Pose Estimation for Objects with Rotational Symmetry

Enric Corona, Kaustav Kundu, Sanja Fidler

Abstract—Pose estimation is a widely explored problem,
enabling many robotic tasks such as grasping and manipulation.
In this paper, we tackle the problem of pose estimation for
objects that exhibit rotational symmetry, which are common in
man-made and industrial environments. In particular, our aim
is to infer poses for objects not seen at training time, but for
which their 3D CAD models are available at test time. Previous
work has tackled this problem by learning to compare captured
views of real objects with the rendered views of their 3D CAD
models, by embedding them in a joint latent space using neural
networks. We show that sidestepping the issue of symmetry
in this scenario during training leads to poor performance at
test time. We propose a model that reasons about rotational
symmetry during training by having access to only a small set of
symmetry-labeled objects, whereby exploiting a large collection
of unlabeled CAD models. We demonstrate that our approach
significantly outperforms a naively trained neural network on
a new pose dataset containing images of tools and hardware.

I. INTRODUCTION

In the past few years, we have seen significant advances in
domains such as autonomous driving [12], control for flying
vehicles [21], warehouse automation popularized by the
Amazon Picking Challenge [42], and navigation in complex
environments [14]. Most of these domains rely on accurate
estimation of 3D object pose. For example, in driving,
understanding object pose helps us to perceive the traffic
flow, while in the object picking challenge knowing the pose
helps us grasp the object better.

The typical approach to pose estimation has been to train
a neural network to directly regress to object pose from the
RGB or RGB-D input [42], [15]. However, this line of work
requires a reference coordinate system for each object to be
given in training, and thus cannot handle novel objects at
test time. In many domains such as for example automated
assembly where robots are to be deployed to different ware-
houses or industrial sites, handling novel objects is crucial.
In our work, we tackle the problem of pose estimation for
objects both, seen or unseen in training time.

In such a scenario, one typically assumes to be given
a reference 3D model for each object at test time, and
the goal is to estimate the object’s pose from visual input
with reference to this model [18]. Most methods tackle this
problem by comparing the view from the scene with a set
of rendered viewpoints via either hand designed similarity
metrics [18], or learned embeddings [38], [10]. The main
idea is to embed both a real image and a rendered CAD view
into a joint embedding space, such that the true viewpoint
pair scores the highest similarity among all alternatives. Note

Enric Corona, Kaustav Kundu and Sanja Fidler are with Department of
Computer Science, University of Toronto, and the Vector Institute, S.F. is
also with NVIDIA. {ecorona, kkundu, fidler}@cs.toronto.edu

L

Y ~2 Y ~2

X ~1 X ~2 X~1

'
X ~2
Y ~2 Y ~2
Z ~6 Z ~1 Z ~ o0 Z ~1
Fig. 1. Many industrial objects such as various tools exhibit rotational

symmetries. In our work, we address pose estimation for such objects.

that this is not a trivial task, as the rendered views may look
very different from objects in real images, both because of
different background, lighting, and possible occlusion that
arise in real scenes. Furthermore, CAD models are typically
not textured/colored and thus only capture the geometry of
the objects but not their appearance.

In man-made environments, most objects such as
tools/hardware have simple shapes with diverse symmetries
(Fig. [I). One common symmetry is a rotational symmetry
which occurs when an object is equivalent under certain 3D
rotations. Such objects are problematic for the embedding-
based approaches, since multiple rendered views may look
exactly the same (or very similar), leading to ambiguities in
the standard loss functions that rely on negative examples.
Most existing work has sidestepped the issue of symmetry,
which we show has a huge impact on performance. In this
paper, we tackle the problem of training embeddings for pose
estimation by reasoning about rotational symmetries.

We propose a neural model to pose estimation by learning
to compare real views of objects to the viewpoints rendered
from their CAD models. Our model reasons about rota-
tional symmetry during training by having access to only
a small set of symmetry-labeled objects, whereby exploiting
a large collection of unlabeled CAD models crawled from
the web. We evaluate our approach on a new dataset for
pose estimation, that allows us to carefully evaluate the
effect of symmetry on performance. We show that our
approach, which infers symmetries, significantly outperforms
a naively trained neural network. Our code and data are
online: |http://www.cs.utoronto.ca/~ecorona/symmetry_

pose_estimation/index.html}

II. RELATED WORK

While many pose estimation methods exist, we restrict our
review to work most related to ours.

a) Pose Estimation: Pose estimation has been treated

as either a classification task, i.e., predicting a coarse view-

point [15], [36], or as a regression problem [8], [4], [22],

http://www.cs.utoronto.ca/~ecorona/symmetry_pose_estimation/index.html
http://www.cs.utoronto.ca/~ecorona/symmetry_pose_estimation/index.html

[39]. However, such methods inherently assume consistent
viewpoint annotation across objects in training, and cannot
infer poses for objects belonging to novel classes at test time.

