from the University
of Toronto in 2003 and 2008, respectively. Her main
research area is software engineering, with specific
interests in model-based development, behaviour
analysis, requirements engineering, specification and
design methods, and web-services.

Mehrdad Sabetzadeh is a Research Scientist at the
Simula Research Laboratory. He received his Ph.D.
from the University of Toronto in 2008 and worked
as a Postdoctoral Researcher at University College
London in 2009. Dr. Sabetzadeh’s main research
interest is model-based software development with
an emphasis on requirements engineering, verifica-
tion and validation, and certification. Sabetzadeh is
a Member of the IEEE Computer Society.

Marsha Chechik is currently Professor and Vice
Chair in the Department of Computer Science at the
University of Toronto. She received her Ph.D. from
the University of Maryland in 1996. Prof. Chechik’s
research interests are in the application of formal
methods to improve the quality of software. She
has authored over 90 papers in formal methods,
software specification and verification, computer se-
curity and requirements engineering. In 2002-2003,
Prof. Chechik was a visiting scientist at Lucent
Technologies in Murray Hill, NY and at Imperial

College, London UK. She is an associate editor of IEEE Transactions on
Software Engineering 2003-2007, 2010-present. She is a member of IFIP
WG 2.9 on Requirements Engineering and an Associate Editor of Journal on
Software and Systems Modeling. She regularly serves on program committees
of international conferences in the areas of software engineering and auto-
mated verification. Marsha Chechik was a Co-Chair of the 2008 International
Conference on Concurrency Theory (CONCUR), Program Committee Co-
Chair of the 2008 International Conference on Computer Science and Software
Engineering (CASCON), and Program Committee Co-Chair of the 2009
International Conference on Formal Aspects of Software Engineering (FASE).
She is a Member of the IEEE Computer Society.

Steve Easterbrook is a professor of computer sci-
ence at the University of Toronto. He received his
Ph.D. (1991) in Computing from Imperial College
in London (UK), and was a lecturer at the School
of Cognitive and Computing Science, University of
Sussex from 1990 to 1995. In 1995 he moved to the
US to lead the research team at NASA’s Independent
Verification and Validation (IV&V) Facility in West
Virginia, where he investigated software verification
on the Space Shuttle Flight Software, the Interna-
tional Space Station, the Earth Observation System,

and several planetary probes. He moved to the University of Toronto in 1999.
His research interests range from modelling and analysis of complex software
software systems to the socio-cognitive aspects of team interaction, including
communication, coordination, and shared understanding in large software
teams. He has served on the program committees for many conferences
and workshops in Requirements Engineering and Software Engineering, and
was general chair for RE’01 and program chair for ASE’06. In the summer
of 2008, he was a visiting scientist at the UK Met Office Hadley Centre.
Easterbrook is a Member of the IEEE Computer Society.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

Pamela Zave received an A.B. degree in English
from Cornell University, and a Ph.D. degree in com-
puter sciences from the University of Wisconsin–
Madison. She has been with AT&T Research (for-
merly Bell Labs) since 1981. She is interested in all
aspects of formal methods for software engineering
as applied to networks, and holds 17 patents in the
telecommunication area.

Dr. Zave is an ACM Fellow and an AT&T Fellow.
She has received three Ten-Year Most Influential
Paper awards and four Best Paper awards. She is

currently chair of IFIP Working Group 2.3 on Programming Methodology.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

x′

x y

y′
a b

xy

x′y

x′y′

xy′
a b

b
⇒

a

Fig. 20. Resolving AND-states (parallel states) in ECharts.

XI. APPENDIX

A. Flattening Statechart Models

Flattening is known as the process of removing hierarchy
in Statechart models. Our merge procedure, described in
Section V, is defined over hierarchical state machines, and
hence, no flattening is required prior to its application. The
semantics of our merge procedure, however, is defined over
flattened Statechart models, i.e., Labelled Transition Systems
(LTSs) [31] (see Definition 3), and therefore, we need to
formally describe how hierarchical Statechart models are con-
verted to flat state machines.

