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Abstract

Pose estimation is a widely explored problem, enabling
many robotic applications such as grasping and manipula-
tion. In this paper, we tackle the problem of pose estimation
for objects that exhibit rotational symmetry, which are com-
mon in man-made and industrial environments. In particu-
lar, our aim is to infer pose of objects not seen at training
time, by learning to compare their views to the rendered
views of their 3D CAD models. We show that sidestepping
the issue of symmetry in this scenario leads to poor perfor-
mance at test time. We propose a model that trains a neural
matching network by jointly inferring symmetries on a large
collection of available CAD models, and using this infor-
mation to train better pose models. We demonstrate that our
approach significantly outperforms a naively trained neural
network on a new pose dataset containing images of tools
and hardware.

1. Introduction
The past few years have seen significant advances in

robotic tasks such as autonomous driving [12], control for
flying vehicles [19], warehouse automation [49], and navi-
gation in complex environments [14]. However, there is still
a path to be paved towards reaching full autonomy.

Object picking has been a well-explored problem and
popularized with the recent Amazon Picking Challenge. In
order to plan its grasp, an automated method needs to be
able to accurately predict the pose of the object. The typi-
cal approach has been to train a neural network to directly
regress to object’s pose [49, 13], which inherently assumes
that the object has been seen at training time. While this
may be a violable solution for domains with a limited set
of classes of interest such as in road scenarios, we might
need a more scalable solution in general. For example, in
domains such as automated assembly where robots are to be
deployed to different warehouses or industrial sites, adapt-
ing to new objects is crucial.

In such scenarios, one typically assumes to be given a
single reference 3D model at test time, and the goal is to
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Figure 1. Many industrial objects such as tools exhibit rotational
symmetries. In our work, we show how to train pose estimation
networks for such objects.

estimate the pose of the object in the scene with respect to
this model [16]. Most methods tackle this problem by com-
paring the view from the scene with a set of object’s view-
points via either hand designed similarity metrics [16], or
learned embeddings [28, 44, 11]. Training such embeddings
requires access to positive and (difficult) negative examples
for objects seen during training. This, however, is prob-
lematic for objects exhibiting rotational symmetries, since
multiple object’s views look exactly the same.

In man-made environments, most tools/hardware have
simple shapes with diverse symmetries (Fig. 1). However,
most existing works have sidestepped the issue of symme-
try, which we show has a huge impact on performance. In
this paper, we tackle the problem of training embeddings for
pose estimation by reasoning about rotational symmetries.

Since accurate pose for real objects is time-consuming
to collect, such datasets are typically very small, and thus
training powerful neural models is challenging. Here, we
aim to leverage a large collection of 3D CAD models in
order to augment real datasets. However, while intricate,
rotational symmetries are rarely provided with 3D models.

We propose a neural model to pose estimation by learn-
ing to compare real views of objects to the viewpoints ren-
dered from their CAD models. We show how to jointly in-
fer symmetries on a large dataset of 3D CAD models and
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exploit them to train better matching networks for pose es-
timation. We evaluate our approach on a new dataset for
pose estimation, that allows us to carefully evaluate the ef-
fect of symmetry on performance. We show that our ap-
proach, which infers symmetries, significantly outperforms
a naively trained neural network.

2. Related Work
While many pose estimation methods exist, we restrict

our review to work most related to ours.

Pose Estimation. Pose estimation has been treated as ei-
ther a classification task, i.e., predicting a coarse view-
point [13, 41, 2], or a regression problem [4, 9, 7, 20]. How-
ever, such methods inherently assume consistent viewpoint
annotation across objects in training, and cannot infer poses
for objects belonging to novel classes at test time.