Alternatively, one of the traditional approaches for pose
estimation is that of matching a given 3D model to the
image. Typical matching methods for pose estimation involve
computing multiple local feature descriptors or a global
descriptor from the input, followed by a matching procedure
with either a 3D model or a coarse set of examplar view-
points. Precise alignment to a CAD model was then posed
as an optimization problem using RANSAC, Iterative Closest
Point (ICP) [2], Particle Swarm Optimization (PSO) [9], or
variants [20], [28].

b) Learning Embeddings for Pose Estimation: Follow-
ing the recent developments of CNN-based Siamese net-
works [16], [29] for matching, CNNs have also been used
for pose estimation [38], [23], [24], [41]. CNN extracts im-
age/template representation, and uses L2 distance or cosine
similarity for matching. Typically such networks are trained
in an end to end fashion to minimize and maximize the
L2 distance between the pairs of matches and non matches,
respectively [38]. [24] sample more views around the top
predictions and iteratively refine the matches. Training such
networks require positive and negative examples. Due to
rotational symmetric objects found in industrial settings, it
is not trivial to determine the negative examples.

c) Symmetry in 3D Objects: Symmetry is a well stud-
ied property. There have been various works on detecting
reflectional/bilateral symmetry [27], [31], [32], [35], medial
axes [34], symmetric parts [26]. Please refer to [17] for a
detailed review of different types of symmetry. For pose esti-
mation, handling rotational symmetry is very important [10],
a problem that we address here.

The problem of detecting rotational symmetries has been
explored extensively [5], [11], [25], [37]. These approaches
identify similar local patches via handcrafted features. Such
patches are then grouped to predict the rotational symmetry
orders along different axes. In comparison, our approach
works in an end to end manner and is trained jointly with the
pose estimation task. [30] proposes to detect symmetries by
computing the extrema of the generalized moments of the 3D
CAD model. Since this results in a number of false positives,
a post-processing step is used to prune them. However, since
their code is not public, a head-to-head comparison is hard.
Recently [6], [7] introduced 2D rotation invariance in CNNs.
However extending these approaches to 3D rotation is not
trivial due to computational and memory overhead.

[19] introduced a dataset for pose estimation where objects
with one axis of rotational symmetry have been annotated.
However, most objects in industrial settings have multiple
axes of rotational symmetry. Approaches such as [33], [3]
use these symmetry labels to modify the output space at test
time. Since annotating rotational symmetries is hard, building
large scale datasets with symmetry labels is expensive and
time consuming. We show that with a small set of symmetry
labels, our approach can be extended to predict rotational
symmetries about multiple axes, which in turn can help to

24 € F ¥ >

(image) (CAD model) (rendered CAD views (depth maps))

Fig. 2. Our problem entails estimating the pose of the object in
the image (left) given its CAD model. We exploit rendered depth
images of the CAD model in order to determine the pose.

learn better embeddings for pose estimation.

III. OUR APPROACH

We tackle the problem of pose estimation in the presence
of rotational symmetry. In particular, we assume we are
given a test RGB image of an object unseen at training
time, as well as the object’s 3D CAD model. Our goal is
to compute the pose of the object in the image by matching
it to the rendered views of the CAD model. To be robust
to mismatches in appearance between the real image and
the textureless CAD model, we exploit rendered depth maps
instead of RGB views. Fig. |2 visualizes an example image of
an object, the corresponding 3D model, and rendered views.

Our approach follows [38] in learning a neural network
that embeds a real image and a synthetic view in the joint
semantic space. In order to perform pose estimation, we then
find the view closest to the image in this embedding space.
As typical in such scenarios, neural networks are trained
with e.g. a triplet loss, which aims to embed the matching
views closer than any of the non-matching views. However,
in order for this loss function to work well, ambiguity with
respect to rotational symmetry needs to be resolved. That is,
due to equivalence of shape under certain 3D rotations for
rotationally symmetric objects, certain rendered viewpoints
look exactly the same. If such views are used as negative
examples during training, we may introduce an ambiguity
that prevents us in learning a better model. Note that this is
not true for other symmetries such as a reflective symmetry,
since the object does not necessarily have equivalent shape
in different 3D poses. We propose to deal with this issue by
inferring reflectional symmetries of objects, and exploiting
them in designing a more robust loss function.

We first provide basic concepts of rotational symmetry
in Sec. In Sec. we propose our neural network for
joint pose and symmetry estimation, and introduce a loss
function that takes into account equivalence of certain views.
We show how to train this network by requiring only a small
set of symmetry-labeled objects, and by exploiting a large
collection of unlabeled CAD models.

Rotational Symmetry

We start by introducing notation and basic concepts.

a) Rotation Matrix: We denote a rotation of an angle
¢ around an axis 6 using a matrix Ry(¢). For example, if
the axis of rotation is the X-axis, then

1 0 0
Rx(p)=| 0 cos¢p —sing
0 sing cos¢

(b) XZ plane
Fig. 3. Order of Rotational Symmetry. An object has nth order of rotational
symmetry wrt an axis when its 3D shape is equivalent to its rotated versions
(%) ,Vi € {0,...,n — 1} across this axis. For example, the cylinder in
(a) has rotational symmetry wrt axes X, Y and Z. In (b), we show its second
order of symmetry wrt Y, as the shape repeats every 7.

Uy

(a) 3D Model

b) Order of Rotational Symmetry: We say that an object
has an n order of rotational symmetry around the axis 6,
i.e., O(0) = n, when its 3D shape is equivalent to its shape
rotated by Ry (%) ,Vi € {0,...,n — 1}.

