
An Introduction to MAXSAT for Planning
Researchers1

Fahiem Bacchus

Department of Computer Science
University of Toronto

fbacchus@cs.toronto.edu

1Some slides by Jessica Davies and Christian Muise
1 / 107

Outline

1. The MAXSAT Problem.
2. Example uses in planning.
3. Algorithms for solving MAXSAT.

3.1 Brief word on approximation.
3.2 Branch and Bound.
3.3 Formulation as a Mixed Integer Program (MIPS).
3.4 Solving as a sequence of SAT decision problems.
3.5 Hybrid SAT/MIPS approach.

4. Empirical Comparison (as of 2013)

2 / 107

§1. The MAXSAT Problem

• The well-known SAT problem is to determine if a boolean
formula in Conjunctive Normal Form (CNF) has a satisfying
truth assignment

• A CNF formula is a conjunction of clauses
• A clause is a disjunction of literals (variables or their

negations)
• 2 denotes the empty clause (falsified by every truth

assignment)
• A satisfying assignment assigns true to at least one literal

of every clause.

• MAXSAT is an optimization extension of SAT that asks
what is the maximum number of clauses that can be
simultaneously satisfied

3 / 107

§1. The MAXSAT Problem

Example
F = (¬x)∧ (x ∨ y)∧ (¬y)∧ (z ∨w)

F is unsatisfiable, so no truth assignment can satisfy all 4
clauses.
Truth assignment π = {x ,¬y , z,¬w} satisfies all clauses
except (¬x).
⇒ π is a solution to the MAXSAT problem F .

4 / 107

§1. The MAXSAT Problem

Example
F = (¬x)∧ (x ∨ y)∧ (¬y)∧ (z ∨w)
F is unsatisfiable, so no truth assignment can satisfy all 4
clauses.

Truth assignment π = {x ,¬y , z,¬w} satisfies all clauses
except (¬x).
⇒ π is a solution to the MAXSAT problem F .

5 / 107

§1. The MAXSAT Problem

Example
F = (¬x)∧ (x ∨ y)∧ (¬y)∧ (z ∨w)
F is unsatisfiable, so no truth assignment can satisfy all 4
clauses.
Truth assignment π = {x ,¬y , z,¬w} satisfies all clauses
except (¬x).

⇒ π is a solution to the MAXSAT problem F .

6 / 107

§1. The MAXSAT Problem

Example
F = (¬x)∧ (x ∨ y)∧ (¬y)∧ (z ∨w)
F is unsatisfiable, so no truth assignment can satisfy all 4
clauses.
Truth assignment π = {x ,¬y , z,¬w} satisfies all clauses
except (¬x).
⇒ π is a solution to the MAXSAT problem F .

7 / 107

§1. The MAXSAT Problem

• Some clauses may be more important to satisfy than
others

• This can be modeled by associating a positive cost with
each clause C that will be incurred if C is falsified

• If it is mandatory to satisfy C, its cost is ∞ and C is called
hard

• Otherwise, C is called soft

Example
F = (¬x ,∞)∧ (x ∨ y ,4)∧ (¬y ,1)∧ (z ∨w ,∞)

In F , (¬x ,∞) is a hard clause, and (x ∨ y ,4) is soft with cost
4.

8 / 107

§1. The MAXSAT Problem

• Some clauses may be more important to satisfy than
others

• This can be modeled by associating a positive cost with
each clause C that will be incurred if C is falsified

• If it is mandatory to satisfy C, its cost is ∞ and C is called
hard

• Otherwise, C is called soft

Example
F = (¬x ,∞)∧ (x ∨ y ,4)∧ (¬y ,1)∧ (z ∨w ,∞)
In F , (¬x ,∞) is a hard clause, and (x ∨ y ,4) is soft with cost
4.

9 / 107

§1. The MAXSAT Problem

• A truth assignment π has cost equal to the sum of the
costs of the clauses it falsifies

• Goal: find an optimal feasible truth assignment, i.e., a truth
assignment of minimum finite cost mincost(F)

Example
F = (¬x ,∞)∧ (x ∨ y ,4)∧ (¬y ,1)∧ (z ∨w ,∞)
π = {¬x , y , z,¬w} satisfies all clauses except (¬y ,1)
π is optimal: mincost(F)=cost(π)=1.

10 / 107

§1. Notes

• We use cost(C) to denote the cost of clause C.
• A solution must satisfy all hard clauses (else its cost will be

infinite).
• A solution also satisfies a maximum total cost of soft

clauses.
• Casting as minimization problem more closely corresponds

to how most MAXSAT solvers work.

• Many solutions might exist—typically we are only
interested in finding one, sometimes only interested in
finding out the cost of a solution.

11 / 107

§1.1. Categories of MAXSAT

• MAXSAT (ms) (standard MAXSAT): no hard clauses and all
clause have weight 1.

• Solution maximizes the number of satisfied clauses.

• Weighted MAXSAT (wms): no hard clauses.
• Partial MAXSAT (pms): have hard clauses but all soft

clauses have weight 1.
• Weighted Partial MAXSAT (wpms): the version we have

defined here (subsumes all other versions).