Alternatively, one of the traditional approaches for pose
estimation is that of matching to a given 3D model. Typical
matching methods for pose estimation involve computing
multiple local feature descriptors or a global descriptor from
the input, followed by a matching procedure with either a
3D model or a coarse set of examplar viewpoints. Aligning
an input image with a 3D model has been one of the first
approaches explored in the community. Since the statistics
of an image and the 3D model differ vastly, traditional hand
crafted descriptors were used [34, 38, 43] to get a coarse
pose prediction. Precise alignment to a CAD model was
then posed as an optimization problem using RANSAC, It-
erative Closest Point (ICP) [3], Particle Swarm Optimzia-
tion (PSO) [10], or its variants [18, 27, 45, 47].

Learning Embeddings for Pose Estimation. Follow-
ing the recent developments of CNN based Siamese net-
works [8, 15, 22, 29, 36, 48] for matching, CNNs have
also been used for pose estimation [44, 21, 23]. CNN ex-
tracts image/template representation and L2 distance or co-
sine similarity is used for matching. Typically such net-
works are trained in an end to end fashion to minimize and
maximize the L2 distance between the pairs of matches
and non matches respectively [44]. [23] sample more
views around the top predictions and iteratively refines the
matches. Training such matching networks require positive
and negative examples. Due to the presence of rotational
symmetries in objects found in industrial settings, it is not
trivial to determine the negative examples.

Symmetry in 3D Objects. There have been several works
on detecting reflectional/bilateral symmetry [26, 31, 32, 33,
42], medial axes [40, 39], symmetric parts [24, 37, 25, 25].
However for pose estimation, handling rotational symmetry
is very important [11].

[17] introduced a dataset for pose estimation where ob-
jects with only one axis of rotational symmetry have been
annotated. However most objects in industrial settings have
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Figure 2. Our problem entails estimating the pose of the object in
the image (left) given its CAD model. We exploit rendered depth
images of the CAD model in order to determine the pose.

multiple axes of rotational symmetry. Approaches such
as [35, 5] use these symmetry labels to modify the out-
put space at test time. Since annotating rotational symme-
tries is hard, building large scale datasets of CAD models
with symmetry labels is expensive and time consuming. We
show that with a small set of symmetry labels, our matching
function can be extended to predict rotational symmetries
about multiple axes, which in turn can help to learn better
embeddings for pose estimation.

3. Our Approach

We tackle the problem of pose estimation in the pres-
ence of rotational symmetry. In particular, we assume we
are given an RGB image of an object unseen at training
time, as well as its 3D CAD model. Our goal is to com-
pute the pose of the object in the image by matching it to
the rendered views of the CAD model. To be robust to mis-
matches in appearance between the real image and the tex-
tureless CAD model, we exploit rendered depth maps in-
stead of RGB views. Fig. 2 visualizes an example image of
an object, the corresponding 3D model, and rendered views.

Our approach follows [44] in learning a neural network
that embeds a real image and a synthetic view in the joint se-
mantic space. In order to perform pose estimation, we then
find the view closest to the image in this embedding space.
As typical in such scenarios, neural networks are trained
with e.g. a triplet loss, which aims to embed the match-
ing views closer than the non-matching views. However, in
order for this loss function to work well, ambiguity with re-
spect to symmetry needs to be resolved. That is, symmetric
viewpoints look exactly the same, which introduces noise
in training. We propose to deal with this issue by inferring
symmetries on objects, and exploiting them in designing a
more robust loss function.

We first introduce notation and basic concepts of rota-
tional symmetry in Sec. 3.1. In Subsec. 4, we describe the
neural network for joint pose and symmetry estimation, and
introduce a loss function that takes into account symmetry
of certain views. Finally, we show how to train this network,
by exploiting a large external dataset of CAD models.

3.1. Rotational Symmetry

We start by introducing notation and basic concepts.
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Figure 3. Order of Rotational Symmetry

Rotation Matrix. We denoted a rotation for an angle φ
around an axis θ using a matrix Rθ(φ). For example, if the
axis of rotation is the X-axis, then

RX(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Order of Rotational Symmetry. We say that an object
has an n order of rotational symmetry around the axis θ,
i.e., O(θ) = n, when its 3D shape is equivalent to its shape

rotated by Rθ

(
2πi

n

)
,∀i ∈ {0, . . . , n− 1}.

