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Abstract

Symmetry is a powerful shape regularity that’s been ex-
ploited by perceptual grouping researchers in both human
and computer vision to recover part structure from an im-
age without a priori knowledge of scene content. Draw-
ing on the concept of a medial axis, defined as the locus of
centers of maximal inscribed discs that sweep out a sym-
metric part, we model part recovery as the search for a
sequence of deformable maximal inscribed disc hypothe-
ses generated from a multiscale superpixel segmentation,
a framework proposed by [13]. However, we learn affinities
between adjacent superpixels in a space that’s invariant to
bending and tapering along the symmetry axis, enabling us
to capture a wider class of symmetric parts. Moreover, we
introduce a global cost that perceptually integrates the hy-
pothesis space by combining a pairwise and a higher-level
smoothing term, which we minimize globally using dynamic
programming. The new framework is demonstrated on two
datasets, and is shown to significantly outperform the base-
line [13].

1. Introduction

In the formulation of object recognition as object detec-
tion, a strong top-down object prior minimizes the need for
bottom-up perceptual grouping, i.e., weaker, mid-level pri-
ors. However, as object databases grow towards human-
like capacities, i.e., tens of thousands of objects, a linear
search through a large space of object detectors quickly be-
comes intractable. It’s clear that as object databases grow,
the role of perceptual grouping to extract a discriminative,
domain-independent indexing structure that can prune a
large database down to a small number of promising can-
didates will increase dramatically.

One of the most powerful indexing structures is a con-
figuration of parts, in which a set of parts (and their rela-
tions) belonging to the same object is recovered without
any a priori knowledge of scene content, i.e., without the
help of an object detector. The bottom-up recovery of a
set of generic parts can be traced back to the earliest days
of computer vision, and includes Blum’s medial axis trans-

form (MAT) [3], Binford’s generalized cylinders [2], Pent-
land’s superquadrics [25], and Biederman’s geons [1], to
name just a few examples. What do all these representa-
tions have in common? They’re all based on symmetry,
a physical regularity in our world that has been exploited
by the human visual system to yield a powerful perceptual
grouping mechanism – something that the early Gestalt psy-
chologists understood practically a century ago [37] (for a
definitive survey on symmetry and its analysis in computer
vision, see [16]).

In an attempt to harness the power of a MAT-like rep-
resentation yet avoid its inapplicability to cluttered scenes,
Levinshtein et al. [13] introduced a bottom-up approach
which first detects symmetric parts and then groups them
nonaccidentally to form indexing structures. The key con-
tribution is the modeling of a “deformable” maximal in-
scribed disc as a superpixel. The image is segmented into
superpixels at multiple scales, where each scale yields a
graph in which nodes are superpixels. Adjacent superpixels
are linked by an edge, to which a learned affinity function
assigns a measure of how likely two superpixels represent
adjacent maximal discs belonging to the same part. A graph
clustering algorithm is then applied to the superpixel graph
to yield a set of connected components representing sym-
metric object parts.

While the framework outperformed previous approaches
to symmetric part detection, it suffered from a number
of serious limitations, as illustrated in Figure 1. To be-
gin with, the symmetry model was restrictive in assuming
that parts had straight axes and constant width. This pre-
vented the correct detection of significantly curved and/or
tapered parts, as illustrated in Figure 1(a). Second, super-
pixel grouping was restricted to a single scale, rather than
integrated across multiple scales, preventing the detection
of tapered parts whose component superpixels span multi-
ple scales (Figure 1(c)). Finally, the superpixel grouping
algorithm did not enforce a notion of good continuation,
which led to incorrect detections when faced with ambigu-
ous grouping possibilities, as reflected in the undersegmen-
tation of the two symmetric parts (leaves) into a single part
in Figure 1(e).

In this paper, we extend the approach of [13] to over-
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come these limitations. Like [13], superpixels are generated
at multiple scales and represent hypotheses of maximal in-
scribed discs. Like [13], adjacent hypotheses are assigned
an affinity by a learned affinity function trained on manu-
ally detected symmetric parts. And like [13], hypotheses
must ultimately be selected and grouped to form symmet-
ric parts. But the model we use to assign the affinities, the
nature of the search space of hypotheses which are selected
and grouped to become parts, and the grouping algorithm
that selects and groups hypotheses are different from [13],
and represent the three main contributions of this paper.