The min value of O(#) is 1, and holds for objects non-
symmetric around axis §. The max value is oo, which
indicates that the 3D shape is equivalent when rotated by
any angle around its axis of symmetry. This symmetry is
also referred to as the revolution symmetry [3]. In Fig. 3]
we can see an example of our rotational order definition. For
a 3D model shown in Fig. [3| (a), the rotational order about
the Y axis is 2, i.e., O(Y) = 2. Thus for any viewpoint v
(cyan) in Fig. [3] (b), if we rotate it by 7 about the Y-axis to
form, v, = Ry (7)v, the 3D shapes will be equivalent (Fig.
(right)). The 3D shape in any other viewpoint (such as, v /4
or vy/z) will not be equivalent to that of v. Similarly, we
have O(Z) = oo. In our paper, we only consider the values
of rotational order to be one of {1,2,4, co}, however, our
method will not depend on this choice.

c) Equivalent Viewpoint Sets: Let us define the set of
all pairs of equivalent viewpoints as E,(Y) = {(¢,7)|v; =
Ro(m)v;}, with symmetry order o € {2,3,00}. Note that
E1(0) is a null set (object is asymmetric). In our case, we
have E»(0) C E4(0) C Ex(0) and E3(0) C Exo(0).

d) Geometric Constraints: We note that the orders of
symmetries across multiple axes are not independent. We
derive the following claim [T_}

Claim 1. If an object is not a sphere, then the following
conditions must hold:

(a) The object can have up to one axis with infinite order
rotational symmetry.

(b) If an axis 0 has infinite order rotational symmetry, then
the order of symmetry of any axis not orthogonal to 0
can only be one.

(c) If an axis 6 has infinite order rotational symmetry, then
the order of symmetry of any axis orthogonal to 6 can
be a maximum of two.

Since in our experiments, none of the objects is a perfect
sphere, we will use these constraints in Subsec.[[V-A]in order
to improve the accuracy of our symmetry predicting network.

'We give the proof in suppl. material: http://www.cs.utoronto.
ca/~ecorona/symmetry_pose_estimation/supplementary.
pdf.

Fig. 4. We place four cameras in each of the 20
vertices of a dodecahedron, yielding a total of 80
cameras, and place the CAD model in the origin.
We render the CAD model in each viewpoint and
use these for matching. We also exploit a finer
discretization into 168 views.

IV. POSE ESTIMATION

We assume we are given an image crop containing the ob-
ject which lies on a horizontal surface. Our goal is to predict
the object’s coarse pose given its 3D CAD model. Thus, we
focus on recovering only the three rotation parameters.

We first describe our discretization of the viewing sphere
of the 3D model in order to generate synthetic viewpoints for
matching. We then introduce the joint neural architecture for
pose and symmetry estimation in Sec. We introduce a
loss function that takes symmetry into account in Sec. [[V-B]
Finally, Sec. provides our training algorithm.

Discretization of the viewing sphere: Using the regular
structure of a dodecahedron, we divide the surface of the
viewing sphere into 20 equidistant points. This division
corresponds to dividing the pitch and yaw angles. At each
vertex, we have 4 roll angles, obtaining a total of 80
viewpoints. This is shown in Fig.] We also experiment
with a finer discretization, where the triangular faces of
an icosahedron are sub-divided into 4 triangles, giving an
additional vertex for each edge. This results in a total of 42
vertices and 168 viewpoints.

A. Network Architecture

The input to our neural network is an RGB image x, and
depth maps corresponding to the renderings of the CAD
model, one for each viewpoint v;. With a slight abuse of
notation we refer to a depth map corresponding to the -
th viewpoint as v;. Our network embeds both, the RGB
image and each depth map into feature vectors, g (x) and
Jaeptn (Vi), respectively, by sharing the network parameters
across different viewpoints. We then form two branches,
one to predict object pose, and another to predict the CAD
model’s orders of symmetry. The full architecture is shown
in Fig. 5] We discuss both branches next.

a) Pose Estimation: Let C(k,n,s) denote a convolu-
tional layer with kernel size k x k, n filters and a stride
of s. Let P(k,s) denote a max pooling layer of kernel size
k x k with a stride s. The network g, has the following
architecture: C'(8,32,2) — ReLU — P(2,1) — C(4,64,1) —
ReLU—P(2,1)—C(3,64,1)—ReLU—P(2,1)—FC(124)—
ReLU — FC(64)— L2_Norm. With slight abuse of notation,
we denote our image embedding with g (%), which we take
to be the final layer of this network, i.e., a 64-dimensional
unit vector. We define a similar network for ggepm, Where,
however, the input has a single channel.

We follow the typical approach [29], [13] in computing
the similarity score f(x,v;) in the joint semantic space:

S(Xa Vi) - grgb(X)ngepth(Vi) (1)
f(x,v;) = softmax; s(x,v;) 2)

http://www.cs.utoronto.ca/~ecorona/symmetry_pose_estimation/supplementary.pdf
http://www.cs.utoronto.ca/~ecorona/symmetry_pose_estimation/supplementary.pdf
http://www.cs.utoronto.ca/~ecorona/symmetry_pose_estimation/supplementary.pdf

Softmax

CNNwith 3 vy v
Bl —EE e <
X s, Vo) — — f(I,Va)
BT
X s, Viy) — — fLViy)
2 - —_—
CNN with 1
input channel X (‘/' ‘2
Xs ‘z V)
v o — %H s(VI-1.IV)
Mean pool

To compute the object’s pose, we thus take the viewpoint
v* with the highest probability v* = argmax; f(x, v;).

b) Rotational Symmetry Classification: Obtaining sym-
metry labels for CAD models is time-consuming to collect.
The annotator needs to open the model in a 3D viewer, and
carefully inspect all three major axes in order to decide on
the orders of symmetry for each. In our work, we manually
labeled a very small subset of 45 CAD models, which we
make use of here. In the next section, we show how to exploit
unlabeled large-scale CAD collections for our task.