The min value ofO(θ) is 1, and attained for objects non-
symmetric around axis θ. The max value is ∞, which in-
dicates that the 3D shape is equivalent when rotated by any
angle around its axis of symmetry. This symmetry is also
referred to as the revolution symmetry [5]. In Fig. 3, we
can see an example of our rotational order definition. For
a 3D model shown in Fig. 3 (a), the rotational order about
the Y axis is 2, i.e., O(Y) = 2. Thus for any viewpoint
v (cyan) in Fig. 3 (b), if we rotate it by π about the Y-axis
to form, vπ = RY(π)v, the 3D shapes will be equivalent
(Fig. 3 (right)). The 3D shape in any other viewpoint (such
as, vπ/4 or vπ/2) will not be equivalent to that of v. Simi-
larly, we have O(Z) = ∞. In our paper, we only consider
the values of rotational order to be one of {1, 2, 4,∞}, how-
ever, our method will not depend on this choice.

Equivalent Viewpoint Sets. Let us define the set of all
pairs of equivalent viewpoints as Eo(Y) = {(i, j)|vj =
Rθ(π)vi}, with an symmetry order o ∈ {2, 3,∞}. Note
that E1(θ) is a null set (object is asymmetric). In our case,
we have E2(θ) ⊂ E4(θ) ⊂ E∞(θ) and E3(θ) ⊂ E∞(θ).

Geometrical Constraints. We note that the orders of
symmetries across multiple axes are not independent. We
derive the following claim (we give proof in suppl. mat.):

Claim 1. If an object is not a sphere, then the following
conditions must hold:

(a) The object can have up to one axis with infinite order
rotational symmetry.

Figure 4. We place four cameras in every
one of the 20 vertices of a dodecahedron,
for a total of 80 cameras, and place the
CAD model in the origin. We render the
CAD model in each of these views and
use these for matching. We also exploit a
finer discretization into 168 views.

(b) If an axis θ has infinite order rotational symmetry, then
the order of symmetry of any axis not orthogonal to θ
can only be one.

(c) If an axis θ has infinite order rotational symmetry, then
the order of symmetry of any axis orthogonal to θ can
be a maximum of two.

Since in our experiments, none of the objects is a perfect
sphere, we will use these constraints Subsec. 4.1 in order to
improve the accuracy of our symmetry predicting network.

4. Pose Estimation
We assume we are given an image crop containing the

object which lies on a horizontal surface. Our goal is to pre-
dict the coarse pose of the object given its 3D CAD model.
Thus we are interested in recovering only the three rotation
parameters of pose.

We first describe how we discretize the viewing sphere of
the 3D model in order to generate synthetic viewpoints for
matching. We then introduce the joint neural architecture
for pose and symmetry estimation in Sec. 4.1. We introduce
a loss function that takes symmetry into account in Sec. 4.2.
Finally, Sec. 4.3 discusses our training algorithm.

Discretization of the viewing sphere. Using the regular
structure of a dodecahedron, we divide the surface of the
viewing sphere into 20 equidistant points. This division
corresponds to dividing the pitch and yaw angles. At each
vertex, we have 4 roll angles, obtaining a total of 80 view-
points. This is shown in Fig. 4. We also experiment with a
finer discretization, where the triangular faces of an icosa-
hedron are sub-divided into 4 triangles, giving an additional
vertex for each edge. This results in a total of 42 vertices
and 168 viewpoints.

4.1. Network Architecture

The input to our neural network is an RGB image x, and
depth maps corresponding to the renderings of the CAD
model, one for each viewpoint vi. With a slight abuse of
notation we refer to a depth map corresponding to the i-th
viewpoint as vi. Our network embeds both, the RGB im-
age and each depth map into feature vectors, grgb(x) and
gdepth(vi), respectively, by sharing the network parameters
across different viewpoints. We then form two branches,
one to predict object pose, and another to predict the CAD
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Figure 5. Method overview. We use a neural network to embed the RGB image of objects and the rendered depth maps of the CAD model
into a common feature space. We then define two branches, one performing pose estimation by comparing the image feature with the depth
feature vectors, and another branch which performs classification of the order of symmetry of the CAD model. We show how to train this
network with very few symmetry labeled CAD models, by additionally exploiting a large collection of unlabeled CAD models.

model’s orders of symmetry. The full architecture is shown
in Fig. 5. We discuss both branches next.