In our first contribution, we relax the assumption that a
symmetric part is straight with constant width, and extend
the model to allow a part to bend and taper. Given two adja-
cent hypotheses, we fit a deformable ellipse to their union,
from which an estimate of bending and tapering can be re-
covered. We then warp the image of the union, effectively
“undoing” the bending and tapering, and yielding an invari-
ant model of a symmetric part whose axis is straight and
whose width is constant. By factoring out these deforma-
tions, we reduce the variability of the symmetry data used
to train the classifier, and allow ourselves to adopt the learn-
ing framework of [13] while accommodating much greater
within-class variation. In Figure 1(b), we see how this new
model can detect curved symmetric parts.

In our second contribution, we relax the assumption that
maximal disc hypotheses can only be grouped within a
given scale, and extend the grouping process to integrate
the hypotheses from multiple scales. In our multiscale ap-
proach, we make no assumptions about how the scales relate
to each other, nor do we assume that adjacent maximal discs
comprising a part must be drawn from adjacent scales. We
construct a single, integrated search space of deformable
discs and assign an affinity to any adjacent or overlapping
discs, regardless of which scale they come from. This al-
lows superpixels from different scales to be grouped into
the same part, an essential requirement for detecting signif-
icantly tapered parts, as illustrated in Figure 1(d).

In our third contribution, we remove the global part sym-
metry constraint of [13] and relax it with smoothed local
symmetry. Moreover, we reformulate the problem from a
graph segmentation problem to a sequence finding problem,
replacing a simple agglomerative clustering algorithm with
an optimal grouping algorithm that captures the percep-
tual grouping principle of good continuation. Specifically,
we adapt the salient curve detection framework of Felzen-
szwalb & McAllester [11], in which edgels are grouped to
form salient, continuous curves, to group superpixels (hy-
pothesized maximal discs) into salient, continuous, sym-
metric parts. The continuity model provides a much more
powerful and flexible global constraint that can help select
from among many locally ambiguous groupings, as illus-
trated in Figure 1(f).

(a) (b)

(c) (d)

(e) (f)
Figure 1. Illustrating the limitations of Levinshtein et al. [13] (left
column) and demonstrating how our improved framework over-
comes them (right column): (a) [13] cannot handle curved parts,
and overpartitions them into piecewise straight; (b) we introduce
a more powerful model for symmetry that removes this restric-
tion, allowing curved parts to be correctly detected; (c) [13] detects
parts by grouping superpixels from the same scale, preventing the
detection of parts whose superpixels span multiple scales, e.g., a
tapered part; (d) we introduce a multiscale framework that allows
superpixels at multiple scales to be grouped into the same part,
allowing tapered parts to be detected; (e) [13] adopts a greedy su-
perpixel grouping strategy that can lead to a graph structure which,
while exhibiting good symmetry, can undersegment parts; in this
case, the two sequences of superpixels representing the two leaves
are bridged by a high-affinity path, yielding a tree-structured clus-
ter that fails to distinguish the individual leaves (superpixels are
shown as points and affinities in the cluster are colored, with red-
ness proportional to affinity); (f) we adopt a new optimal grouping
algorithm, based on the salient curve detection framework in [11],
that combines local symmetry and continuity to better choose from
among a set of ambiguous groupings; in this case, both symmetric
parts (leaves) are correctly detected.
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2. Related Work
While Blum’s MAT, along with its many descendant rep-

resentations such as the shock graph [29, 33] and bone
graph [19], provided an elegant decomposition of a shape
into symmetric parts, it assumed that the shape was seg-
mented, an unrealistic assumption when the recognition do-
main consists of cluttered, occluded scenes. Other classes
of approaches have taken a less restrictive approach that first
attempts to detect local symmetries, in the form of parts,
and then finds nonaccidental groupings of the detected parts
to form indexing structures. Example approaches in this
domain include the multiscale peak paths of Crowley and
Parker [9], the multiscale blobs of Shokoufandeh et al. [32],
the ridge detectors of Mikolajczyk and Schmid [22], and the
multiscale blobs and ridges of Lindeberg and Bretzner [14],
and Shokoufandeh et al. [31]. Unfortunately, these filter-
based approaches yield many false positive and false nega-
tive symmetric part detections, and the lack of explicit part
boundary extraction makes part attachment detection unre-
liable.