Note that symmetry classification is performed on the ren-
derings of the CAD viewpoints, thus effectively estimating
the order of symmetry of the 3D object. We add an additional
branch on top of the depth features to perform classification
of order of symmetry for all three orthogonal axes (each
into 4 symmetry classes). In particular, we define a scoring
function for predicting symmetry as follows:

S(0(X), 0(Y), O(Z))

=2 Sunay (OO) + D Spie (0(61),0(62) 3)
0 017#0>
+ Striplet (O(X), O(Y), O(Z)) 4)

Note that our scoring function jointly reasons about rotational
symmetry across the three axes. Here, the pairwise and
triplet terms refer to the geometrically impossible order
configurations based on Claim [I| We now define how we
compute the unary term.

Unary Scoring Term. We first compute the similarity
scores between pairs of (rendered) viewpoints. We then form
simple features on top of these scores that take into account
the geometry of the symmetry prediction problem. Finally,
we use a simple Multilayer Perceptron (MLP) on top of these
features to predict the order of symmetry.

The similarity between pairs of rendered viewpoints mea-
sures whether two viewpoints are a match or not:

pij =o(w-s(vy,v;) +0b), (5)

where o, w and b are the activation function, weight and bias,
of the model respectively. One could use a MLP on top of
p to predict the order of symmetries as a classification task
based on the similarities. However, due to the limited amount
of training data for this branch, such an approach heavily
overfits. Thus, we aim to exploit the geometric nature of our
prediction task. In particular, we know that for symmetries of
order 2, every pair of opposite viewpoints (cyan and magenta

Pose estimatic

——Bx-[]-o
IY —[w] -0,
Hz —[»~]-0

Fig. 5. Overview of our model. We use a con-
volutional neural network to embed the RGB image
of an object in the scene and the rendered depth
maps of the CAD model into a common embedding
space. We then define two branches, one performing
pose estimation by comparing the image embedding
with the rendered depth embeddings, and another
branch which performs classification of the order of
symmetry of the CAD model. We show how to train
this network with very few symmetry-labeled CAD
models, by additionally exploiting a large collection
of unlabeled CAD models crawled from the web.

Symmetry predic

in Fig. [3) corresponds to a pair of equivalent views. We have
similar constraints for other orders of symmetry.

We thus form a few simple features as follows. For, 6 €
{X,Y,Z}, and o € {2,4, 00}, we perform average pooling
of p;; values for (i,7) € E,(f). Intuitively, if the object
has symmetry of order o, its corresponding pooled score
should be high. However, since eg EFy C FE, scores for
higher orders will always be higher. We thus create a simple
descriptor for each axis #. More precisely, our descriptor
m(6) is computed as follows:

1
O = gy 2 P
(i,4)EE2(0)
1
m4(0) = T= a1 o Z Pisj
Ei0)— E ’
‘ 4(0) 2(6)| (3,7)EE4(0)—E2(0)
1
() = — i
Moo (0) |Eoo(6) — E4(0)] 2 o

(i:7) € Eoc(0)—E4(0)

Since E»(0) C E4(0) C Ex (), we take the set differences.
We then use a single layer MLP with ReLU non-linearity
to get the unary scores, Synary (O(6)). These parameters are
shared across all three axes.

Since we have four order classes per axis, we have a total
of 64 combinations. Taking only the possible configurations
into account, the total number of combinations reduces to 21.
We simply enumerate these 21 configurations and choose the
highest scoring one as our symmetry order prediction.

B. Loss Function

Given B training pairs, X = {x(v},_; pina
batch, we define the loss function as the sum of the pose
loss and rotational order classification loss:

ZLpose X W +)‘Lorder(X7w)

We describe both loss functions next.
a) Pose Loss: We use the structured hinge loss:

Ll(fOSC Zmax (O m) 4 f(x)_ f(x(i)7{,(i))>

where v;-i) corresponds to the negative viewpoints, and v(*)
denotes the closest (discrete) viewpoint wrt to v(® in our
discretization of the sphere. In order to provide the network

with a knowledge of the rotational space, we impose a

rotational similarity function as the margin mgi). Intuitively,
we want to impose a higher penalty for the mistakes in poses
that are far away than those close together:

m;z) = drot(v(i)> V;Z)) - drol(v(i); ‘_’(i))

where d,o is the spherical distance between the two view-
points in the quaternion space. Other representations of
viewpoints are Euler angles, rotation matrices in the SO(3)
space and quaternions [1]. While the Euler angles suffer
from the gimbal lock [1] problem, measuring distances
between two matrices in the SO(3) space is not trivial. The
quaternion space is continuous and smooth, which makes it
easy to compute the distances between two viewpoints. The
quaternion representation, g, of a viewpoint, v is a four-
dimensional unit vector. Thus each 3D viewpoint is mapped
to two points in the quaternion hypersphere, one on each
hemisphere. We measure the difference between rotations
as the angle between the vectors defined by each pair of
points, which is defined by their dot product. Since the
quaternion hypersphere is unit normalized, this is equivalent
to the spherical distance between the points.