• Standard MAXSAT is most interesting for theory: it already
has sufficient structure for theoretical insights.

• Other versions mostly an artifact of the limitations of earlier
MAXSAT solvers.

12 / 107

§1.2. Complexity of MAXSAT

• MAXSAT is complete for the the class FPNP .
• The class of binary relations f (x , y) where given x we can

compute y in polynomial time given access to an NP oracle.
• Note the oracle can only be called a polynomial number of

times since the computation takes poly-time.
• This complexity class includes the Traveling Salesman.

• Various special cases like 2-MAXSAT (all clauses of length
two) which are easy for SAT remain hard for MAXSAT

(although 2-MAXSAT can be closely approximated using
semidefinite programming methods).

13 / 107

§1.3. Approximating MAXSAT

• There are also limits to how well we can approximate
MAXSAT.

• For standard MAXSAT (no hard clauses, weight one
clauses), there is some approximation ratio that can be
achieved by a polytime computation, but not every
approximation ratio can be achieved in polytime.

• Formally, MAXSAT is APX-complete (class of NP
optimization problems that admit a constant-factor
approximation algorithm), but has no PTAS
(polynomial-time approximation scheme) unless NP = P.

• In practice MAXSAT tends to be much harder than SAT, but
this depends on the number and structure of the soft
clauses.

14 / 107

§2. Uses of MAXSAT in Planning

• Many optimization problems can be naturally encoded in
MAXSAT

• Traveling Salesman
• MaxCut, MaxClique
• Most probable explanation problems (MPE)

• We look at some uses in planning
• Computing optimal ordering relaxations of a sequential

plan.
• Computing optimal plans under different criteria for

optimality.
• Computing A∗ heuristics for optimal planning.

15 / 107

§2.1. Optimal relaxations of a sequential plan

“Optimally Relaxing Partial-Order Plans with MAXSAT”, Muise,
McIlraith and Beck (ICAPS-12)

• The best planners compute sequential plans. But partially
ordered plans (POP) are more flexible as execution time.

• Take the found sequential plan A = 〈a1,a2, ...,an〉 and
create a POP by

• removing as many ordering constraints as possible
• removing as many actions as possible
• while preserving plan correctness

• Augment A with initial state action aI and goal action aG.
aI adds initial state facts, aG has goals as precondition.

16 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• No self loops.
• Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

17 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• No self loops.
• Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

18 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

19 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

20 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

21 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• If an ordering is used, include the actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

22 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• κ(ai ,aj)→ xi ∧ xj Ordering implies actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

23 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• κ(ai ,aj)→ xi ∧ xj Ordering implies actions.
• If we include an action, order it after (before) aI (aG).
• Enforce the transitive closure.

24 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• κ(ai ,aj)→ xi ∧ xj Ordering implies actions.
• xi → κ(aI ,ai)∧ κ(ai ,aG) Order actions with aI and aG.
• Enforce the transitive closure.

25 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• κ(ai ,aj)→ xi ∧ xj Ordering implies actions.
• xi → κ(aI ,ai)∧ κ(ai ,aG) Order actions with aI and aG.
• Enforce the transitive closure.

26 / 107

§2.1. Optimal relaxations

Action Variables and Ordering Variables

xi iff ai in final POP.
κ(ai ,aj) iff ai < aj in final POP.
Υ(ai ,aj ,p) True iff ai supports aj with fluent p

Basic Clauses
• ¬κ(a,a) No self loops.
• (xI)∧ (xG) Include aI and aG.
• κ(ai ,aj)→ xi ∧ xj Ordering implies actions.
• xi → κ(aI ,ai)∧ κ(ai ,aG) Order actions with aI and aG.
• κ(ai ,aj)∧ κ(aj ,ak)→ κ(ai ,ak) Transitive closure.

27 / 107

§2.1. Optimal relaxations

POP Viability Clauses
• If we include action aj , then every precondition p of aj must

be satisfied by at least one achiever ai .

• If ai achieves precondition p for action aj , then no deleter
of p will be allowed to occur between ai and aj .

28 / 107

§2.1. Optimal relaxations

POP Viability Clauses
• If we include action aj , then every precondition p of aj must

be satisfied by at least one achiever ai .

xj →
∧

p∈PRE(aj)

∨

ai∈adders(p)

�

κ(ai ,aj)∧Υ(ai ,aj ,p)
�

• If ai achieves precondition p for action aj , then no deleter
of p will be allowed to occur between ai and aj .

29 / 107

§2.1. Optimal relaxations

POP Viability Clauses
• If we include action aj , then every precondition p of aj must

be satisfied by at least one achiever ai .

xj →
∧

p∈PRE(aj)

∨

ai∈adders(p)

�

κ(ai ,aj)∧Υ(ai ,aj ,p)
�

• If ai achieves precondition p for action aj , then no deleter
of p will be allowed to occur between ai and aj .