Pose Estimation. Let C(k, n, s) denote a convolutional
layer with kernel size k × k, n filters and a stride of s. Let
P (k, s) denote a max pooling layer of kernel size k×k with
a stride s. The network grgb has the following architecture:
C(8, 32, 2) − ReLU − P (2, 1) − C(4, 64, 1) − ReLU −
P (2, 1) − C(3, 64, 1) − ReLU − P (2, 1) − FC(124) −
ReLU − FC(64) − L2 Norm. Thus, grgb(x) is a 64-
dimensional unit vector. We define a similar network for
gdepth, where, however, the input has a single channel.

We follow the typical approach [] in computing the sim-
ilarity score f(x,vi) in the joint semantic space as follows:

s(x,vi) = grgb(x)>gdepth(vi) (1)
f(x,vi) = softmaxi s(x,vi) (2)

To compute the object’s pose, we thus take the viewpoint
v∗ with the highest probability v∗ = argmaxvi

f(x,vi).

Rotational Symmetry Classification. Obtaining symme-
try labels for CAD models is time-consuming to collect.
The annotator needs to open the model in a 3D viewer, and
carefully inspect all three major axes in order to decide on
the orders of symmetry for each. In our work, we manu-
ally labeled a very small subset of 45 CAD models, which
we make use of here. In the next section, we show how to
exploit unlabeled large-scale CAD collections for our task.

Note that symmetry classification is performed on the
renderings of the CAD viewpoints, thus effectively estimat-
ing the order of symmetry of the 3D object. We add an
additional branch on top of the depth features to perform
classification of order of symmetry for all three orthogonal

axes (each into 4 symmetry classes). In particular, we define
a scoring function for predicting symmetry as follows:

S (O(X), O(Y),O(Z)) (3)

=
∑
θ

Sunary (O(θ)) +
∑
θ1 6=θ2

Spair (O(θ1),O(θ2))

(4)

+ Striplet (O(X),O(Y),O(Z)) (5)

Note that our scoring function jointly reasons about rota-
tional symmetry across the three axes. Here, the pairwise
and triplet terms refer to the geometrically impossible order
configurations based on Claim 1. We now define how we
compute the unary term.

Unary Scoring Term. We first compute the similarity
scores between pairs of (rendered) viewpoints. We then
form simple features on top of these scores that take into
account the geometry of the symmetry prediction problem.
Finally, we use a simple MLP on top of these features to
predict the order of symmetry.

The similarity between pairs of (rendered) viewpoints is
computed as follows, measuring whether two viewpoints
are a match or not:

pi,j = σ(w · s(vi,vj) + b) (6)

One could now attempt to use an MLP on top of the p vector
in order to predict the order of symmetries. However, due
to the limited amount of training data for this branch, such
an approach heavily overfits. Thus, we aim to exploit the
geometric nature of our prediction task. In particular, we
know that for symmetries of order 2, every pair of opposite
viewpoints (cyan and magenta in Fig. 3) corresponds to a



pair of equivalent views. We have similar constraints for
other orders of symmetry.

We thus form a few simple features as follows. For, θ ∈
{X,Y,Z}, and o ∈ {2, 4,∞}, we perform average pooling
of pi,j values for (i, j) ∈ Eo(θ). Intuitively, if the object
has symmetry of order o, its corresponding pooled score
should be high. However, since eg E2 ⊂ E∞, scores for
higher orders will always be higher. We thus create a three-
dimensional descriptor for each axis θ. More precisely, the
three-dimensional descriptormo(θ) is computed as follows.

m2(θ) =
1

|E2(θ)|
∑

(i,j)∈E2(θ)

pi,j

m4(θ) =
1

|E4(θ)− E2(θ)|
∑

(i,j)∈E4(θ)−E2(θ)

pi,j

m∞(θ) =
1

|E∞(θ)− E4(θ)|
∑

(i,j)∈E∞(θ)−E4(θ)

pi,j

Since E2(θ) ⊂ E4(θ) ⊂ E∞(θ), we take the set differ-
ences. We then use a single layer MLP with ReLU non-
linearity to get the unary scores, Sunary (O(θ)). These pa-
rameters are shared across all three axes.