To restrict the spherical distance to be always positive, we
use the distance function defined as:

1 _ 2
rot (Vaavb) = 5608 ! ((2(Q\Taqvb) - 1)5

When the objects have rotational symmetries, multiple view-
points could be considered ground truth. In this case, v(¥)
corresponds to the set of equivalent ground-truth viewpoints.
Thus the margin mgz) takes the form of:

sym, (i)
J

= rénn drot(v,vg-i)) — drot(V, V)

m

The modified pose loss which takes symmetry into account
will be referred to as L7 ("),
b) Rotational Order Classification Loss: Considering

the axis as X, Y and Z, we use a weighted cross entropy:

P

0e{X,Y,Z} 0€{1,2,4,00}

10

order Qo " Yio0,0 ° IOg(plG (O)) (6)
where y;(-,-,0) is the one-hot encoding of i-th ground-
truth symmetry order around axis 6, and p}, is the predicted
probability for symmetry around axis 6. Here, «, is the
inverse frequency for order class o, and is used to balance
the labels across the training set.

C. Training Details

Here, we aim to exploit both real data as well as a large
collection of CAD models in order to train our model. We
assume we have a small subset of CAD models labeled with
symmetry, while the remaining ones are unlabeled. For the
unlabeled CAD models, we additionally render a dataset for
pose estimation, referred to as the synthetic dataset. The
details of the dataset are given in Sec. In particular, we
use the following iterative training procedure:

1) Train on the synthetic dataset with the Ly loss

2) Fine-tune on the labeled synthetic and real examples

with the ALgger loss function

Data Type Split Type Train Validation Test
Timestamp 21,966 746 2,746
Real Obiect 16,265 3,571 7,622
! (10) 3) “
Synthetic Object (552’978673) fé%?ﬁ -
TABLE 1

DATASET STATISTICS. NUMBERS REFER TO IMAGES, WHILE NUMBER IN
BRACKETS CORRESPOND TO CAD MODELS.

3) Infer symmetries of unlabeled CAD models via Eq. (3)

4) Fine-tune on the synthetic dataset with the Lpde' loss

5) Fine-tune on the real data with the Lpse loss function
Note that in step 4] we use the predictions from the network
in step 3] as our ground-truth labels.

a) Implementation details: The input depth map is
normalized across the image to lie in the range, [0, 1], with
the missing depth values being 0. The learning rate for
the CNN were set to two orders of magnitude less than
the weights for the MLP (10~2 and 10~*). We use the
Adam optimizer. Training was stopped when there was no
improvement in the validation performance for 50 iterations.

V. DATASETS

In an industrial setting, the objects can be arbitrary com-
plex and can exhibit rotational symmetries (examples are
shown in Fig. [§). Current datasets with 3D models such
as [12], [40] have objects like cars, beds, efc., which have
much simpler shapes with few symmetries. Datasets such
as [3], [19] contain industrial objects. However, these objects
have only one axis with rotational symmetry. Here, we
consider a more realistic scenario of object that can have
symmetries for multiple axes.

We introduce two datasets, one containing real images of
objects with accompanying CAD models, and a large-scale
dataset of industrial CAD models which we crawl from the
web. We describe both of these datasets next.

A. Real Images

We obtain a dataset containing images of real 3D objects
in a table-top scenario from the company Epson. This dataset
has 27,458 images containing different viewpoints of 17
different types of objects. Each CAD model is labeled with
the order of symmetry for each of the axes, while each image
is labeled with accurate 3D pose.

We propose two different splits: (a) timestamp-based:
divide images of each of the objects into training and testing,
while making sure that the images were taken at times far
apart (thus having varying appearance), (b) object-based: the
dataset is split such that the training, val and testing objects
are disjunct. We divide 17 objects into 10 train, 3 val, and 4
test objects. Dataset statistics is reported in Tab.

B. Synthetic Dataset

To augment our dataset, we exploited 6,660 CAD models
of very different objects from a hardware company ﬂ This
varied set contains very simple 3D shapes such as tubes

Zhttps://www.mcmaster.com/

https://www.mcmaster.com/

Fig. 6.

or nails to very complex forms like hydraulic bombs. We
labelled rotational symmetry for 28 objects from this dataset.
Dataset statistics is reported in Tab. [V-A] We now describe
how we render the synthetic dataset for pose estimation.

a) Scene Generation: We generate scenes of a table-top
scenario using Maya, where each scene contains a subset of
CAD models. In each scene, we import a set of objects,
placing them on top of a squared plane with a side length of
1 meter that simulates a table. We simulate large variations
in location, appearance, lighting conditions, viewpoint (as
shown in Fig. [f) as follows.

b) Location: The objects are set to a random translation
and rotation, and scaled so that the diagonal of their 3D
bounding box is smaller than 30 centimetres. We then run a
physical simulation that pushes the objects towards a stable
equilibrium. If the system does not achieve equilibrium after
a predefined amount of time we stop the simulation. In
cases when objects intersect with one another, we restart the
simulation to avoid these implausible situations.

c) Appearance: We collected a set of 45 high definition
wooden textures for the table and 21 different materials
(wood, leather and several metals) and used them for tex-
turing the objects. The textures are randomly attached to the
objects, mapping them to the whole 3D CAD model.

d) Lighting: In each simulation, we randomly set a
light point within a certain intensity range.

e) Viewpoint: For each scene we set 15 cameras in dif-
ferent positions, pointing towards the origin. Their location
is distributed on the surface of a sphere of radius p = 75em
as follows. The location along Y axis follows a normal
distribution Y ~ N(50, 10)em. For the position over the X Z
plane, instead of Cartesian coordinates, we adopt Circular
coordinates where the location is parametrized by (dy., 6,).
Here, d, ., represents the distance from the origin to the point
and is distributed as N'(y/p? —Y?2,10)cm, where 6 is the
angle around the Y axis. This procedure generates views of
a table-top scene from varying oblique angles. We also add
cameras directly above the table with X, Z € (—5,5)cm to
also include overhead views of the scene.