Υ(ai ,aj ,p)→
�
∧

ak∈deleters(p) xk → κ(ak ,ai)∨ κ(aj ,ak)
�

30 / 107

§2.1. Optimal relaxations

Soft Clauses
1. wt(¬κ(ai ,aj)) = 1, ∀ai ,aj ∈ A
2. wt(¬xi) = 1 + |A|2, ∀a ∈ A \ {aI ,aG}

Meaning
• From #1 truth assignments that impose fewer ordering

constraints are preferred—every true κ(ai ,aj) incurs a
cost.

• From #2 truth assignments that include fewer actions are
preferred—every true xi incurs a cost.

• There are at most O(n2) ordering facts κ(ai ,aj), so we
would prefer to remove a single action even at the cost of
adding all ordering constraints.

31 / 107

§2.1. Optimal relaxations

The authors report pretty good empirical performance, showing
that MAXSAT is competitive (and very natural) for this task.

The MAXSAT solver used by the authors is now quite out of
date, so better performance could now be expected.

32 / 107

§2.2. Computing Optimal Plans.

• MAXSAT can be used to compute optimal plans under
various optimality criteria (but not all criteria are easy to
achieve).

• Start with a standard SAT encoding of the planning
problem.

33 / 107

§2.2. Computing Optimal Plans.

S0	 A1	 S1	 An	 Sn	 …	

• Each state layer i has time indexed fluent propositions—pi
is true when fluent p is true at time step i of the plan.

• Each action layer has time indexed action propositions—ai
is true action when a is executed at time step i of the plan.

34 / 107

§2.2. Computing Optimal Plans.

S0	 A1	 S1	 An	 Sn	 …	
Various SAT clauses are added to relate these propositions.

• Fluents true at step i correspond to the effect and
non-effects of the actions executed at step i .

• Actions at step i are only executed if their preconditions
hold at state layer i − 1

• The goal fluents are true at the final state layer.
• Different conditions C on which actions can be executed

together at step i .
35 / 107

§2.2. Computing Optimal Plans.

• Typically SAT-planners grow the number of steps of this
structure until the formula is satisfiable—the setting of the
action variables in the satisfying model is the plan.

• By incrementing the number of steps SAT-planners can find
a “step” optimal plan.

• Unfortunately, this might not mean much.

36 / 107

§2.2. Computing Optimal Plans.

• If we restrict the encoding to allow only one action per
step, then the optimal step plan will minimize the number of
actions.

• This does not help much if actions have varying costs.
• Other problem is that the size of the SAT encoding grows

with the number of layers. The restriction to sequential
plans means many more layers.

• Smaller encodings are derived by techniques to maximize
the number of allowed actions per step (parallel actions)

• Minimum number of parallel steps does not mean
minimizing number of actions.

• If actions have different durations it does not minimize
makespan either.

37 / 107

§2.2. Computing Optimal Plans.

• Add to the SAT encoding the soft clauses

{(¬ai) | a ∈ Actions∧ i ∈ [1, . . .n]}

with
cost(‘(¬ai)‘) = cost(a)

• Let C be the condition on simultaneous actions at each
step. C might be “allow zero or one”, “allow zero or more
graphplan non-conflicting actions” etc.

• The soft clauses give a MAXSAT problem that computes a
plan with minimal action cost among those plans that
have n steps of type C.

• The true optimal (lowest cost) plan might require n + 1
C-steps!

38 / 107

§2.2. Computing Optimal Plans.

Options:
• Find a number of C-steps n that you can prove is larger

than the number C-steps of any optimal plan, use this value
of n and solve the MAXSAT problem.

• E.g., if C is “zero or one” (sequential plans), then the cost of
any satisfying plan divided by the cost of the minimum cost
action provides such a bound n.

• With highly varied action costs this bound can be very
large–yields a very large MAXSAT problem that might be
impossible to solve.

• Be satisfied by C-step optimal plans for a fixed n.

39 / 107

§2.2. Computing Optimal Plans.

Another approach was suggested in “Partial Weighted MaxSAT
for Optimal Planning”, Robinson, Gretton, Pham, and Sattar
(PRICAI-10)

• Their idea is to have two MAXSAT encodings:
1. n graphplan parallel steps.
2. #1 along with an arbitrary step delete relaxed suffix.

• If both encodings produce an identical cost plan encoding
#1 gives an true cost optimal plan.

40 / 107

§2.2. Computing Optimal Plans.

• Intuitively for fixed n encoding #1 provides an upper bound
on the optimal cost plan, while encoding #2 provides a
lower bound (it is cheaper due to the delete relaxed phase).

• However, the #2 might give a weak lower bound by
pushing actions with expensive deletes into the delete
relaxed phase.

41 / 107

§2.3. Computing A∗ heuristics

• h+ the cost of an optimal delete relaxed plan is known to
be a very good admissible heuristic for A∗.

• But computing h+ is hard.
• We can compute h+ using MAXSAT.

• A simple way is to build a layered SAT encoding ignoring
delete effects, then solve this optimally as described above.

• This can yield a large MAXSAT problem that is expensive to
solve–not conducive for use inside of an A∗ search.

• Might work well for delete-free optimal planning.

42 / 107

§2.3. Computing A∗ heuristics

“MAXSAT Heuristics for Cost Optimal Planning”, Zhang, and
Bacchus (AAAI-2012) suggests an approximate MAXSAT

encoding.