Since we have four order classes per axis, it results in a
total of 64 possible configurations. Taking only the possi-
ble configurations into account, the total number of possible
configurations reduces to 21. We simply enumerate the 21
plausible configurations and choose the highest scoring one
as our symmetry order predictions.

4.2. Loss Function

Given B training pairs, X = {x(i),v(i)}i=1,...,B in a
batch, we define the loss function as the sum of the pose
loss and rotational order classification loss:

L(X,w) =

B∑
i=1

L(i)
pose(X,w) + λL

(i)
order(X,w)

We describe both loss functions next.

Pose Loss. We use the structured hinge loss:

L(i)
pose =

N∑
j=1

max
(

0,m
(i)
j + f(x(i),v

(i)
j )− f(x(i), v̄(i))

)
where v(i)

j corresponds to the negative viewpoints, and v̄(i)

denotes the closest (discrete) viewpoint wrt to v(i) in our
discretization of the sphere. In order to provide the network
with a knowledge of the rotational space, we impose a ro-
tational similarity function as the margin m(i)

j . Intuitively,
we want to penalize mistakes in poses far away more than
those close together:

m
(i)
j = drot(v

(i),v
(i)
j )− drot(v

(i), v̄(i))

where drot is the spherical distance between the two view-
points in the quaternion space. Other representations of
viewpoints are Euler angles, rotation matrices in the SO(3)
space and quaternions [1]. While the Euler angles suffer
from the gimbal lock [1] problem, measuring distances be-
tween two matrices in the SO(3) space is not trivial. The
quaternion space is continuous and smooth, which makes
it easy to compute the distances between two viewpoints.
The quaternion representation, qv of a viewpoint, v is a
four-dimensional unit vector. Thus each 3D viewpoint is
mapped to two points in the quaternion hypersphere, one
on each hemisphere. We measure the difference between
rotations as the angle between the vectors defined by each
pair of points, which is defined by their dot product. Since
the quaternion hypersphere is unit normalized, this is equiv-
alent to the spherical distance between the points.

To restrict the spherical distance to be always positive,
we use the distance function defined as:

drot (va,vb) =
1

2
cos−1

(
(2(q>va

qvb

)2 − 1),

When the objects have rotational symmetries, multiple
viewpoints could be considered ground truth. In this case,
v(i) corresponds to the set of equivalent ground-truth view-
points. Thus the margin m(i)

j takes the form of:

m
sym,(i)
j = min

v∈v(i)
drot(v,v

(i)
j )− drot(v, v̄)

The modified pose loss which takes symmetry into account
will be referred to as Lsym,(i)match .

Rotational Order Classification Loss. Considering the
axis as X, Y and Z, we use a weighted cross entropy as the
loss function:

L
(i)
order = −

∑
θ∈{X,Y,Z}

∑
o∈{1,2,4,∞}

αo·yi,o,θ ·log(piθ(o)) (7)

where yi(·, ·, θ) is the one-hot encoding of i-th ground-truth
symmetry order around axis θ, and piθ is the predicted prob-
ability for symmetry around axis θ. Here, αo is the inverse
frequency for order class o, and is used to balance the labels
across the training set.

4.3. Training Details

Here, we aim to exploit both real data as well as a large
collection of CAD models in order to train our model. We
assume we have a small subset of CAD models labeled with
symmetry, while the remaining ones are unlabeled. For the
external CAD models, we additionally render a dataset for
pose estimation, referred to as the synthetic dataset. The
details of the dataset are given in Sec. 5. In particular, we
use the following iterative training procedure:



Figure 6. Left: Rendered synthetic scenes, Right: Objects crops from the scene. We use these to train our model.

