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What is it?

• What is a constraint satisfaction problem?
• We illustrate with a couple of examples:

– The N-Queens puzzle.
– Golomb Rulers.



N-Queens
• Place N queens on an NxN chess board so 

that queen can attack any other queen.



Queen Attacks



Solution to 8-Queens



8-Queens

• There are 92 distinct solutions to the 8-
Queens problem.



How do we solve N-Queens
• Humans solve this problem by 

experimenting with different configurations. 
• They use various insights about the problem 

to explore only a small number of 
configurations before they find an answer.

• Problem is that it is unclear exactly what 
these insights are. Furthermore, people 
would find it hard to solve a 1000 Queen 
problem!



Generate and Test

• Computer are good at doing a large number 
of simple things quickly.

• So one possible solution is to systematically 
try every placement of queens until we find 
a solution.



Generate and Test…
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Problem
• For 4-Queens there are 256 different 

configurations.
• For 8-Queens there are 16,777,216 

configurations.
• For 16-Queens there are 

18,446,744,073,709,551,616 configurations.
• This would take about 12,000 years on a 

fast modern machine.
• In general we have NN configurations for N-

Queens.



Backtracking

• One thing that we can notice is that in, e.g., 
the 8-Queens problem, as soon as we place 
some of the queens we know that an entire 
additional set of configurations are invalid:



Backtracking

• Backtracking is one of the main methods for 
solving problems like N-Queens.

• But we don’t want to create an algorithm 
just for solving N-Queens!

• We need to express N-Queens as an 
instance of a general class of problems and 
then design algorithms for solving this 
general class of problems.



CSP
• We can represent the N-queens as a 

constraint satisfaction problem.
• A Constraint Satisfaction Problem consists 

of 3 components
1. A set of variables.
2. A set of values for each of the variables.
3. A set of constraints between various 

collections of variables.
We must find a value for each of the variables 

that satisfies all of the constraints.



Constraints
• A constraint is a relation between a local

collection of variables.
• The constraint restricts the values that 

these variables can simultaneously have.
• For example, all-diff(X1,X2,X3). This 

constraint says that X1, X2, and X3 must 
take on different values. 

– Say that {1,2,3} is the set of values for each 
of these variables then:
• X1=1, X2=2, X3=3 OK     X1=1,X2=1,X3=3 NO



Finding A Solution
• Although each constraint is over a local 

collection of variables, finding a global 
assignment to all of the variables that 
satisfies all of the constraints is hard:

NP-Complete.
• The solution techniques work by cleverly 

searching through the space of possible 
assignments of values to variables. 

• If each variable has d values and there are 
n variables we have dn possible 
assignments.



N-Queens as a CSP

• We need to know where to place each of the 
N queens. So we could have N variables 
each of which has as a value 1…N2. The 
values represent where on the chessboard 
we will place the i-th variable.



N-Queens as a CSP

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32, Q5 = 
34, Q6 = 44, Q7 = 54, Q8 = 59



N-Queens as a CSP
• This representation has

648 =281,474,976,710,656

Different possible assignments in the search 
space. 



N-Queens as a CSP
• However any particular problem can be 

represented as a CSP in a number of 
different ways. 

• In this case we know that we can never 
place two queens in the same column. 

• So we can configure the problem as one 
where we assign one queen to each of the 
columns, and now we need to find out only 
which row each of these queens is to placed 
in.



N-Queens as a CSP

• So we can have N variables: Q1, …, QN.
• The set of values for each of these variables 

will be {1, 2, …, N}.



N-Queens as a CSP

• Q1 = 1, Q2 = 5, Q3 = 8, Q4 = 6, Q5 = 3, Q6 
= 7, Q7 = 2, Q8 = 4



N-Queens as a CSP
• This representation has

88 =16,777,216
Different possible assignments in the search 
space. 

• Still too large to examine all of them, but a 
big improvement.