• Ordering constraints between the relaxed actions are
ignored, this yields a much smaller MAXSAT encoding.

• The optimal solution is a lower bound on h+.
• A constraint generation approach can be used to

incrementally account for the ordering constraints. After a
finite number of additional constraints are added the
encoding will compute h+ exactly.

• Works fairly well, but LM-Cut already gets very close to h+,
so the real value of this approach probably lies in
computing heuristics more powerful than h+.

43 / 107

§2.4. Optimal planning with MAXSAT

Possible ways forward

• Find better ways to bound the number of C-steps needed
to admit an optimal plan so as to obtain smaller and easier
to solve MAXSAT encodings.

• Find ways to compute improved heuristics and deadend
detection using MAXSAT and SAT to augment A∗.

• This would lever the constant improvement in MAXSAT

solvers.

44 / 107

§3. Algorithms for Solving MAXSAT

• The main focus will be on Exact Algorithms.
• First a few words about Approximations.

45 / 107

§3.1. Approximating MAXSAT

• Important theoretical work has been done on
approximation. Focused on standard MAXSAT (unit weights
and no hard clauses). For 2-MAXSAT very good
approximations can be produced using semi-definite
programming relaxations.

• Modifications of SAT local search methods have been
used. Not much recent work.

• Often the hard clauses for MAXSAT are quite structured,
and local search methods have a difficult time satisfying
the hard clauses producing solutions of infinite cost.

• Linear relaxations might work but have not been much
used.

46 / 107

§3.2. Branch and Bound

• Backtracking search through the space of partial truth
assignments

• Find initial upper bound (UB) on mincost(F) (local search
or some satisfying assignment to the hard clauses)

• Update the UB when a better complete assignment is
found

• Relies on a lower bound function to prune the search
space

47 / 107

§3.2. Branch and Bound

v3

n

mincost(n)

¬v2

F
¬v1

• Let mincost(n) be the minimum
achievable cost under node n

• We can backtrack from n only if we know
mincost(n) ≥ UB

• Our goal: calculate a lower bound s.t.
LB ≤ mincost(n) and LB ≥ UB

48 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...

Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.
Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.
Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

49 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...
Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.
Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.
Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

50 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...
Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.

Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.
Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

51 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...
Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.
Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.
Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

52 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...
Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.
Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.

Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

53 / 107

§3.2. Lower Bounds

Example
F = ...∧ (x ,2)...∧ (¬x ,3)...
Ignoring clause costs, κ = {(x ,2)∧ (¬x ,3)} is inconsistent.

Let κ′ = {(2,2)∧ (¬x ,1)}.
Then κ′ is MAXSAT-equivalent to κ: the cost of each truth
assignment is preserved.

Let F ′ = F − κ+ κ′.
Then F ′ is MAXSAT-equivalent to F , and the cost of 2 has been
incremented by 2—a lower bound.

54 / 107

§3.2. Lower Bounds

1. Detect an inconsistent subset κ of the current formula
• e.g. κ = {(x ,2)∧ (¬x ,3)}

2. Apply sound transformation rules to the clauses in κ that
result in an increment to the cost of the empty clause 2

• e.g. κ replaced by κ′ = {(2,2)∧ (¬x ,1)}
• The cost of 2 is a lower bound

3. Repeat 1 and 2 until no further increment to the LB is
possible

55 / 107

§3.2. Detecting Inconsistent Subformulas

Treat the soft clauses as if they were hard and then:
• use Unit Propagation (UP) to efficiently detect κ: find and

instantiate literals appearing in unit clauses until an empty
clause is generated

• If no unit clauses exist, use Failed Literal Detection (FLD)
• UP and FLD are implemented using the watched literals

data structure
• Finding inconsistent subformulas is very fast

56 / 107

§3.2. Transforming the Formula

• Various patterns of formula sets that can be transformed
have been identified.

• The transformations are mostly (all?) instances of
sequences of applications of the MAXRES rule

• MAXRES is a sound and complete inference rule for
MAXSAT [“Resolution for Max-Sat” by Bonet, Levi, and
Manya (Artificial Intelligence 2007]

57 / 107

§3.2. MAXRES

• MAXRES is a rule of inference that like ordinary resolution
takes as input two clauses and produces new clauses.

• Unlike resolution MAXRES (a) removes the input clauses
and (b) produces multiple new clauses.

58 / 107

§3.2. MAXRES

MAXRES [(x ,a1, . . . ,as,w1), (¬x ,b1, . . . ,bt ,w2)] =

(a1, . . . ,as,b1, . . . ,bt ,min(w1,w2)) Regular Resolvant
(x ,a1, . . . ,as,w1 −min(w1,w2)) Cost Reduced Input
(¬x ,b1, . . . ,bt ,w2 −min(w1,w2)) One will vanish
(x ,a1, . . . ,as,¬b1,min(w1,w2)) Compensation Clauses
(x ,a1, . . . ,as,b1,¬b2,min(w1,w2)) . . .
(x ,a1, . . . ,as,b1, . . . ,bt−1,¬bt ,min(w1,w2)) . . .
(¬x ,b1, . . . ,bt ,¬a1,min(w1,w2)) . . .
(¬x ,b1, . . . ,bt ,a1,¬a2,min(w1,w2)) . . .
(¬x ,b1, . . . ,bt ,a1, . . . ,as−1,¬as,min(w1,w2)) . . .