For our task, we crop objects with respect to their bound-
ing boxes, and use these for pose prediction. The complete
scenes help us in creating context for the object crops that
typically appear in real scenes.

Left: Rendered synthetic scenes, Right: Objects crops from the scene. We use these to train our model.

VI. EXPERIMENTAL RESULTS

We evaluate our approach on the real dataset, and ablate
the use of the CAD model collection and the synthetic
dataset. We first describe our evaluation metrics in Sec.
[A]and show quantitative and qualitative results in Sec.

and Sec. [VI-C| respectively.

A. Evaluation Metrics

a) Rotational Symmetry Classification: For rotational
symmetry classification, we report the mean of precision,
recall and the F1 scores of the order predictions across
different rotational axes (X,Y,Z) and object models.

b) Pose Estimation: For pose estimation, we report
the recall performance (R@d;4"™) for our top-k predictions.
Using the distance measure in the quaternion space, dp
(defined in Sec. [[V-B), we compute the minimum distance
of the ground truth pose wrt our top-k predictions and report
how many times this distance falls below 20° or 40°. The
choice of these values are based on the fact that the distance
between two adjacent viewpoints for N = 80 and N = 168
discretization schemes are 21.2° and 17.8°, respectively. We
also report the average spherical distance, dyy 4, Of the best
match among the top-k predictions relative to the ground
truth pose. In all our experiments, we choose top-5% of
the total possible viewpoints, i.e., for N = 80 and 160
discretization schemes, k = 4 and 8, respectively.

B. Quantitative Results

a) Rotational Symmetry Prediction: We have rotational
symmetry annotations for all 17 objects in the real dataset
and 28 objects in the synthetic dataset. We split these into
25 objects for training, 10 for validation, and 10 for test.

We show our quantitative results in Tab. [VI] The first row
shows the performance of our approach by considering order
prediction for multiple axes to be independent. In the second
row, we show that by reasoning about impossible order
configurations, the performance of our symmetry prediction
improves. At a finer discretization, we are also able to predict
O3, making the difference even more evident.

We compare our approach to two baselines. For our first
baseline, we use one iteration of ICP to align a CAD model
to its rotated version by angles 180°, 90° and 45°, to detect
orders 2, 4 and oo, respectively. When the alignment error is
smaller than a threshold (tuned on the training data), we say

Split SynSym RSym N = 80 N = 168

Type Syn Ypre(yl Sup R@20° R@40° Dot e R@20° R@40° Ao v
(in %) (in %) (in °) (in %) (in %) (in °)

62.3 81.0 225 43.0 70.1 26.2

Time v 70.2 86.3 192 2.4 882 175
stamp v 64.4 84.8 22.1 823 96.0 4.5
v v 725 883 16.6 84.8 972 133

v v v 773 92.1 12.0 82.0 96.7 142

23.6 45.4 37.9 245 422 33.6

v 29.6 55.4 34.6 18.7 54.0 36.6

Object v 24.9 582 355 317 62.3 332
v v 336 67.0 314 31.9 752 29.9

v v v 35.7 68.7 30.0 418 79.3 26.4

TABLE Il

POSE ESTIMATION PERFORMANCE WITH AN ABLATION STUDY.

Baseline

—RSym
Syn

—Syn+RSym

Baseline 3

—RSym &
Syn

—Syn+RSym

—Syn+SynSym+RSym —Syn+SynSym+RSym

=Upper bound = Upper bound

0 20 40 60 80 1C 0 20 40 60 80 100

Spherical distance Spherical distance

(a) Timestamp-based split (b) Object-based split

Fig. 7. Recall vs spherical distance
Using N =80 N =168
constraints Recall Prec. | Fl Recall | Prec. | F1
Ours: X 97.4 96.3 96.8 91.2 | 90.6 | 90.9
Ours: v/ 100.0 100.0 | 100.0 96.3 | 97.6 | 96.7
Baselines Recall Prec. F1
Baseline ICP 77.8 91.7 84.2
[37] 58.3 68.2 62.9
TABLE III

Rotational Symmetry Performance. FOR DIFFERENT CHOICES OF
DISCRETIZATION, IN, WE REPORT recall, precision AND F1 MEASURES,
AVERAGED ACROSS THE 4 SYMMETRY CLASSES. NUMBERS ARE IN % .

z X z X z X

X~ Y~n1,Z~noo X~l,Y ~2, 201X ~2Y ~1,Z~1.

X~2Y~n2,Z~noo. Xmn1,Y ~2,Z~1X ~2Y ~2,7Z ~ 2.

Fig. 9. Examples of predicted symmetry. Variability of rot. symmetry shows
in bottom-left/-right objects. These objects have higher order of symmetry
(8 and 6) than what we consider, for which our model predicts O .

that the corresponding order is true. This process is done for
each of the three axes considered independently.

