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Abstract

This document provides some technical details related to the learning problem pre-
sented in the paper [1]. In particular, we review the concept of conciseness, and
provide the proof to the Proposition 1 in [1l], which establishes the fact that our
learning problem is concise, and finally give the detailed derivation of the simpli-
fied optimization problem given in Eq.(7).

1 The Learning Problem

The problem of learning the optimal combination weights of scores was formulated in section 4.5.1
of the paper. For self-containedness, we briefly revisit the problem below.
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minimize §||W|| + Czljgl )
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Here, y(*) is the ground-truth matching for the i-th instance, ¢, (y) is a vector of matching scores for
y, and A(y, y®) the loss function. In particular, ¢, (y) can be expressed as

6:(y) =6 (y), .o )], with ¢ () =Y Ly, )

We use the Hamming loss, as

l(Y;y(i)) = Zl(yuv 7£ yq(jg) = a(l) - Zyuqu(jgﬂ 3
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where (¥ = Zu sgf ) is the total number of matching edges, which is a constant.

The domain Y(*) depends on particular instance, and can be written as

y(”={yr D v =) g <1, Oéyuvéc&?}- )

2 The Notion of Conciseness
The learning problem given by Eq.(I) can be re-written as
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This model is called concise if there exists a function fz that is concave in g and a convex set 2/ (?) for
each ¢ such that

max (w7 g,(y) + Alyiy™)) = max fi(w, ) (6)
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Next, we review how conciseness can be exploited to simplify the learning problem. Without losing
generality, we express i € () using a convex function g; as

gi(p) <0. M
Then the Lagrangian for f;(w, p) is
Li(p, A\;w) = fi(w, ) — ATgi(u) with X > 0. (8)

This provides an upper bound for fi(w, ) within U (1), By strong duality (which can be easily veri-
fied), we have:

= Li(p, A;
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Suppose max,, ¢4y Li(p, A, v; W) has a Lagrangian dual given by

pi(A;w) s.t. (A w) <O0. (10)
Then, we have
max fiw,p)=  min_ pi(Asw) an
pneU® 7 (Aw)<0

For conciseness, the condition A > 0 is merged into 7,(A; w) < 0. Incorporating this into Eq.(3)
results in

A |
minimize §||W||2+O El & (12)
s.t. wT(ﬁi(y(i)) > min  pi(Aw)—=¢&, >0, Vi=1,...,N.
n® (Xw)<0

Combining the optimization over w and that over A, we finally gets the following problem:
o1 2
minimize §Hw|\ —|—CZ§Z- (13)

s.t. W¢( )>Pz<)\VW) &, Vi=1,...,N,
n,(A\v;w) <0, &>0, Vi=1,...,N.

3 Proof of Proposition 1
Proposition 1 in the paper establishes the fact that our learning problem is concise. Below, we prove
this proposition.

With Eq.(2) and Eq.(3)), we have

W', (y) + Aly;y?) Zwk Zf&;k>yuv - (a@ - Zyuvy%)
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— a4 (F(i)w _ y(z‘)) y. (14)



Here, each F() is an mn-by-K matrix, where each row corresponding to a particular matching pair
(u,v) and each column corresponds to a score channel. According to Eq.(6)), we can conclude that
this model is concise, with

fiw,p) = a® + (F(”W - y(”)T In
a® 3 (WTE 482 (15)
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Here, fﬁ? is the uv-th row of F(  which is a K-dimensional vector. In addition, the constraint
p € U can be written explicitly as

D tu =58 Vu, Y e <t Yo, 0 < gy < ) Va0, (16)
v u
The proof is completed.

4 Simplified Optimization Problem

Then, we can derive the Lagrangian dual as follows

PO A v, w) =a® + Z Aus + vatgf) + Zuuvcfjg, (17
with A A
wlED < gD 4 X0+ ny 4 vaw, 0 =0, vy >0 Y, v. (18)

Finally, according to Eq.(T3), the learning problem can be written as
VS SR
minimize §||W|| +C Z& (19)

st. wlz® > p(i)()\,n,u,w) —-&, Vi=1,...,N,

WIEE) < Y+ A0 40P ), Vv,
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[252) ;()] with Zk Zuv fuv u-v

Here, z(*) = ey 2
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