59 / 107

§3.2. MAXRES

• MAXRES preserves the cost of every truth assignment—not
difficult to prove—let π be an arbitrary truth assignment
and consider the three cases

1. π falsifies only (x ,a1, . . . ,as)
2. π falsifies only (¬x ,b1, . . . ,bt)
3. π falsifies neither inputs (¬x ,b1, . . . ,bt).

• Bonet et al. also give a systematic procedure where by
MAXRES can derive the empty clause (2,Opt) with weight
Opt equal to the optimal cost.

60 / 107

§3.2. Lower Bounds using MAXRES

• Advantages
• Transformations allow the lower bound to be incremental as

search moves down the branch to descendent nodes
• Disadvantages

• Transformations may not pay off: the size and structure of
the formula can be adversely effected

• Therefore in practice transformations are restricted to
simple cases on short clauses

• Many easily detected inconsistencies will not be captured
by any simple transformation

• All work is lost upon backtrack

• Solvers that use such lower bounds include MiniMaxSat
[Heras et al. 2008], MaxSatzc [Li et al. 2010].

61 / 107

§3.2. Lower Bounds using Hitting Set

FC ic

2 {(x ,2), (¬x ,4)}

(t) {(¬x ,4), (¬y , x ,5), (y , t ,10)}

(x ,¬z) {(y ,¬z,1), (¬y , x ,5)}

mincost(n) ≥ 4 + 1 = 5

• FC is a set of (possibly
learnt) clauses falsified
at the current node n

• ic(C) is a set of soft
clauses in the input
formula such that C can
be derived from
ic(C)∧ hard(F)

• The cost of the Min
Hitting Set of
{ic(C) : C ∈ FC} is an
LB [Davies et al. 2010]

62 / 107

§3.2. Lower Bounds using Hitting Set

• The learnt clauses in FC can be derived using techniques
from SAT solving

• Solving the Min Hitting Set problem at each node is
expensive: use heuristics or linear relaxation to lower
bound the optimum cost

• Advantages
• Captures all inconsistencies detected via UP or FLD

63 / 107

§3.3. Solving with a MIPs Solver

• Optimization problems have been studied for decades in
the field of operations research (OR).

• In OR the most commonly used tool for solving
optimization problems are state-of-the-art Mixed Integer
Program Solvers, like IBM’s CPLEX.

• These solvers solve problems with linear constraints and
objective function where some variables are integers.

• CPLEX is an extremely effective and successful solver, so
it is natural to consider using this tool for MAXSAT as well.

64 / 107

§3.3. Solving with a MIPs Solver

• To every soft clause Ci add a new “blocking” variable bi .

(x ,¬y , z,¬w)⇒ (x ,¬y , z,¬w ,b1)

• Convert every augmented clause into a linear constraint:

x + (1− y) + z + (1−w) + bi ≥ 1

• Each variable is integer in the range [0− 1].
• Finally add the objective function

minimize
∑

i

bi ∗ cost(Ci)

65 / 107

§3.3. Solving with a MIPs Solver

• MIPs solvers use Branch and Cut to solve.
• Compute a series of linear relaxations and cuts (new linear

constraints that cut off non-integral solutions).
• Sometimes branch on a bound for an integer variable.

• CPLEX uses lots of other techniques, and it is available for
free use to academics.

• For standard optimization problems, like minimum hitting
sets (set cover) it is extremely effective.

• As we will see it is quite effective on MAXSAT as well.

66 / 107

§3.4. Solving MAXSAT by a Sequence of SAT
Instances

• Each SAT instance in the sequence encodes a MAXSAT

Decision Problem “Is there a truth assignment of cost at
most k?”, then k is varied

• Modern algorithms use information obtained from the SAT

solver at each stage for the next stage.

67 / 107

§3.4. Sequence of SAT Instances

Simplest version (Een & Sorensson, 2006, MiniSat+). Works
only for unit weights:

1. Input MAXSAT CNF Φ

2. Add blocking variable bi to every soft clause Ci ∈ Φ

3. Set k = 0.
4. If SAT(Φ ∪CNF (

∑

bi = k)) return k
5. Else k = k + 1 and repeat.

68 / 107

§3.4. Sequence of SAT Instances

• The function CNF converts a linear constraint over
propositional variables into a set of hard clauses.

• By setting bi true we “block” or remove soft clause Ci—it
longer constrains the problem.

• The theory tests if we can satisfy all of the remaining
clauses by removing any set of k soft clauses.

69 / 107

§3.4. Sequence of SAT Instances

• We can also impose
∑

bi < k , starting with large k and
decreasing until we transition from SAT to UNSAT.

• sat4j (Le Berre 2006) uses the large to small k approach.
But every time the formula is SAT we can reduce k to be
the actual number of soft clauses falsified (must be less
than k).

• Binary search on k can also be used.