A more powerful filter-based approach was recently pro-
posed by Tsogkas and Kokkinos [36], in which integral im-
ages are applied to an edge map to efficiently compute 13
features, including a novel spectral symmetry feature, at
each pixel at each of 13 scales. Multiple instance learning is
used to train a detector that combines these features to yield
a probability map which, after nonmaximum suppression,
yields a set of skeleton points. The method is computation-
ally intensive yet parallelisable, and the skeleton points still
need to be parsed and grouped into parts. But the method
shows promise in recovering an approximation to a medial
axis transform of an image.

Another class of approaches takes a less holistic ap-
proach, and addresses the combinatorial challenge of group-
ing extracted contours. Example approaches in this domain
include Brady and Asada [5], Connell and Brady [8], Ponce
[27], Cham and Cipolla [6, 7], Saint-Marc et al. [28], Liu
et al. [15], Ylä-Jääski and Ade [38], and Stahl and Wang
[35]. Since these methods are contour-based, they have to
deal with the issue of computational complexity of contour
grouping, particularly when cluttered scenes contain many
extraneous edges. Some require smooth contours or ini-
tialization, while others were designed to detect symmet-
ric objects and cannot detect and group the symmetric parts
that make up an asymmetric object. A more recent line of
methods extract interest point features, such as SIFT [17],
and group them across an unknown symmetry axis [18, 12].
While these methods exploit distinctive pairwise correspon-
dences among local features, they critically depend on reli-
able feature extraction.

A recent approach by Narayanan and Kimia [24] pro-
poses an elegant framework for grouping medial fragments
into meaningful groups. Rather than assuming a figure-

cently, Stahl and Wang [20], among others. Such systems
face one or more important limitations: 1) the complexity of
pairwise contour grouping to detect symmetry-related con-
tour pairs; 2) the requirements of contour smoothness and
precise pointwise correspondence dictated by the geometric
emphasis of many such approaches; and 3) that such ap-
proaches typically stop short of grouping the detected sym-
metries (parts) into objects.

Our methodology addresses each of these limitations.
On the complexity issue, by adopting a region-based ap-
proach, our superpixels (medial point hypotheses) effec-
tively group together nearby contours that enclose a region
of homogeneous appearance. Drawing on the concept of
extracting blobs at multiple scales, symmetric parts will
map to “chains” of medial points sampled at their appro-
priate scale. Our goal will be to group together the mem-
bers of such chains, ignoring those superpixels (the vast
majority) that don’t represent good medial point hypothe-
ses. On the smoothness and precision issue, we will learn
from noisy training data the probability that two adjacent
superpixels represent medial point approximations that be-
long to the same symmetric part; this probability forms the
basis for our affinity function used to cluster medial points
into chains. Finally, on the issue of part grouping, we will
also learn from noisy training data the affinity function that
will form the basis of part attachment. Addressing these
three issues yields a novel framework that aims to narrow
the gap between work in the segmentation and medial axis
extraction communities.

3. Medial Part Detection

The first phase of our algorithm detects medial parts by
hypothesizing a sparse set of multiscale medial hypotheses
and grouping those that are non-accidentally related. In the
following subsections, we detail the two components.

3.1. Hypothesizing Medial Points

Medial point hypotheses are generated by compact su-
perpixels which, on one hand, adapt to boundary structure,
while on the other hand, enforce a weak compactness shape
constraint. In this way, superpixels whose scale is com-
parable to the width of a part can be seen as deformable
maximal disks, “pushing out” toward part boundaries while
maintaining compactness. If the superpixels are sampled
too finely or too coarsely for a given part, they will not re-
late together the opposing boundaries of a symmetric part,
and represent poor medial point hypotheses. Thus, we gen-
erate compact superpixels at a number of resolutions cor-
responding to the different scales at which we expect parts
to occur; as can be seen in Fig. 1(b), we segment an image
into 25, 50, 100 and 200 superpixels. To generate super-
pixels at each scale, we employ a modified version [12] of

the normalized cuts algorithm [17] since it yields compact
superpixels.