For our second baseline, we use [37] which finds equiva-
lent points in the mesh. We obtain the amount of these points
that are explained by every rotational order considered and,
based on a threshold (tuned on the training data), we predict
order of symmetry for each axis. This baseline works well
when the object considered has only one axis of symmetry,
but fails to explain symmetries in more than one axis.

b) Pose Estimation: Tab. |ll] reports results for pose
estimation for different configurations. The first column
corresponds to the the choice of the dataset split, timestamp

SEEE AR
SIS R R

Fig. 8. Qualitative results for pose estimation. Green box indicates correct
viewpoint. The bottom-right shows an error case.

or object-based. The second column indicates the usage of
the large-scale CAD collection while training our network.
Third column indicates whether our symmetry prediction was
used for the (unlabeled) CAD models during training. Fourth
column indicates whether the symmetry annotations from
the real dataset were used as a supervisory signal to adjust
our training loss. For each discretization scheme, we report
results for R@d;™ (¢ € {20°,40°}) and dy; "y, metrics.

The first row for each split is a baseline which exploits
embeddings, but does not reason about symmetry (a.k.a,
previous work). We first notice that a model that uses
symmetry labels in our loss function, significantly improves
the results (first and second row for each dataset split) over
the naively trained network. This showcases that reasoning
about symmetry is important. Furthermore, exploiting the
additional large synthetic dataset outperforms the base model
which only sees the real imagery (first and third rows).
Finally, our full model that jointly reasons about symmetry
and pose significantly outperforms the rest of the settings.

In Fig.[7(a) and (b), we plot recall vs the spherical distance
between the predicted and the GT viewpoint for N = 80.
Since objects are shared across splits in the timestamp based
data, the overall results are better than the corresponding
numbers for the object-based split. However, the improve-
ment of using synthetic data and rotational symmetries has
a roughly 1.7x improvement for object-based split compared
to around 1.4x improvement for the timestamp-based split.
This shows that for generalization, reasoning about rotational
symmetry on a large dataset is essential.

Only using the synthetic objects (green plot) can be better
than using the symmetry labels for the small real dataset (red
and brown plots). However, combining rotational symmetries
with large-scale synthetic data (blue plot) gives the best
performance. Please refer to the supplementary material for
the NV = 160 discretization scheme as well.

C. Qualitative Results

We show qualitative results for real and synthetic data.
a) Symmetry Prediction: Qualitative results for sym-
metry prediction are shown in Fig. 0] One of the primary
reasons for failure is the non-alignment of viewpoints due
the discretization. Another example of failure are examples
of certain order classes that are not present in training. For
example, the object in the bottom left of Fig. D) has an order
eight symmetry which was not present in the training set.
b) Pose Estimation: Examples of results are shown
in Fig. B In particular, we show images of objects from
the real dataset in the first column, followed by the top-3
viewpoint predictions. The views indicated with a green box
correspond to the ground truth. Most of the errors are due to
the coarse discretization. If the actual pose lies in between
two neighboring viewpoints, some discriminative parts may
not be visible from either of the coarse viewpoints. This can
lead to confusion of the matching network.

VII. CONCLUSION

In this paper, we tackled the problem of pose estimation
for objects that exhibit rotational symmetry. We designed
a neural network that matches a real image of an object
to rendered depth maps of the object’s CAD model, while
simultaneously reasoning about the rotational symmetry of
the object. Our experiments showed that reasoning about
symmetries is important, and that a careful exploitation
of large unlabeled collections of CAD models leads to
significant improvements for pose estimation.

Acknowledgements: This work was supported by Epson. We thank
NVIDIA for donating GPUs, and Relu Patrascu for infrastructure support.

REFERENCES

[1] Simon L Altmann, Rotations, quaternions, and double groups, Courier
Corporation, 2005.

[2] Paul J Besl, Neil D McKay, et al., A method for registration of 3-d
shapes, IEEE T-PAMI 14 (1992), no. 2, 239-256.

[3] R. Brégier, F. Devernay, L. Leyrit, J. L. Crowley, and S.-E Siléane,
Symmetry aware evaluation of 3d object detection and pose estimation
in scenes of many parts in bulk, CVPR, 2017, pp. 2209-2218.

[4] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi,
Huimin Ma, Sanja Fidler, and Raquel Urtasun, 3d object proposals
for accurate object class detection, NIPS, 2015, pp. 424-432.

[5] Minsu Cho and Kyoung Mu Lee, Bilateral symmetry detection via
symmetry-growing., BMVC, 2009, pp. 1-11.

[6] Taco Cohen and Max Welling, Group equivariant convolutional net-
works, ICML, 2016, pp. 2990-2999.

[7]1 S. Dieleman, J. De Fauw, and K. Kavukcuoglu, Exploiting cyclic
symmetry in convolutional neural networks, arXiv:1602.02660 (2016).

[81 A. Doumanoglou, V. Balntas, R. Kouskouridas, and T.-K. Kim,
Siamese regression networks with efficient mid-level feature extraction
for 3d object pose estimation, arXiv:1607.02257 (2016).

[9] Russell Eberhart and James Kennedy, A new optimizer using particle

swarm theory, MHS, IEEE, 1995, pp. 39-43.