70 / 107

Pseudo Boolean Constraints

• General linear constraints on Boolean variables are called
pseudo boolean constraints.

• There are many techniques for converting pseudo boolean
constraints into CNF: using adding circuits, sorting
networks, BDDs.

• The minisat+ solver implements a number of conversion
methods (and its source code is available).
minisat.se.

• Carsten Sinz also has a implementation of his technique
available.
http://www.carstensinz.de/software.html

71 / 107

minisat.se
http://www.carstensinz.de/software.html

§3.4. Sequence of SAT Instances

The simple version does not use any information returned by
the SAT solver. SAT solvers can extract Unsat Cores.

• An Unsat Core C is a subset the clauses that is
unsatisfiable: at least one clause from C must be falsified
by any truth assignment

• Hard clauses must be satisfied so can remove them from
the core.

• We can also minimize the unsat core using additional calls
to the SAT solver to obtain a Minimal Unsatisfiable Set
(MUS).

• This leads to the Fu & Malik algorithm (SAT 2005).

72 / 107

§3.4. Fu & Malik

1. Input MAXSAT CNF Φ

2. k = 0
3. While true

3.1 (κ,SAT ?) = SAT(Φ)
3.2 If SAT ? return k .
3.3 Else Φ =

3.3.1 Add new blocking variable to every C ∈ κ.
3.3.2 Add CNF (

∑

new b-variables b = 1)

• We know that at least one soft clause in κ must be
falsified: this gives the initial linear constraint. This
constraint is over fewer variables than the naive approach.

• At each subsequent step κ is generated even when the
previous cores are blocked

73 / 107

§3.4. Fu & Malik

• Multiple blocking variables can accumulate in a single soft
clause—one is added every time the clause appears in a
new core.

• This leads to redundant ways of blocking the same clause
and an explosion in the search space.

• Also can’t deal with weighted clauses.

74 / 107

§3.4. Weighted Clauses

• Things get more complex with weighted clauses. We
briefly describe two alternative algorithms WPM1 and
briefly WPM2.

• These are described more detail in “SAT-based MAXSAT

Algorithms”, Ansótegui, Bonet, Levy (AIJ 2013)

75 / 107

§3.4. WPM1

1. Input MAXSAT CNF Φ

2. mincost = 0
3. While true

3.1 (κ,SAT ?) = SAT(Φ)
3.2 If SAT ? return k .
3.3 Else

wmin = minimum cost of any clause in κ.
mincost = mincost + wmin
For each soft clause Ci ∈ κ we update Φ

3.3.1 Replace Ci by the two new copies C1
i and C2

i
3.3.2 C1

i has a reduced cost cost(Ci)−wmin

3.3.3 C2
i has a new b-variable bκi and cost(C2

i) = wmin

Add hard clauses CNF
∑

bκi = 1 to Φ.

76 / 107

§3.4. WPM1

• We know that we have to falsify some soft clause in κ. The
minimum cost we have to incur is wmin.

• The new linear constraint says that at least one of the C2
i

clauses must be blocked. All have cost wmin. So mincost
must be increased by wmin.

• If we incur wmin we still have left over weight in Ci when
cost(Ci) > wmin. This is captured in the C1

i clauses.
(These clauses can generate further cores)

• Can add multiple b-variables to a clause like Fu & Malik

77 / 107

§3.4. WPM2

• Initially add a blocking variable bi to each soft clause Ci .
• These clauses are never duplicated or changed (no further

b-variables will be added).
• Maintains disjoint sets of cores—the cores are grouped

into sets where the cores in each set share no soft clauses
with the cores in another set.

78 / 107

§3.4. WPM2

• Instead, it maintains a much more complex set of
pseudo-boolean constraints over each set of cores. These
constraints are over the b-variables of the clauses in these
cores.

1. Maintains a lower bound on the b-variables in each
discovered core—to ensure that all already discovered
cores are blocked in subsequent iterations.

2. Also maintains an upper bound on these b-variables—to
insure that a minimum weight of soft clauses is blocked in
each SAT test.

• The new core might span more than one disjoint set—then
these sets have to be unioned.

• The new core causes an update to the pseudo-boolean
constraints.

79 / 107

§3.4. WPM2

Example
cost(C1) = 10, cost(C2) = 4, cost(C3) = 8, cost(C4) = 2.

1. κ1 = {C1,C2}: Add 10b1 + 4b2 ≥ 4 and 10b1 + 4b2 ≤ 4.
2. κ2 = {C3,C4}: Add 8b3 + 2b4 ≥ 2 and 8b3 + 2b4 ≤ 2.
3. κ3 = {C1,C2,C3,C4}.

3.1 Previously {{κ1},{κ2}} were the disjoint sets of cores.
Now the disjoint sets become {{κ1, κ2, κ3}}.

3.2 This core is generated even though we have allowed cost 4
from κ1 and cost 2 from κ2

10b1 + 4b2 + 8b3 + 2b4 ≥ 6 + 1

But from 10b1 + 4b2 ≥ 4 and 8b3 + 2b4 ≥ 2 we can infer

10b1 + 4b2 + 8b3 + 2b4 ≥ 12

80 / 107

§3.4. WPM2

• Computing the greatest new lower bound is a subset sum
problem (NP-Hard but in practice not a bottle neck).