Each superpixel segmentation yields a superpixel graph,
where nodes represent superpixels and edges represent su-
perpixel adjacencies. If a superpixel represents a good me-
dial point hypothesis, it will extend to (and follow) the op-
posing boundaries of a symmetric part, effectively coupling
the two boundaries through two key forms of perceptual
grouping: 1) continuity, where the intervening region must
be locally homogeneous in appearance; and 2) symmetry,
in that the notion of maximal disk bitangency translates to
two opposing sections of a superpixel’s boundary. Fig. 2(b)
illustrates a symmetry section (blow-up of the subimage in
Fig. 2(a) containing the athlete’s leg) whose medial point
hypotheses are too large (undersampled), while in Fig. 2(c),
the medial point hypotheses are too small (oversampled).
When they are correctly sampled, as in Fig. 2(d), they can
be viewed as a sparse approximation to the locus of medial
points making up a skeletal branch, as seen in Fig. 2(e).

a b c d e
Figure 2. Superpixels as medial point samples: (a) a region of in-
terest focusing on the athlete’s leg (b) superpixels undersample the
scale of the symmetric part; (c) superpixels oversample the scale of
the symmetric part; (d) superpixels appropriately sample the scale
of the symmetric part, non-accidentally relating, through continu-
ity and symmetry, the two opposing contours of the part; (e) the
medial point hypotheses that effectively capture the scale of the
part represent a sparse approximation to the locus of medial points
that comprise the traditional skeleton.

3.2. Clustering Medial Points

If two adjacent superpixels represent two medial points
belonging to the same symmetric section, they can be com-
bined to extend the symmetry. This is the basis for defining
the edge weights in the superpixel graph corresponding to
each resolution. Specifically, the affinity between two ad-
jacent superpixels represents the probability that their cor-
responding medial point hypotheses not only capture non-
accidental relations between the two boundaries, but that
they represent medial points that belong to the same skeletal
branch. Given these affinities, a standard graph-based clus-
tering algorithm applied independently to each scale yields
clusters of medial points, each representing a medial branch
at that scale. In Section 4, we group nonaccidentally related
medial branches by object, yielding an approximation to an
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(a) (b) (c)
Figure 2. Deformable disc model of an object part: (a) Many max-
imal discs (red circles) are required to “flesh out” a part in the
classical medial axis (from [13]); (b) by allowing maximal discs
to deform to the shape of the part, far fewer deformable dics are
required to define the part – in this case, the deformable discs are
modeled as superpixels drawn from the same scale (from [13]);
(c) a symmetric part is defined as the union of deformable discs –
in this case, the deformable discs making up the tapered part are
modeled as superpixels drawn from different scales.

ground segmentation, the approach computes a shock graph
over the entire image of a cluttered scene, and then applies
a sequence of medial transforms to the medial fragments,
maintaining a large space of grouping hypotheses. While
the method compares favorably to figure-ground segmen-
tation and fragment generation approaches, the high com-
putational complexity of the approach restricts it to images
with no more than 20 contours.

Our approach, extending that of [13], is qualitatively dif-
ferent from both filter-based and contour-based approaches,
offering a “region-based” approach which perceptually
groups together compact regions (segmented at multiple
scales using superpixels) representing deformable maximal
discs into symmetric parts. We avoid the low precision that
often plagues the filter-based approaches, along with the
high complexity that often plagues the contour-based ap-
proaches.

3. A Representation for Symmetric Parts
Adopting the framework of [13], we define a symmet-

ric part as a sequence of deformable discs, where each de-
formable disc d is a compact image region (a pixel mask)
that roughly corresponds to a maximal inscribed disc. Un-
like the classical medial axis transform in which maxi-
mal inscribed discs are bitangent to the part’s boundary, as
shown in Figure 2(a), our deformable discs are not con-
strained to be circular, and are allowed to deform to the
shape of the boundary while maintaining high compactness.
As a result, the number of deformable discs required to cap-
ture the shape of the part is far less than the number required
using maximal discs, as shown in Figure 2(b).
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Superpixels, being compact and having the tendency to
deform to image boundaries, are ideally suited as a model
of a deformable disc. Therefore, a superpixel segmenta-
tion can be seen as a set of deformable disc hypotheses.
But since we have no a priori knowledge of part scale, and
since a tapered part may be captured by deformable discs
of different sizes, as shown in Figure 2(c), we generate su-
perpixels (deformable disc hypotheses) at different scales.
In contrast to [13], whose framework restricted grouping
to superpixels at the same scale and thus could not handle
significant taper, we group superpixels from a single hy-
pothesis set that combines superpixels from all scales. We
segment each image into 25, 50, 100, and 200 superpixels
using a modified version [23] of the normalized cuts algo-
rithm [30].