To do so, we first need to remove all parallelism from
Statechart models. ECharts use parallel states with interleaved
transition executions [24] which can be translated to the
above formalism using the interleaving semantics of [23]. A
simple example of this translation is shown in Figure 20. Note
that more than one transition may be enabled in a parallel
Statechart model. ECharts provide three kinds of priority
rules to let the modellers control which transition(s) will fire
when multiple ones are enabled: Message Class Rule, Source
Coverage Rule, and Transition Depth Rule (see Section 4 of
[24] for a full description of these rules). If none of these rules
apply in a given situation, the transition(s) to fire are chosen
non-deterministically.

We translate the resulting hierarchical Statechart without
parallelism into an intermediate state machine formalism given
in Definition 4, and then discuss how this formalism can be
converted to LTSs.

Definition 3 (LTS): [31] An LTS is a tuple (S, s0, R,E)
where S is a set of states, s0 ∈ S is an initial state, R ⊆
S × E × S is a set of transitions, and E is a set of actions.

An example LTS is shown in Figure 5(b). A trace of an
LTS L is a finite sequence σ of actions that L can perform
starting at its initial state. For example, ε, a, a · c, and a · c · c
are examples of traces of the LTS in Figure 5(b). The set of
all traces of L is called the language of L, denoted L(L). Let
Σ be a set of symbols. We say σ = e0e1 . . . en is a trace over
Σ if ei ∈ Σ for every 0 ≤ i ≤ n. We denote by Σ∗ the set of
all finite traces over Σ.

Let L be an LTS, and E′ ⊆ E. We define L@E′ to be the
result of restricting the set of actions of L to E′, i.e., replacing
actions in E \E′ with the unobservable action τ and reducing
E to E′. For an LTS L with τ -labelled transitions, we consider
L(L) to be the set of traces of L with the occurrences of τ
removed.

Definition 4 (State Machine): A state machine is a tuple
SM = (S, s0, R,E,Act), where S is a finite set of states,

s0 ∈ S is the initial state, R ⊆ S×E×Act×S is a transition
relation, E is a set of input events, and Act is a set of output
actions.

State machines in Definition 4 are similar to LTSs except
that state machine transitions are labelled by (e, α), where
e is an input event and α is a sequence of output actions.
In contrast, LTS transitions are labelled with single actions.
State machines can be translated to LTSs by replacing each
transition labelled with (e, α) by a sequence of transitions
labelled with single actions of the sequence e ·α. In the rest of
this appendix, we assume that the result of Statechart flattening
is an LTS. That is, we assume that state machines are replaced
by their equivalent LTSs. Note that in LTSs, we keep input
events E and output actions Act distinct. So, for example, if
label a appears in E ∩ Act of a state machine M , we keep
two distinct copies of a (one for input and one for output) in
the vocabulary of the corresponding LTS.

Definition 5 (Flattening): Let M = (S, ŝ, <h, E, V,R) be
a Statechart model. For any state s ∈ S, let Parent(s)
be the set of ancestors of s (including s) with respect to
the hierarchy tree <h. We define a state machine SMM =
(S′, s′0, R

′, E′,Act ′) corresponding to M as follows:

S′ = {s | s ∈ S ∧ s is a leaf with respect to <h}
s′0 = {s | s ∈ ŝ ∧ s is a leaf with respect to <h}
R′ = {(s, e, α, s′) | ∃s1 ∈ Parent(s) · ∃s2 ∈ Parent(s′)·

〈s1, e′, c, α, s2, prty〉 ∈ R ∧ e = e′[c]∧
the value of ptry is higher than other
outgoing transitions of s (and of ancestors
of s) enabled by event e and guard c}

E′ = {e | ∃〈s, e′, c, α, s′〉 ∈ R · e = e′[c]}
Act ′= {a | ∃〈s, e′, c, α, s′〉 ∈ R · a appears in the sequence α}