• The two upper bounds 10b1 + 4b2 ≤ 4 and 8b3 + 2b4 ≤ 2
are then replaced by 10b1 + 4b2 + 8b3 + 2b4 ≤ 12

81 / 107

§3.4 Sequence of SAT Instances

• In WPM1 the theory can explode due to duplicating clauses.
• In WPM2 the theory remains small, but the linear

constraints are much more complex (they have non-unit
coefficients). As disjoint sets of cores become unioned,
these constraints also become large.

• SAT is not good at arithmetical reasoning.

• BINCD (“Core-guided binary search algorithms for
maximum satisfiability,” Heras, Morgado, Marques-Silva
(AAAI 11)) extends WPM2 by doing binary search over the
cost of each disjoint set of cores rather than strictly
incrementing the lower bound.

82 / 107

§3.5 Hybrid SAT/MIPS approach

The last approach for solving MAXSAT we present is the hybrid
approach MAXHS.
“Solving MAXSAT by Solving a Sequence of Simpler SAT
Instances”, Davies and Bacchus (CP-2011).

“Solving MAXSAT by Decoupling Optimization and
Satisfaction”, Davies PhD thesis (2013)

Observation (1)
Given any collection of cores, K, and a truth assignment π s.t.
π |= hard(F), let hs(π) be the set of clauses falsified by π.
Then hs(π) is a hitting set of K, i.e.

∀κ ∈ K : hs(π) ∩ κ 6= ∅

83 / 107

§3.5 Hybrid SAT/MIPS approach

Example

K

κ1 = {(x ,1), (¬x ,1)}
κ2 = {(y ,1), (¬y ∨¬x ,1), (x ,1)}
κ3 = {(a,1), (¬a∨ b,1), (¬b∨¬a,1)}

• κ1, κ2, and κ3 are cores

84 / 107

§3.5 Hybrid SAT/MIPS approach

Example

K

κ1 = {(x ,1), (¬x ,1)}
κ2 = {(y ,1), (¬y ∨¬x ,1), (x ,1)}
κ3 = {(a,1), (¬a∨ b,1), (¬b∨¬a,1)}

• κ1, κ2, and κ3 are cores
• π = {x , y ,a,b, c} falsifies (¬x ,1) ∈ κ1, (¬y ∨¬x ,1)∈ κ2

and (¬b∨¬a,1)∈ κ3

• the set of clauses falsified by π is a hitting set for K

85 / 107

§3.5 Hybrid SAT/MIPS approach

Definition
A Minimum Cost Hitting Set (MCHS) of a collection of cores
K is a hitting set for K such that all other hitting sets have
greater or equal cost.

• The cost of a set of clauses S is the sum of the costs of the
clauses it contains: cost(S) =

∑

C∈S cost(C).
• The cost of a truth assignment π is the cost of the set of

clauses it falsifies: cost(π).

86 / 107

§3.5 Hybrid SAT/MIPS approach

Example

K

κ1 = {(x ,1), (¬x ,1)}
κ2 = {(y ,1), (¬y ∨¬x ,1), (x ,1)}
κ3 = {(a,1), (¬a∨ b,1), (¬b∨¬a,1)}

• hsmin = {(x ,1), (¬a∨ b,1)} is a MCHS of K
• cost(MCHS(K)) = 2

87 / 107

§3.5 Hybrid SAT/MIPS approach

Theorem
If K is any collection of cores of the MAXSAT problem F , and
π |= F \MCHS(K)

then π is an optimal truth assignment for F .

88 / 107

§3.5 Hybrid SAT/MIPS approach

1. Input MAXSAT CNF F
2. K = {}
3. While true

3.1 hs = MCHS(K)
3.2 (κ,SAT ?) = SAT(F \ hs)
3.3 If SAT ? return cost(hs).
3.4 Else K = K ∪ {κ}.

89 / 107

§3.5 Hybrid SAT/MIPS approach

• We use CPLEX to compute MCHS(K).
• No pseudo-boolean constraints are added to the SAT

instance, all numeric reasoning with the weights is done in
CPLEX

• The SAT instances are easier than the input F—always
remove clauses from F .

• The simple theorem proves correctness
• The approach is closely related to Karp’s idea of implicit

hitting set problems, and can also be viewed as being a
logic based Benders decomposition for MAXSAT (Hooker).

90 / 107

§3.5 Hybrid SAT/MIPS approach

(x ,1) (¬x ,1) (x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

• What is mincost(F)?