Given a set D of deformable disc hypotheses, our goal
is to perceptually group deformable discs that belong to
the same part. Since the vast majority of superpixels will
not correspond to true deformable discs, we must manage
the complexity of the search space. We adopt a proxim-
ity constraint between any two deformable discs and con-
sider grouping together only deformable discs whose un-
derlying superpixels are adjacent or overlapping. We thus
capture the set D in a graph G, whose nodes di represent
deformable discs and whose edges (di, dj) span pairs of de-
formable discs whose underlying superpixels are adjacent
or overlapping. Pairs of superpixels in which one superpixel
is entirely contained by the other are redundant groupings
and are not included as edges in G. Each edge is assigned
a symmetry-based affinity which, as described in Section 4,
reflects the degree to which the pair of deformable discs is
believed to belong to the same symmetric part.

4. Defining a Deformable Disc Affinity
A restricted model of symmetry was used in [13], in

which the axis was straight and the width was constant
along the axis. An ellipse was fit to the region defined by
two adjacent superpixels, defining a scale- and orientation-
invariant coordinate system into which a grid was placed;
edgels in the vicinity of the region boundary were then pop-
ulated into the grid. The resulting shape feature, along with
a set of appearance-based features computed over the same
region, were fed to a classifier that evaluated to the edge
affinity between two superpixels. Connected components
with high edge affinity yielded symmetric parts.

To handle curvature and taper in symmetric parts, we re-
lax the model of symmetry by replacing the ellipse with a
deformable ellipse that accommodates bending and tapering
[26]. An overview of the approach is illustrated in Figure 3.
A deformable ellipse is fit to the boundary of the region, as
shown in Figure 3(a). The axis is allowed to curve and the
width to taper along the axis. Figure 3(b) shows edgels in
the vicinity of the region boundary to which the model was

(a) (b)

(c) (d)

Figure 3. (a) A deformed ellipse fitted to the region shaded in blue.
The boundary of the deformed ellipse along with its two axes are
shown in red. The boundary edgels shown in (b) are warped into
W resulting in (c), where the medial axis, shown bold, has been
straightened and any taper removed. The descriptor formed on W
is shown in (d).

fitted. Next, we “undo” the fitted bending and tapering de-
formations using the warp W that maps the boundary into
the invariant coordinate systemW as shown in Figure 3(c).
Finally, boundary edgels are populated into a grid onW to
compute the shape feature of [13], as shown in Figure 3(d).

Details of our model are described as follows. Recall that
an ellipse is implicitly defined by a mapping into a space
where each mapped point W (x) is constrained to lie on the
unit circle, satisfying W (x) ·W (x) = 1. In our deformable
ellipse, the warp W is composed of a rigid transformation
R(p, θ) at position p and orientation θ, scaling S(a) to ma-
jor and minor axes lengths a = (ax, ay), and two deforma-
tions, namely, circular bending B(b) at radius b and linear
tapering T (t) at slope t. We denote the full set of parame-
ters of the warp by w = (p, θ,a, b, t).

We compute W by fitting the parameters to boundary
points x1, . . . ,xN . The problem is framed as least-squares
minimization in which we seek a parameter vector w that
locally minimizes the squared errors between the warped
boundary points and the unit circle. The sum of squared
errors objective,

N∑
i=1

e(xi;w)2, (1)

is defined using the regularized algebraic distance

e(x;w) = c · (W (x;w) ·W (x;w)− 1) , (2)

where c =
√
axay penalizes highly elongated axes [34].

Deformation parameters are initialized to b = 0 and t = 0
while the position, orientation, and scale parameters are ini-
tialized by fitting a regular ellipse. All parameters are itera-
tively fit using a nonlinear least squares algorithm, yielding
the solution ŵ.
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We compute the shape feature in the invariant coordinate
systemW defined by the fitted deformable ellipse. An edge
map is computed using the Pb detector [21], thresholding
responses at 0.01 to obtain a set of edgel coordinates lying
in the vicinity of the region boundary. The edgels are then
warped by W (·; ŵ) into W , thereby reducing shape vari-
ability, in particular straightening the symmetry axis and
removing taper. Finally, we compute a normalized spatial
histogram of the warped edgels over a 10x10 grid to ob-
tain a 100-dimensional feature. In addition, we compute
an appearance feature based on color and texture features
computed over the same region. A 27-dimensional feature
is obtained from the dissimilarity of RGB and HSV means
and variances and color and texture histogram distances.