1. Train on the synthetic dataset with the Lpose loss
2. Fine-tune on the labeled synthetic and real examples

with the λLorder loss function
3. Infer symmetries of unlabeled CAD models using
S (O(X),O(Y),O(Z))

4. Fine-tune on the synthetic dataset with the Lsympose loss
5. Fine-tune on the real data with the Lsympose loss function

Note that in step 4, we use the predictions from the network
in step 3 as our ground-truth labels.

Implementation details. The input depth map is normal-
ized across the image to lie in the range, [0, 1], with the
missing depth values being 0. The learning rate for the CNN
were set to two orders of magnitude less than the weights
for the MLP (10−2 and 10−4). We use the Adam optimizer.
Training was stopped when there was no improvement in
the validation performance for 50 iterations.

5. Datasets
In an industrial setting, the objects can be arbitrary com-

plex and can exhibit rotational symmetries (examples are
shown in Fig. 8). Current datasets with 3D models such
as [6, 12, 46] have objects like cars, beds, etc., which have
much simpler shapes with few symmetries. Datasets such
as [5, 17] contain industrial objects. However, these objects
have only one axis with rotational symmetry. Here, we con-
sider a more realistic scenario of object that can have sym-
metries for multiple axes.

We introduce two datasets, one containing real images of
objects with accompanying CAD models, and a large-scale
dataset of industrial CAD models which we crawl from the
web. We describe both of these datasets next.

5.1. Real Images

We obtain a dataset containing images of real 3D ob-
jects in a table-top scenario from the company Epson. This
dataset has 27,458 images containing different viewpoints
of 17 different types of objects. Each CAD model is labeled
with the order of symmetry for each of the axes, while each
image is labeled with accurate 3D pose.

Data Type Split Type Train Validation Test

Real
Timestamp 21,966 746 2,746

Object
16,265 3,571 7,622

(10) (3) (4)

Synthetic Object
52,763 5,863

-
(5,987) (673)

Table 1. Dataset Statistics of Images. The numbers in brackets
correspond to the statistics of models

We propose two different splits: (a) timestamp-based: di-
vide images of each of the objects into training and testing,
while making sure that the images were taken at times far
apart (thus having varying appearance) , (b) object-based:
the dataset is split such that the training, val and testing ob-
jects are disjunct. We divide 17 objects into 10 train, 3 val,
and 4 test objects. Datasets statistics are reported in Tab. 1.

5.2. Synthetic Dataset

To augment our dataset, we crawled 6,660 CAD models
of very different objects from a hardware company 1. This
varied set contains very simple 3D shapes such as tubes or
nails to very complex forms like hydraulic bombs. We la-
belled rotational symmetry for 28 objects from this dataset.
Dataset statistics is reported in Tab. 1. We now describe
how we render the synthetic dataset for pose estimation.

Scene Generation. We generate scenes of a table-top sce-
nario using Maya [30], where each scene contains a subset
of CAD models. In each scene, we import a set of objects,
placing them on top of a squared plane with a side length of
1 meter that simulates a table. We simulate large variations
in location, appearance, lighting conditions, viewpoint (as
shown in Fig. 6) as follows.

Location. The objects are set to a random translation
and rotation, and scaled so that the diagonal of their 3D
bounding box is smaller than 30 centimetres. We then run
a physical simulation that pushes the objects towards a sta-
ble equilibrium. If the system does not achieve equilibrium
after a predefined amount of time we stop the simulation.