Informally, to flatten a hierarchical state machine M : (1) We
keep only the leaf states of M (with respect to <h). All super-
states are removed. (2) We push the outgoing and incoming
transitions of the super-states (non-leaf states) down to their
leaf sub-states. Any incoming (resp. outgoing) transition of
a super-state s is replaced by incoming (resp. outgoing)
transitions to every leaf sub-state of s. (3) When a leaf state
has several outgoing transitions with the same triggering event,
we keep the transition with the highest priority. (4) We assume
that the guards are part of the event labels and remove the set
of variables of M . For example, the LTS in Figure 21(b) is
the flattened form of the Statechart model in Figure 21(a).
Similarly, LTSs corresponding to the Statechart models in
Figure 1 are shown in Figure 22. The LTS corresponding to
the Statechart model in Figure 5(a) is shown in Figure 5(b).
It illustrates how we resolve priorities during flattening.

Obviously, flattening increases the number of transitions.
In situations where superstates share the same sub-states (see
Figure 21(c) for an example), flattening also increases the
number of states because multiple copies of sub-states are
created in the flattened state machine. However, since we use
LTSs only to define the semantics of merge, the size increase
is not a limitation in our work. For an efficient technique for
flattening hierarchical state machines with super-states sharing
the same substates, see [82].

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

e1[c1]/α1

e2/α2

e3[c2]/α3

e4

(a) (b) (c)

t0
t1

t2 t3t4

e1[c1]

α1e2

α2

e3[c2]

α3
e4

e3[c2]

α3

Fig. 21. Statecharts flattening: (a) An example Statecharts, (b) flattened state machine equivalent to the Statecharts in (a), and (c) an example Statecharts
whose super-states share the same sub-states.

setup [zone=source]

callee?Ack

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

setup [zone=target]

setup [zone=target]

setup [zone=source]

participant?Ack

subscriber?Ack

redirectToVoicemail
[zone=target]

participant?Reject [zone=source] OR
participant?Unavail [zone=source] OR

participant?TearDown [zone=source] OR
subscriber?Reject [zone=target] OR
subscriber?Unavail [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

s′
0

s′
1

s′
2

s′
3

s′
4

s′
5

(a) t′0 t′1

t′2 t′3

t′4

t′5 t′6 t′7

(b)

callee = subscriber

callee = participant

s′
6

s′
7

Fig. 22. LTSs generated by flattening the Statechart models in Figure 1.

B. Mixed LTSs

Individual models of variant features such as those shown
in Figure 22 can be described as LTSs; however, their merge
cannot. This is because LTSs do not provide any means
to distinguish between different kinds of system behaviours.
In particular, in our work, we need to distinguish between
behaviours that are common among different variants, and
behaviours about which variants disagree. In product line
engineering, the former type of behaviours is referred to as
commonalities, and the latter – as variabilities [34]. To specify
behavioural commonalities and variabilities, we extend LTSs
to have two types of transitions: One representing shared be-
haviours (to capture commonalities) and the other representing
non-shared behaviours (to capture variabilities).

Definition 6 (Mixed LTSs): A Mixed LTS is a tuple
L = (S, s0, R

shared , Rnonshared , E), where Lshared =
(S, s0, R

shared , E) is an LTS representing shared behaviours,
and Lnonshared = (S, s0, R

nonshared , E) is an LTS represent-
ing non-shared behaviours. We denote the set of shared and
non-shared transitions of a Mixed LTS by Rall = Rshared ∪
Rnonshared, and the LTS, (S, s0, R

all , E), by Lall .
Every LTS (S, s0, R,E) can be viewed as a Mixed

LTS whose set of non-shared transitions is empty, i.e.,
(S, s0, R, ∅, E). Our notion of Mixed LTS is inspired by that
of MixTS [83]. Yet, while both types of systems have different
transition types, in MixTSs they are used to explicitly model

possible and required behaviours of a system, whereas in
Mixed LTSs they differentiate between shared and non-shared
behaviours in variant features.