We use a logistic regressor to combine shape and appear-
ance features computed over a region r into σ(r) ∈ [0, 1].
The logistic regressor combines the shape output σs(r), ob-
tained by an SVM with RBF kernel, and the appearance out-
put σa(r), obtained by a logistic regressor with quadratic
kernel. We train on a set of images containing symmetric
parts that are annotated with pixel masks. Positive masks
are adjacent deformable discs spanning the width of a part,
and negative masks oversegment across the width, span over
the part boundary, or undersegment the part. Details on part
annotation and examples are provided in Section 6.

5. Finding Sequences of Deformable Discs
Given a graph G capturing deformable disc hypotheses,

in which edge affinities reflect the degree to which adja-
cent deformable discs are believed to belong to the same
symmetric part, the final step is to find sequences of de-
formable discs representing symmetric parts. In [13], a
greedy agglomerative clustering algorithm based on [10]
was adopted. At each iteration a candidate node was added
to a cluster provided that the union of the node and cluster
satisfied a global symmetry constraint.

The strategy suffered from two serious limitations. First,
while the global symmetry constraint offered a useful ab-
straction mechanism, it was enforced by fitting an ellipse to
the region corresponding to the entire cluster, thus restrict-
ing detectable parts to straight axes. The second limitation
concerned the grouping algorithm, which was designed for
graph clustering rather than for sequence clustering. A lack
of a notion of continuation allowed clusters to branch into
tree structures, leading to undersegmentation.

We overcome both limitations by framing the problem
as a search for sequences over G. For any sequence P =
(d0, . . . , dn) of adjacent discs, the underlying graph edges
correspond to binary terms {s(di−1, di)}ni=1. We define
ternary terms {t(di−1, di, di+1)}n−1

i=1 to cover slightly larger
subsequences over which a notion of smoothed local sym-
metry can be computed. This is in contrast to the restric-
tive global scope over which symmetry was computed in

(a)

(b)
Figure 4. (a) Grouping is formulated as finding a sequence P of
adjacent deformable disc hypotheses. (b) In the dynamic program-
ming algorithm, a candidate sequence (yellow) is dequeued and
possible extending discs (green) are considered.

[13]. Moreover, as explained below, good continuation is
enforced by extending a candidate sequence only from its
last disc, thereby preventing branching from its sides.

We find optimal sequences P1, P2, . . . over G using the
global cost defined below in Eq. 3. We have adapted the
method of Felzenszwalb & McAllester [11], which grouped
sequences of edgels into salient curves, to our setting in or-
der to group sequences of deformable discs into salient sym-
metric parts. Accordingly, we sum over binary and ternary
terms and normalize by the length n:

cost(P ) =
A

n
+

∑n
i=1 s(di−1, di) +

∑n−1
i=1 t(di−1, di, di+1)

n
.

(3)

The cost includes a term A/n that favors longer sequences,
where we have set A = 0.1. The binary and ternary terms
are set to 1 − σ(r), where the region r is defined by the
set of discs given to the respective term. Note that we have
assumed an equal contribution to the total cost from each
disc regardless of its size.

The cost function in Eq. 3 is minimized by the dynamic
programming algorithm in [11], which pursues a best-first
search strategy to find the best sequence. Initially, a prior-
ity queue, Q, contains all possible (candidate) sequences of
unit length. As shown in Figure 4(a), each edge (di, di+1)
is directed such that a sequence of edges terminating at di+1

can be extended with an edge starting at di+1. At each it-
eration, the most promising sequence P ∗ is dequeued from
Q, and new candidate sequences are proposed by extending
the end of P ∗ with adjacent discs, as shown in Figure 4(b).
If an extended sequence ending at an edge s improves the
cost of another sequence ending at s, it is enqueued back
onto Q. Multiple sequences are found by successively min-
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Figure 5. Example images with manually annotated symmetric
parts.

imizing Eq. 3 over remaining disc hypotheses, and stopping
when a maximum cost is reached.

The algorithm keeps track of only the best sequence end-
ing at each edge for all possible lengths. It is possible for
a symmetric part to have a long spiral axis, however we do
not expect the length of a sequence to be on the order of the
number of superpixels. We have used a maximum length of
20 in our implementation. We refer the reader to [11] for
details of the algorithm.