The Constraints

• The constraints are the key component in 
expressing a problem as a CSP. 

• The constraints are determined by how the 
variables and the set of values are chosen.

• Each constraint consists of
1. A set of variables it is over.
2. A specification of the sets of assignments to 

those variables that satisfy the constraint.



Constraints

• The idea is that we break the problem up 
into a set of distinct conditions each of 
which have to be satisfied for the problem 
to be solved. 

• In N-Queens:
– No queen can attack any other queen.

• Given any two queens Qi and Qj they cannot attack 
each other. 



Constraints

• Now we translate each of these individual 
conditions into a separate constraint.
– Qi cannot attack Qj (i ≠ j)

• Qi is a queen to be placed in column i, Qj is a queen 
to be placed in column j.

• The value of Qi and Qj are the rows the queens are 
to be placed in.

• Note the translation is dependent on the 
representation we chose. 



Constraints
• Queens can attack each other

1. Vertically, if they are in the same column---
this is impossible as Qi and Qj are placed in 
different columns.

2. Horizontally, if they are in the same row---we 
need the constraint Qi ≠ Qj.

3. Along a diagonal---they cannot be the same 
number of columns apart as they are rows 
apart: we need the constraint 
|i-j| ≠ |Qi-Qj|  (|.| is absolute value)



Representing the Constraints

1. Between every pair of variables (Qi,Qj) (i 
≠ j), we have a constraint Cij.

2. For each Cij, an assignment of values to 
the variables Qi = A and Qj = B, satisfies 
this constraint if and only if 

1. A ≠ B
2. |A-B| ≠ |i-j| 



Solutions

• A solution to the N-Queens problem will be 
any assignment of values to the variables 
Q1,…,QN that satisfies all of the 
constraints.

• Constraints can be over any collection of 
variables. In N-Queens we only need binary 
constraints---constraints over pairs of 
variables. 



Another Problem---Golomb
Rulers

• This problem has various practical 
applications, e.g., sensor placement in radio 
astronomy and in x-ray crystallography.

• We have a ruler of length L units. We can 
place marks along this ruler at any unit 
interval. 

• For example, if L = 7, we can place a mark 
at any of the positions 0,1, 2, 3, 4, 5, 6, 7. 
But we cannot place a mark at position 1.5.



Golomb Rulers

• We want to place M marks (m1,m2,…mM) 
on the ruler, such that all of the M(M-1)/2 
differences mi-mj are distinct.

• The objective is to find the minimal length 
ruler such that the M marks will all have 
distinct differences.



Golomb Rulers

• For example, for 5 marks, the optimal 
(shortest) ruler has length 11, and the marks 
are placed at
– 0 1 4 9 11

• e.g., 11-4 ≠ 9-1

• An optimal ruler for 23 marks has length 
372. The optimal ruler for 24 marks is not 
known.



Expressing Golomb Rulers as 
CSPs

• We can represent this problem as a CSP. 
However, the CSP will only tell us whether 
or not a ruler of a fixed length L for M 
marks exists.

• To find the optimal length we must 
successively decrease L until we find that 
the CSP has no solution.



Golomb Rulers
• Variables m1,…mM one variable for each 

mark.
• Each variable has the domain of values 

{0,1,…,L-1}. If we assign, e.g., m1 = 4, this 
means that we place mark 1 at position 4 
along the ruler.

• We have a constraint between every 
collection of 4 variables, {mi, mj, mk, mn} 
such that they form two distinct pairs: 
(mi,mj) ≠ (mk,mn). 



Golomb Rulers

• The constraint between (mi,mj,mk,mn) is 
that
– |mi-mj| ≠ |mk-mn|



Solving CSPs

• As we saw before we can improve over 
simply enumerating and testing all possible 
assignments by recognizing that a subset of 
the variables can already make a solution 
impossible.

• By expressing the problem as a CSP we 
have a systematic way of achieving this 
extra efficiency.  