We define a notion of refinement to formalize the relation-
ship between Mixed LTSs based on the degree of behavioural
variabilities they can capture. For states s and s′ of an LTS L,
we write s τ

=⇒ s′ to denote s(τ−→)∗s′. For e 6= τ , we write
s

e
=⇒ s′ to denote s(τ

=⇒)(
e−→)(

τ
=⇒)s′. For states s and s′ of

a Mixed LTS L, we write s e
=⇒shared

s′ to denote s e
=⇒ s′ in

Lshared , s e
=⇒nonshared

s′ to denote s e
=⇒ s′ in Lnonshared ,

and s e
=⇒all

s′ to denote s e
=⇒ s′ in Lall .

Definition 7 (Refinement): Let L1 and L2 be Mixed LTSs
such that E1 ⊆ E2 . A relation ρ ⊆ S1 × S2 is a refinement,
where ρ(s, t) iff

1) ∀s′ ∈ S1·∀e ∈ E1∪{τ}·s e−→all
s′ ⇒ ∃t′ ∈ S2·t e

=⇒all

t′ ∧ ρ(s′, t′)

2) ∀t′ ∈ S2 · ∀e ∈ E2 ∪ {τ} · t e−→shared
t′ ⇒ ∃s′ ∈

S1 · s e
=⇒shared

s′ ∧ ρ(s′, t′)

We say that L2 refines L1, written L1 � L2, if there is a
refinement ρ such that ρ(s0, t0), where s0 and t0 are the initial
states of L1 and L2, respectively.

Intuitively, refinement over Mixed LTSs allows one to con-
vert shared behaviours into non-shared ones, while preserving
all of the already identified non-shared behaviours. More
specifically, if L2 refines L1, then every behaviour of L1

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

setup [zone =target]

setup [zone=source]

participant?Ack
subscriber?Ack

redirectToVoicemail
[zone=target]

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]participant?TearDown OR

subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

callee?Ack

callee?Ack

callee = subscriber

callee=participant

participant?Unavail [zone=source]OR
subscriber?Unavail [in target-zone]

(s′
0, t

′
0)

(s′
2, t

′
1)

(s′
1, t

′
2)

(s′
3, t

′
1)

(s′
3, t

′
2)

(s′
4, t

′
3)

(s′
5, t

′
4)

(s′
6, t

′
5) (s′

7, t
′
6) t′7

Fig. 23. Mixed LTS generated by flattening the Statechart models in
Figure 10: Shared transitions are shown as solid arrows, and non-shared
transitions as dashed arrows.

is present in L2 either as shared or as non-shared: Shared
behaviours of L1 may turn into non-shared behaviours, but
its non-shared behaviours are preserved in L2. Dually, L2

may have some additional non-shared behaviours, but all
of its shared behaviours are present in L1. As indicated in
Definition 7, the vocabulary of L1 is a subset of that of L2.
This is because the non-shared transitions of L2 may not
necessarily be present in L1, and hence, they can be labelled
by actions in L2 \L1. Our notion of refinement is very similar
to that given in [83] over MixTSs. The difference is that the
refinement in [83] captures the “more defined than” relation
between two partial models, whereas in our case, a model is
more refined if it can capture more behavioural variability.

Figure 23 shows a Mixed LTS where shared transitions
are shown as solid arrows, and non-shared transitions – as
dashed arrows. Mixed LTS in Figure 23 refines the LTS in
Figure 22(a) with the following refinement relation:

{(s, (s, x)) | s and (s, x) are states in Figures 22(a)
and 23, respectively.}

Theorem 2: Let L1 and L2 be Mixed LTSs where L1 � L2.
Then,

1) L(Lall
1) ⊆ L(Lall

2)
2) L(Lshared

2) ⊆ L(Lshared
1)

Proof: By Definition 6, every Mixed LTS L has fragments
Lshared and Lall which are expressible as LTSs. By Defini-
tion 7 and definition of simulation over LTSs in [31], for two
Mixed LTSs L1 and L2 such that L2 refines L1, we have that
Lall
2 simulates Lall