SM. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, and G. E

Hinton, Attend, infer, repeat: Fast scene understanding with generative

models, NIPS, 2016, pp. 3225-3233.

P. J. Flynn, 3-d object recognition with symmetric models: symmetry

extraction and encoding, T-PAMI 16 (1994), no. 8, 814-818.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics:

The kitti dataset, IJRR 32 (2013), no. 11, 1231-1237.

Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus, End-

to-end learning of deep visual representations for image retrieval,

International Journal of Computer Vision 124 (2017), no. 2, 237-254.

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
(371
[38]

[39]

[40]

[41]

[42]

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, Cogni-
tive mapping and planning for visual navigation, arXiv:1702.03920.
Saurabh Gupta, Pablo Arbelaez, Ross Girshick, and Jitendra Malik,
Aligning 3d models to rgb-d images of cluttered scenes, CVPR, 2015.
Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and
Alexander C Berg, Matchnet: Unifying feature and metric learning
for patch-based matching, CVPR, 2015, pp. 3279-3286.

Weyl Hermann, Symmetry, Princeton University Press, 1952.

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, Gradient response maps for real-time detection of
textureless objects, PAMI 34 (2012), no. 5, 876-888.

Tomas Hodan, Pavel Haluza, Stepén Obdrzalek, Jiri Matas, Manolis
Lourakis, and Xenophon Zabulis, T-less: An rgb-d dataset for 6d pose
estimation of texture-less objects, WACYV, 2017, pp. 880-888.

Daniel P Huttenlocher and Shimon Ullman, Recognizing solid objects
by alignment with an image, IICV 5§ (1990), no. 2, 195-212.

Ashish Kapoor, Chris Lovett, Debadeepta Dey, and Shital Shah,
Airsim: High-fidelity visual and physical simulation for autonomous
vehicles, Field and Service Robotics (2017), 621-635.

‘Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and
Nassir Navab, Ssd-6d: Making rgb-based 3d detection and 6d pose
estimation great again, CVPR, 2017, pp. 1521-1529.

Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and
Nassir Navab, Deep learning of local rgb-d patches for 3d object
detection and 6d pose estimation, ECCV, 2016, pp. 205-220.
Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang,
Stefan Gumbhold, and Carsten Rother, Learning analysis-by-synthesis
for 6d pose estimation in rgb-d images, ICCV, 2015, pp. 954-962.
Francois Labonte, Yerucham Shapira, and Paul Cohen, A perceptually
plausible model for global symmetry detection, ICCV, 1993.

Tom Lee, Sanja Fidler, and Sven Dickinson, Detecting curved symmet-
ric parts using a deformable disc model, ICCV, 2013, pp. 1753-1760.
Bo Li, Henry Johan, Yuxiang Ye, and Yijuan Lu, Efficient view-based
3d reflection symmetry detection, SIGGRAPH, ACM, 2014, p. 2.
Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba, Parsing IKEA
Objects: Fine Pose Estimation, ICCV (2013).

Wenjie Luo, Alexander G Schwing, and Raquel Urtasun, Efficient deep
learning for stereo matching, CVPR, 2016, pp. 5695-5703.

Aurélien Martinet, Cyril Soler, Nicolas Holzschuch, and Frangois X
Sillion, Accurate detection of symmetries in 3d shapes, ACM Trans.
on Graphics 25 (2006), no. 2, 439-464.

Niloy J Mitra, Leonidas J Guibas, and Mark Pauly, Symmetrization,
ACM Transactions on Graphics 26 (2007), no. 3, 63.

Niloy J Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan,
Symmetry in 3d geometry: Extraction and applications, Computer
Graphics Forum, vol. 32, Wiley Online Library, 2013, pp. 1-23.

M. Rad and V. Lepetit, BbS: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth, arXiv:1703.10896 (2017).

Stavros Tsogkas and Sven Dickinson, Amat: Medial axis transform
for natural images, arXiv preprint arXiv:1703.08628 (2017).

S. Tulsiani, A. Kar, Q. Huang, J. Carreira, and J. Malik, Shape and
symmetry induction for 3d objects, arXiv:1511.07845 (2015).
Shubham Tulsiani, Joao Carreira, and Jitendra Malik, Pose induction
for novel object categories, ICCV, 2015, pp. 64-72.

Hui Wang and Hui Huang, Group representation of global intrinsic
symmetries, Computer Graphics Forum (2017).

Paul Wohlhart and Vincent Lepetit, Learning descriptors for object
recognition and 3d pose estimation, CVPR, 2015, pp. 3109-3118.
Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy,
Hao Su, Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese,
Objectnet3d: A large scale database for 3d object recognition, ECCV,
Springer, 2016, pp. 160-176.

Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese, Beyond pascal: A
benchmark for 3d object detection in the wild, WACV’14, pp. 75-82.
Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox,
Posecnn: A convolutional neural network for 6d object pose estimation
in cluttered scenes, arXiv preprint arXiv:1711.00199 (2017).

A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker Jr, A. Rodriguez,
and J. Xiao, Multi-view self-supervised deep learning for 6d pose
estimation in the amazon picking challenge, ICRA, 2017.

	Introduction
	Related Work
	Our Approach
	Pose Estimation
	Network Architecture
	Loss Function
	Training Details

	Datasets
	Real Images
	Synthetic Dataset

	Experimental Results
	Evaluation Metrics
	Quantitative Results
	Qualitative Results

	Conclusion
	References