Generic Backtracking
• Generic Backtracking is the simplest and 

oldest algorithm for solving CSP problems.
• The idea is to search in a tree of variable 

assignments, as we move down the tree we 
assign a value to a new variable.

• Once we have assigned all of the variables 
that participate in a constraint, we check 
that constraint.

• At any point if a constraint is violated we 
backtrack up the tree.



BT
BT(int level)

if(all variables assigned)
PRINT value of each varible;
exit(1);

V := PickUnAssignedVariable();
Assigned[V] := TRUE;
for d := each member of Domain(V)

Value[V] := d;
OK := TRUE;
for each constraint C such that V is a variable of C

and all other variables of C
are assigned. 

if C is NOT satisfied by the current assignments
OK := FALSE;

if(OK)
BT(level+1);

return;



BT

• PickUnAssignedVariable---simply returns one of 
the unassigned variables. The choice of 
which variable to assign next can be critical.

• Example: 4 Queens. 



BT Performance

Finding a single solution.
26 Time =      26.84 sec
27 Time =      32.3 sec. 
28 Time =     234.8 sec.
29 Time =     125.5 sec.



Forward Checking

• The idea of searching in a tree of variable 
assignments is very powerful. However 
generic backtracking is not a very good 
algorithm.

• (Note that although BT is much faster than 
simple enumeration all algorithms for 
solving CSPs take time that can grow 
exponentially with the size of the problem.)



Forward Checking

• Forward Checking is based on the idea of 
looking ahead in the tree to see if we have 
already made assigning a value to one of the 
unassigned variable impossible.

• It is based on the idea of pruning the 
domains of the unassigned variables.



FC
Initially CurrDomain[V] = Domain[V] for all variables V;

FC(int level) 
if(all variables assigned)

PRINT value of each varible;
exit(1);

V := PickUnAssignedVariable();
Assigned[V] := TRUE;
for d := each member of CurrDomain(V)

Value[V] := d;
for each constraint C such that

1. V is a variable of C
2. C has an unassigned variable V’.
3. All other variables of C are assigned.

DWO := FCCheck(C,V,V’,level);
if(DWO == FALSE)

FC(level+1);
Restore(level);

return;



FC
FCCheck(Constraint C, Variable V, Variable V’, int level) 

//We have just assigned a value to V.
//We need to check every value the CurrDomain(V’)
//to see if it is compatiable.

for d := each member of CurrDomain(V’)
Value[V’] := d;
if C is not satisfied by the current set of assignments

CurrDomain(V’) := CurrDomain(V’) - {d};
remember that d was pruned from the domain of V’

at level
if CurrDomain(V’) is empty 

return TRUE;
return FALSE;



FC
Restore(int level) 

for all d,V such that d was pruned from the domain of V
at level
CurrDomain(V) := CurrDomain(V) U {d};



FC

• Example 4 Queens.



FC Performance
Finding a single solution.
26 Time = 0.58 sec.
27 Time = 0.68 sec.
28 Time = 4.78 sec.
29 Time = 2.39 sec.
30 Time = 89.69 sec.
31 Time = 22.01 sec.
32 Time = 143.2 sec.
33 Time = 240.9 sec.



Variable Ordering

• Remember I said that the variable choosen
by PickUnAssignedVariable is 
critical to performance.

• If we always chose as the next variable the 
variable with smallest CurrDomain we 
get a tremendous improvement in 
performance.



FC Variable Ordering 
Performance

Finding a single solution.
33 Time  = 0.00 sec.
100 Time = 0.02 sec. 
101 Time = 4.79 sec.
102 Time = 0.01 sec.

Then 104 Queens is hard to solve.



Work in CSPs
• Algorithms that use randomization have 

been able to solve 6,000,000 Queens (but 
randomization does not always work).

• In practice it is found that the way we 
model a problem as a CSP makes a 
tremendous difference.

• Optimization---finding the best solution is 
also an area where a great deal of work is 
being done.
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