91 / 107

§3.5 Hybrid SAT/MIPS approach

κ1

(x ,1) (¬x ,1) (x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

• SAT-Solver(F) returns (UNSAT, κ1)

92 / 107

§3.5 Hybrid SAT/MIPS approach

(x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

κ1

(¬x ,1)(x ,1)

• MCHS({κ1}) = 1

93 / 107

§3.5 Hybrid SAT/MIPS approach

(x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)(¬x ,1)

κ2

(x ,1)

• SAT-Solver(F \ {(x ,1)}) returns (UNSAT, κ2)

94 / 107

§3.5 Hybrid SAT/MIPS approach

(¬x ,1) (x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

κ1 κ2

(x ,1)

• MCHS({κ1, κ2}) = 1

95 / 107

§3.5 Hybrid SAT/MIPS approach

κ3

(x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)(¬x ,1)(x ,1)

• SAT-Solver(F \ {(¬x ,1)}) returns (UNSAT, κ3)

96 / 107

§3.5 Hybrid SAT/MIPS approach

(x ∨ y ,1) (¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

κ1 κ2

(¬x ,1)

κ3

(x ,1)

• MCHS({κ1, κ2, κ3}) = 2

97 / 107

§3.5 Hybrid SAT/MIPS approach

κ4

(¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)(¬x ,1) (x ∨ y ,1)(x ,1)

• SAT-Solver(F \ {(¬x ,1), (x ∨ y ,1)}) returns (UNSAT, κ4)

98 / 107

§3.5 Hybrid SAT/MIPS approach

(¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)

κ1 κ2 κ3

(x ∨ y ,1)

κ4

(¬x ,1)(x ,1)

• MCHS({κ1, κ2, κ3, κ4}) = 2

99 / 107

§3.5 Hybrid SAT/MIPS approach

(¬y ,1) (¬x ∨ z,1) (¬z ∨ y ,1)(x ∨ y ,1)(¬x ,1)(x ,1)

• SAT-Solver(F \ {(x ,1), (x ∨ y ,1)}) returns (SAT, π) where
π = {¬x ,¬y ,¬z} is a solution

• Theorem⇒ π is an optimal truth assignment for F

100 / 107

§3.5 Behaviour of MAXHS

• MAXHS produces a lower bound on mincost(F) at every
iteration (i.e., cost(MCHS(K)))

• The lower bound may plateau (i.e., not increase) even
though K is being augmented by more cores

• The SAT solver must refute the formula F \ hs at each
iteration

• The MIP solver must find the MCHS of K at each iteration
• Therefore, there are three potential sources of exponential

runtime:
1. The SAT solving time
2. The MIP solving time
3. The number of iterations (i.e., the number of cores

required). In the worst case K must contain an exponential
number of cores.

101 / 107

§3.5 Improving MAXHS

• The hitting set problem has additional structure.
• If C1 = (x , y ,3) and C2 = (¬x , z,10), C1 and C2 cannot

both be falsified by any truth assignment.
• The hard clauses might imply that any truth assignment

falsifying C1 must also falsify C2, etc.
• Hittings sets of the cores that violate logical conditions like

cannot be optimal solutions.

To address this we can use the SAT solver to derive
additional constraints on the hitting set problem and give
these constraints to CPLEX.

• Now CPLEX is no longer solving a pure hitting set problem.

102 / 107

§3.5 Improving MAXHS

• CPLEX is powerful but expensive. It pays to call it fewer
times but with harder problems each time.

• After adding a new core to K, instead of computing a
optimal hitting set of K we compute a greedy or incremental
hitting set hs−.

• We test F \ hs− to see if it is SAT.
1. If SAT we now have to compute an optimal hitting set of K.

For termination to be correct we need an optimal hitting set.
2. If UNSAT we have a new core we can add to K without

having to call CPLEX.
• As a result many cores are added to K before each new

call to CPLEX.

103 / 107

§4. Empirical Comparison (as of 2013)

• There is an annual MAXSAT evaluation but the results are
not so useful due to machine limitations (the experiments
were run on machines with only 500MB RAM).

• Davies in her Ph.D work ran experiments on all 4502
Crafted and Industrial instances from the 2006-2012
MAXSAT Evaluations, an include problems from a diversity
of applications

• Solvers tested
• Branch and Bound solvers: akmaxsat, minimaxsat
• Core-based solvers: wpm1, wpm2, sat4j, bincd, wbo
• MIP solver: CPLEX 12.2
• MAXHS (various versions)

• The data presented here show the number of problems
solved under resource limits of 1200 CPU seconds and
2.5GB or RAM.

104 / 107

§4. Empirical Performance

MaxHS-eval13
MaxHS+
CPLEX
minimaxsat
bincd
wpm1
wpm2v2
MaxHS-Orig
wpm2v1
wbo
akmaxsat
sat4j

Ti
m

e
(s

)

0

250

500

750

1000

1250

Number of Instances Solved
1500 2000 2500 3000 3500 4000

105 / 107

§4. Empirical Performance

MAXHS MAXHS MAXHS MAXHS
2011 seed nonopt nonopt

Category (#) mini bincd cplex seed
Crafted (1960) 1493 855 1470 847 1092 1137 1374

Industrial (2542) 1637 2251 1779 2149 2165 2160 2224
Total (4502) 3130 3106 3249 2996 3257 3297 3598

106 / 107

§5. Conclusions

• There are a wide variety of applications of MAXSAT in
planning.

• Planning is based on a logical representation.
• Typically the modifications to SAT based encodings to

obtain MAXSAT encodings are very natural.

• MAXSAT solvers continue to improve and are most likely to
be more effective than ad-hoc solutions.

107 / 107