1 , and Lshared
1 simulates Lshared

2 . Based on
the property of simulation [31], we have L(Lall

1) ⊆ L(Lall
2)

and L(Lshared
2) ⊆ L(Lshared

1).
For example, consider the model in Figure 22(a) and its

refinement in Figure 23. The model in Figure 22(a) is an
LTS, and hence, its set of non-shared traces is empty. Every
trace in this model is present in the model in Figure 23 either
as a shared or a non-shared trace, i.e., L(Lall

1) ⊆ L(Lall
2).

Also, every shared trace in the model in Figure 23 is present
in Figure 22(a), i.e., L(Lshared

2) ⊆ L(Lshared
1). Finally, the

model in Figure 23 has some non-shared traces that are not
present in the model in Figure 22(a), e.g., the trace generated
by the path (s′0, t

′
0) → (s′1, t

′
2) → (s′3, t

′
2) → (s′4, t

′
3) → t′7.

This shows that L(Lnonshared
2) is not necessarily a subset of

L(Lnonshared
1).

C. Proof of Correctness for Merging Statechart models

Given input Statechart models M1 and M2, and their merge
M1 +ρ M2, let L1 and L2 be the LTSs corresponding to
M1 and M2, respectively, and let L1+2 be the Mixed LTS
corresponding to M1+ρM2. We show that L1+2 is a common
refinement of L1 and L2, i.e., L1+2 refines both L1 and L2.

Theorem 3: Let M1, M2, M1 +ρ M2 be given, and let
L1, L2, and L1+2 be their corresponding flat state machines,
respectively. Let Act1 and Act2 be the set of output actions
of M1 and M2, respectively, and let E1 and E2 be the set of
labels of L1 and L2, respectively. Then, L1 � L1+2@{E1]
E2 \ Act2} and L2 � L1+2@{E1] E2 \ Act1}, where]
denotes the disjoint union operator over sets.

Before we give the proof, we provide an inductive definition,
equivalent to Definition 7, for the refinement relation �.

Definition 8: We define a sequence of refinement relations
�0, �1, . . . on S1 × S2 as follows:
• �0= S1 × S2

• s �n+1 t iff

∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′ ⇒

∃t′ ∈ S2 · t
e

=⇒
all
t′ ∧ s′ �n t′

∀t′ ∈ S2 · ∀e ∈ E2 ∪ {τ} · t
e−→

shared
t′ ⇒

∃s′ ∈ S1 · s
e

=⇒
shared

s′ ∧ s′ �n t′

The largest refinement relation is defined as
⋂
i≥0 �i.

Note that since L1 and L1+2 are finite structures, the sequence
�0, �1, . . . is finite as well.

Proof: To prove L1 � L1+2@{E1]E2 \Act2}, we show
that the relation

ρ1 = {(s, s) | s ∈ S1∧s ∈ S+}∪{(s, (s, t)) | s ∈ S1∧(s, t) ∈ S+}

is a refinement relation between L1 and L1+2.
In this proof, we assume that any tuple (s, t) ∈ ρ where

s is a state in M1 and t a state in M2 is replaced by its
corresponding tuples (s′, t′) such that s′ is a corresponding
state to s in L1 and t′ is a corresponding state to t in L1+2. For
example, relation ρ in Figure 8(d), which is defined between
the Statechart models in Figure 1, is replaced by the relation
{(s′0, t′0), (s′1, t

′
2), (s′2, t

′
1), (s′3, t

′
1), (s′3, t

′
2), (s′4, t

′
3), (s′5, t

′
4),

(s′6, t
′
5), (s′7, t

′
6)} between the flat LTSs in Figure 22.

To show that ρ1 is a refinement, we prove that ρ1 is a
subset of the largest refinement relation, i.e., ρ1 ⊆

⋂
i≥0 �i.