1https://www.mcmaster.com/

https://www.mcmaster.com/


Split
Type

Syn SynSym
Pred

RSym
Sup

N = 80 N = 168
R@20◦ R@40◦ dsymrot, avg R@20◦ R@40◦ dsymrot, avg

(in %) (in %) (in ◦) (in %) (in %) (in ◦)

Time
stamp

62.3 81.0 22.5 43.0 70.1 26.2
X 70.2 86.3 19.2 72.4 88.2 17.5

X 64.4 84.8 22.1 82.3 96.0 14.5
X X 72.5 88.3 16.6 84.8 97.2 13.3
X X X 77.34 92.06 12.02 82.0 96.7 14.2

Object

23.6 45.4 37.93 24.5 42.2 33.6
X 29.6 55.4 34.6 18.7 54.0 36.6

X 24.9 58.2 35.5 31.7 62.3 33.2
X X 33.6 67.0 31.4 31.9 75.2 29.9
X X X 35.71 68.73 30.04 41.8 79.3 26.4

Table 2. Pose Estimation Performance with an ablation study.

In cases when objects intersect with one another, we restart
the simulation to avoid these implausible situations.
Appearance. We collected a set of 45 high definition
wooden textures for the table and 21 different materials
(wood, leather and several metals) and used them for tex-
turing the objects. The textures are randomly attached to
the objects, mapping them to the whole 3D CAD model.
Lighting. In each simulation, we randomly set a light
point within a certain intensity range.
Viewpoint. For each scene we set 15 cameras in a differ-
ent positions, pointing towards the origin. Their location is
distributed on the surface of a sphere of radius µ = 75cm
as follows. The location along Y axis follows a normal dis-
tribution Y ∼ N (50, 10)cm. For the position over the XZ
plane, instead of Cartesian coordinates, we adopt Circular
coordinates where the location is parametrized by (dxz, θy).
Here, dxz represents the distance from the origin to the point
and is distributed as N (

√
µ2 − Y 2, 10)cm, where θ is the

angle around the Y axis. This procedure generates views of
a table-top scene from varying oblique angles. We also add
cameras directly above the table with X,Z ∈ (−5, 5)cm to
also include overhead views of the scene.

For our task, we crop objects with respect to their bound-
ing boxes, and use these for pose prediction. The complete
scenes help us in creating context for the object crops that
typically appear in real scenes.

6. Experimental Results
In this section we evaluate our method. We report our

performance on the real dataset, and ablate the use of the
CAD model collection and the synthetic dataset. We eval-
uate with both discretization schemes (N = 80 and N =
168 viewpoints). We first describe our evaluation metrics
in Sec. 6.1 and show quantitative and qualitative results
in Sec. 6.2 and Sec. 6.3 respectively.

6.1. Evaluation Metrics

Rotational Symmetry Classification. For rotational
symmetry classification, we report the mean of precision,

Using N = 80 N = 168
constraints Recall Prec. F1 Recall Prec. F1

7 97.4 96.3 0.968 91.2 90.6 0.909
3 100.0 100.0 1 96.3 97.6 0.967

Table 3. Rotational Symmetry Performance. For different
choices of discretization, N, we report the rotational symmetry
classification performance for recall, precision and F1 measures,
averaged across the 4 symmetry classes. The numbers are in %.

recall and the F1 scores of the order predictions across dif-
ferent rotational axes (X,Y,Z) and object models.

Pose Estimation. For pose estimation, we report the re-
call performance (R@dsymrot ) for our top-k predictions. Us-
ing the distance measure in the quaternion space, dsymrot (de-
fined in Sec. 4.2), we compute the minimum distance of the
ground truth pose wrt our top-k predictions and report how
many times this distance falls below 20◦ or 40◦. The choice
of these values are based on the fact that the distance be-
tween two adjacent viewpoints for N = 80 and N = 168
discretization schemes are 21.2◦ and 17.8◦, respectively.
We also report the average spherical distance, dsymrot, avg of
the best match among the top-k predictions relative to the
ground truth pose. In all our experiments, we choose top-
5% of the total possible viewpoints, i.e., for N = 80 and
160 discretization schemes, k = 4 and 8, respectively.

6.2. Quantitative Results

Rotational Symmetry Prediction. We have rotational
symmetry annotations for all 17 objects in the real dataset
and 28 objects in the synthetic dataset. We split these into
25 objects for training, 10 for validation, and 10 for test.