6. Results

Following the criteria in [13] for symmetric part detec-
tion, we evaluate the ability of the algorithm to find de-
tection masks corresponding to object parts in a cluttered
scene. To obtain a variety of objects appearing in a range
of scales in background clutter, we have selected images
from the Berkeley Segmentation Database (BSDS) [20] for
evaluation. We denote as BSDS-Parts a set of 36 images
which are annotated with ground-truth masks correspond-
ing to the symmetric parts of prominent objects (e.g., duck,
horse, deer, snake, boat, dome, amphitheater); examples of
annotated images are shown in Figure 5. We also evaluate
on the Weizmann Horse Database [4], denoted as WHD,
using 61 annotated images as was done in [13]. Note that
while each image prominently features one or more horses,
we are interested in detecting object parts.

Our quantitative evaluation is summarized in Figure 6,
which includes a baseline comparison with Levinshtein et
al. [13] on BSDS-Parts in Figure 6(a) and WHD in Fig-
ure 6(b). The results indicate a significant improvement
over the baseline. For each method, we obtain a precision-
recall curve varying a threshold over the costs of detected
parts. A detection mask mdet is counted as a hit if its
overlap with the ground-truth mask mgt is greater than 0.4,
where overlap is measured by intersection-over-union (IoU)
|mdet∩mgt|/|mdet∪mgt|. Note that low precision is partly
due to the lack of annotations on many background objects
in both datasets.

We have run our optimization method using the base-
line features to isolate the effect of the grouping algorithm.
To minimize our cost (Eq. 3), baseline features are com-

puted only at binary and ternary scope. The results for
both datasets (“baseline + sequences” in Figure 6), show
that the algorithm is responsible for a significant part of the
improvement. We also evaluate the contribution of comput-
ing symmetry over a 3-disc subsequence as compared to a
2-disc subsequence (“ours w/o smoothing” in Figure 6), and
find that the larger scope is beneficial.

Figure 7 highlights specific strengths and weaknesses of
our approach. Example (a) demonstrates the successful re-
covery of a snake along with a second symmetric part rep-
resenting its shadow (left side of snake). The image is over-
laid with detection masks, over which the linear structure
of each part is indicated by green line segments that join
adjacent deformable discs. Examples (b) and (c) show the
detected parts of a plane and a bird. Most of the plane parts
are correctly segmented, with the left wing overpartitioned
due to the engine, while the bird’s parts are correctly seg-
mented; configurations of such detected parts can provide a
powerful index into a database of part-based shape models.
In example (d), many of the symmetric parts (both straight
and curved) comprising the boat are correctly recovered.
Examples (e) and (h) show symmetric parts detected in a
variety of scenes of intermediate complexity.

Examples (f) and (g) illustrate limitations of our ap-
proach. The wing and abdomen of the fly are successfully
recovered, however the occluded leaf was not. In (g), low
contrast along segments of the snake cause overpartition-
ing of the part. One could imagine a higher-level group-
ing module that could group the symmetric parts produced
by our framework according to principles of collinearity/co-
curvilinearity. We also note that part recall depends on the
ability of the superpixel segmentation algorithm to yield de-
formable maximal discs that make up a symmetric part. Fi-
nally, we note that we trained our classifier on 20 WHD im-
ages to produce all of our detection results, even on images
from BSDS. Note that with our agnostic approach to class
labels, we have demonstrated that 1) symmetry is a power-
ful shape regularity that’s ubiquitous in nature; and 2) the
symmetry features learned from horse parts can reasonably
generalize to a much broader class of symmetric parts that
include curvature and taper.

7. Conclusions
Symmetry is a powerful regularity in our world that

projects to a powerful regularity in the image. In the ab-
sence of an object prior, symmetry is a powerful cue for
detecting parts whose configurations, in turn, can help man-
age search in a large-scale recognition task. The symmetric
part detection framework of Levinshtein et al. [13] draws
on the power of the medial axis while avoiding its pitfalls.
However, it suffers from some serious limitations that limit
its ability to detect more general classes of symmetric parts.
We have addressed these limitations by introducing a num-
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(a) Results on BSDS-Parts.
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Figure 6. Our approach significantly improves the baseline of Levinshtein et al. [13] on BSDS-Parts and WHD.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 7. Symmetric object parts detected by our approach.
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ber of extensions to [13], including both a richer yet more
flexible model for symmetry, a multiscale framework, and
an optimal grouping strategy based on the regularity of good
continuation. The resulting framework significantly outper-
forms that of [13], offering an improved perceptual group-
ing framework for recovering symmetric parts without a pri-
ori knowledge of scene content. In future work, we will ad-
dress the problem of part grouping to yield part configura-
tions whose relational information offers the discriminative
power to prune a large database down to a small number of
promising candidates.
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