The proof follows by induction on i:

Base case. ρ1 ⊆�0. Follows from the definition of ρ1 and the
fact that �0= S1 × S+.

Inductive case. Suppose ρ1 ⊆�i. We prove that ρ1 ⊆�i+1.
By Definition 8, we need to show for every (s, r) ∈ ρ1,
1. ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · (s

e−→all
s′) ⇒ ∃r′ ∈

S+ · (r e
=⇒all

r′ ∧ s′ �i r′)

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

2. ∀r′ ∈ S+ · ∀e ∈ (E1] E2 ∪ {τ}) \ Act2 · (r e−→shared

r′)⇒ ∃s′ ∈ S1 · (s e
=⇒shared

s′ ∧ s′ �i r′)
To prove 1., we identify four cases:

Case 1: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

∃t, t′ ∈ S2 · (s, t) ∈ ρ ∧ (s′, t′) ∈ ρ
⇒ (by construction of M1 +ρM2 in Section V-B and

definition of ρ1)
r = (s, t) ∧ ∃(s′, t′) ∈ S+ · (s, t)

e−→
all

(s′, t′)∧
(s′, (s′, t′)) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = (s′, t′))
∃r′ ∈ S+ · r

e−→
all
r′ ∧ s′ �i r′

Case 2: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

∃t ∈ S2 · (s, t) ∈ ρ∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ
⇒ (by construction of M1 +ρM2 in Section V-B)

r = (s, t)∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ (s, t)
e−→

all
s′

⇒ (by definition of S+ and ρ1)
∃t ∈ S2 · r = (s, t) ∧ ∃s′ ∈ S+ · (s, t)

e−→
all
s′∧

(s′, s′) ∈ ρ1
⇒ (by the inductive hypothesis, and let r′ = s′)

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i r′

Case 3: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

6 ∃t ∈ S2 · (s, t) ∈ ρ ∧ ∃t′ ∈ S2 · (s′, t′) ∈ ρ
⇒ (by construction of M1 +ρM2 in Section V-B)

r = s ∧ ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ s
e−→

all
(s′, t′)

⇒ (by definition of S+ and ρ1)
∃(s′, t′) ∈ S+ · s

e−→
all

(s′, t′) ∧ (s′, (s′, t′)) ∈ ρ1
⇒ (by the inductive hypothesis, and let r′ = (s′, t′))

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i (s′, t′)

Case 4: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

6 ∃t ∈ S2 · (s, t) ∈ ρ∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ
⇒ (by construction of M1 +ρM2 in Section V-B)

r = s∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ s
e−→

all
s′

⇒ (by definition of S+ and ρ1)
∃s′ ∈ S+ · s

e−→
all
s′ ∧ (s′, s′) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = s′)
∃r′ ∈ S+ · r

e−→
all
r′ ∧ s′ �i r′

To prove 2., by construction of merge in Section V-B, for
any shared transition r e−→shared

r′ in L1+2, we have
• if e 6= τ , then ∃(s, t), (s′, t′) ∈ ρ·r = (s, t)∧r′ = (s′, t′).
• if e = τ , then ∃(s, t), (s, t′) ∈ ρ · r = (s, t)∧ r′ = (s, t′).

∀r′ ∈ S+ · ∀e ∈ (E1] E2) \Act2 · r
e−→

shared
r′∧(

∃(s, t), (s′, t′) ∈ ρ · r = (s, t) ∧ r′ = (s′, t′) ∧ e 6= τ
∨

∃(s, t), (s, t′) ∈ ρ · r = (s, t) ∧ r′ = (s, t′) ∧ e = τ
)

⇒ (by construction of M1 +ρM2 in Section V-B)
∃(s, t), (s′, t′) ∈ ρ · r = (s, t) ∧ r′ = (s′, t′)∧
s

e−→
shared

s′ ∧ e 6= τ
∨

∃(s, t), (s, t′) ∈ ρ · r = (s, t) ∧ r′ = (s, t′)∧
s

e
=⇒

shared
s ∧ e = τ

⇒ (by definition of ρ and ρ1)
∃s′ ∈ S1 · s

e−→
shared

s′ ∧ (s′, (s′, t′)) ∈ ρ1 ∧ e 6= τ
∨

s
τ

=⇒
shared

s ∧ (s, (s, t′)) ∈ ρ1
⇒ (by the inductive hypothesis)