We show our quantitative results in Tab. 3. The first row
shows the performance of our approach by considering or-
der prediction for multiple axes to be independent. In the
second row, we show that by reasoning about impossible
order configurations, the performance of our symmetry pre-
diction improves. At a finer discretization, we are also able
to predict O3, making the difference even more evident.



(a) Timestamp-based split (b) Object-based split
Figure 7. Recall vs spherical distance

Figure 8. Qualitative results for pose estimation. Green box indi-
cates correct viewpoint. The bottom-right shows an error case.
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Figure 9. Example models among the 6,669 unlabelled 3D ob-
jects, with their predicted symmetry indicated below each im-
age. The variability of rotational symmetry shows in bottom-left
and bottom-right objects. Notice that some of these objects have
higher order of symmetry (eg 6th and 8th) than what we consider,
for which our model predicts O∞.

Pose Estimation. Tab. 2 reports results for pose estima-
tion for different configurations. The first column corre-
sponds to the the choice of the dataset split, timestamp-
based or object-based. The second column indicates the
usage of the large-scale synthetic objects while training
our network. In the third column, we indicate whether
the symmetry prediction was used for the synthetic ob-
jects during training. The fourth column indicates whether
the symmetry annotations from the real dataset was used
as a supervisory signal to adjust our training loss. For
each discretization scheme, we report results for R@dsymrot
(φ ∈ {20◦, 40◦}) and dsymrot, avg metrics.

We first notice that a model that uses symmetry labels
in our loss function, significantly improves the results (first
and second row for each dataset split) over the naively
trained network. This showcases that reasoning about sym-
metry is important. Furthermore, exploiting the additional
large synthetic dataset outperforms the base model which
only sees the real imagery (first and third rows). Finally,
our full model that jointly reasons about symmetry and pose
significantly outperforms the rest of the settings.

In Fig. 7(a) and (b), we plot recall vs the spherical dis-
tance between the predicted viewpoint and the GT view-
point for N = 80 discretization scheme. Since the objects
are shared across the splits in the timestamp based data,
the overall results are better than the corresponding num-

bers of the object-based split. However, the improvement
of using large-scale synthetic data and rotational symme-
tries has a roughly 1.7x improvement for object-based split
compared to around 1.4x improvement for the timestamp-
based split. This shows that for generalization, reasoning
about rotational symmetry on a large dataset is essential.

Only using the synthetic objects (green plot) can be bet-
ter than using the symmetry labels for the small real dataset
(red and brown plots). However, combining rotational sym-
metries with large-scale synthetic data (blue plot) gives the
best performance. Please refer to the supplementary mate-
rial for the N = 160 discretization scheme as well.

6.3. Qualitative Results

We show the qualitative results of our method in both
real and synthetic data.
Symmetry Prediction. We qualitatively observe how our
symmetry prediction generalizes to unseen objects at test
time. One of the primary reasons for failure is the non-
alignment of viewpoints due the discretization. Another
reason of failure is that examples of certain order classes
are not present in training. For example, the object in the
bottom left of Fig. 9) has an order eight symmetry which
was not present in the training set.
Pose Estimation. We show qualitative results in Fig. 8. In
particular, we show images of objects from the real dataset
in the first column, followed by the top-3 viewpoint predic-
tions. The views indicated with a green box correspond to
the ground truth. Most of the errors are due to the coarse
discretization. If the actual pose lies in between two neigh-
boring viewpoints, some discriminative parts may not be
visible from either of the coarse viewpoints. This can lead
to confusion of the matching network.

7. Conclusion
In this paper, we tackled the problem of pose estimation

for objects that exhibit rotational symmetry. We designed a
neural network that matches a real image of an object to ren-
dered depth maps of the object’s CAD model, while simul-
taneously reasoning about the rotational symmetry of the
object. Our experiments showed that reasoning about ob-
ject’s symmetries is important, and that a careful exploita-
tion of large collections of 3D CAD models leads to signif-
icant improvements for pose estimation.
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