∃s′ ∈ S1 · s
e

=⇒
shared

s′ ∧ s′ �i r′

The above proves that ρ1 ⊆
⋂
i≥0 �i. Since ρ1 also relates

s0 (the initial state of L1) to (s0, t0) (the initial state of L1+2),
ρ1 is indeed a refinement relation between L1 and L1+2. ρ1
might not be the largest refinement relation, but any refinement
relation that includes the initial states of its underlying models
can preserve their temporal properties.

To prove L2 � L1+2, we show that the relation

σ2 = {(t, t) | t ∈ S+∧t ∈ S2}∪{(t, (s, t)) | t ∈ S2∧(s, t) ∈ S+}
is a refinement relation between L2 and L1+2. The proof is
symmetric to the one above.

Recall that by our definition in Section V-B, shared tran-
sitions r and r′ must have identical events, conditions, and
priorities, but they may generate different output actions. The
reason that we do not require actions of shared transitions to
be identical is that by our assumption in Section III, the input
Statechart models are non-interacting, and hence, actions in
one input model do not trigger any event in the other model.
In our merge procedure, for any pair of shared transitions r
and r′, we create a single transition r′′ in the merge that can
produce the union of the actions of r and r′. Thus, the trace
generated by r′′ may not exactly match the traces of r and
r′. For example, consider the following shared transitions in
Figure 1:

s2
setup[zone=target]/callee==subscriber−−−−−−−−−−−−−−−−−−−−−−−−−→ s3 and

t1
setup[zone=target]−−−−−−−−−−−−→ t3

These transitions are lifted to the transition

(s2, t1)
setup[zone=target]/callee==subscriber−−−−−−−−−−−−−−−−−−−−−−−−−→ (s3, t3)

in the merge in Figure 10, but the action callee==subscriber
does not exist in Figure 1(b). Thus, we need to hide this
action when comparing the merge with the model in Fig-
ure 1(b). Figure 24 shows the Mixed LTS corresponding
to the merge in Figure 10 where actions callee==subscriber
and callee==participant are hidden. It can be seen that this
Mixed LTS is a refinement of the LTS corresponding to
the model in Figure 1(b) where the refinement relation
is {((s, t), t) | (s, t) and t are states in Figure 10 and 1(b),
respectively. }.

By Theorems 2 and 3, we have
(1) L(Lshared

1+2 @{E1] E2 \ Act2}) ⊆ L(Lall
1), and

L(Lshared
1+2 @{E1] E2 \ Act1}) ⊆ L(Lall

2). That is,
the set of shared, i.e., unguarded, behaviours of the
merge is a subset of the behaviours of the individual
input models.

(2) L(Lall
1) ⊆ L(Lall

1+2), and L(Lall
2) ⊆ L(Lall

1+2). That
is, behaviours of the individual input models are
present as either shared, i.e., unguarded, or non-
shared, i.e., guarded, behaviours in their merge.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

setup [zone =target]

setup [zone=source]

participant?Ack subscriber?Ack

redirectToVoicemail
[zone=target]

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

callee?Ack

callee?Ack

τ

τ

participant?Unavail [zone=source]OR
subscriber?Unavail [in target-zone]

(s′
0, t

′
0)

(s′
2, t

′
1)

(s′
1, t

′
2)

(s′
3, t

′
1)

(s′
3, t

′
2)

(s′
4, t

′
3)

(s′
5, t

′
4)

(s′
6, t

′
5) (s′

7, t
′
6) t′7

Fig. 24. Mixed LTS which is equivalent to the Statechart models in Figure 10
except that actions callee=participant and callee==subscriber are hidden.

