# CSC420: Intro to Image Understanding Introduction

Sanja Fidler

September 11, 2014



#### The Team

Instructor:



Sanja Fidler (fidler@cs.toronto.edu)

- Office: 283B in Pratt
- Office hours: Tuesday 1.20-2.50pm, or by appointment
- TAs:

Tom Lee (tshlee@cs.toronto.edu)

Kaustav Kundu (kkundu@cs.toronto.edu)

• Office hours: TBA

- Class time: Tuesday and Thursday at 3-4pm
- Location: BA2185
- Tutorials: demos and Q&A, we'll do it on demand
- Class Website:

http://www.cs.utoronto.ca/~fidler/CSC420.html

- The class will use Piazza for **announcements** and **discussions**: https://piazza.com/utoronto.ca/fall2014/csc420
- Your grade will not depend on your participation on Piazza.
   It's just a good way for asking questions, discussing with your instructor, TAs and your peers

• **Textbook**: We won't directly follow any book, but extra reading in this textbook will be useful:



Rick Szeliski

Computer Vision: Algorithms and Applications

available free online:

http://szeliski.org/Book/

• Links to other material (papers, code, etc) will be posted on the class webpage

#### **Course Prerequisites:**

- Data structures
- Linear Algebra
- Vector calculus

Without this you'll need some serious catching up to do!

#### Knowing some basics in this is a plus:

- Matlab (most programming assignments will be in Matlab)
- C++
- Machine Learning
- Solving assignments sooner rather than later

# Requirements and Grading

- Each student expected to complete 5 assignments and a project
- Grading
  - Assignments: 50% (10% each)
  - **Project**: 50%

#### Assignments:

- Short theoretical questions and programming exercises
- Will be given every two weeks (starting with second week of class)
- You will have a week to hand in the solution to each assignment
- You need to solve the assignment alone

#### • Project:

- You will be able to choose from a list of projects or come up with your own project (discussed prior with your instructor)
- Need to hand in a report and do an oral presentation
- Can work individually or in pairs

# Term Work Dates

| Term Work            | Post Date | Due Date | % of grade |
|----------------------|-----------|----------|------------|
| Assignment 1         | Sept 18   | Sept 27  | 10%        |
| Assignment 2         | Oct 2     | Oct 11   | 10%        |
| Assignment 3         | Oct 16    | Oct 25   | 10%        |
| Assignment 4         | Oct 30    | Nov 8    | 10%        |
| Assignment 5         | Nov 13    | Nov 22   | 10%        |
| Project Report       |           | Dec 7    | 30%        |
| Project Presentation |           | Dec 16   | 20%        |

• All dates are for 2014. ;)

- $\bullet$  Your assignments / project can be in Matlab, Python, C++
- As long as it compiles, runs, and you know how to defend it, we're happy
- HOWEVER, most code and examples we will provide during the class will be in Matlab
- Most code provided online by computer vision researchers is in Matlab
- Choose wisely

Deadline The solutions to the assignments / project should be submitted by 11.59pm on the date they are due. Anything from 1 minute late to 24 hours will count as one late day.

Lateness Each student will be given a total of **3 free late days**. This means that you can hand in three of the assignments one day late, or one assignment three days late. It is up to the you to make a good planning of your work. After you have used the **3 day budget**, the late assignments will not be accepted.

# Syllabus

#### Tentative syllabus

| _ |          |                   |                          |
|---|----------|-------------------|--------------------------|
|   | Week nb. | Date              | Торіс                    |
|   | 1        | Sept 11           | Intro                    |
|   | 2        | Sept 16 & Sept 18 | Linear filters, edges    |
|   | 3        | Sept 24 & Sept 25 | Image features           |
|   | 4        | Sept 30 & Oct 2   | Keypoint detection       |
|   | 5        | Oct 7 & Oct 9     | Matching                 |
|   | 6        | Oct 14 & Oct 16   | Segmentation             |
|   | 7        | Oct 21 & Oct 23   | Grouping                 |
|   | 8        | Oct 28 & Oct 30   | Object, face recognition |
|   | 9        | Nov 4 & Nov 6     | Object detection         |
|   | 10       | Nov 11 & Nov 13   | Stereo, multi-view       |
|   | 11       | ? & Nov 20        | Recognition in 3D        |
|   | 12       | Nov 25 & Nov 27   | Motion, video            |
|   |          |                   |                          |

Introduction to Intro to Image Understanding

- What is Computer Vision?
- Why study Computer Vision?
- Which cool applications can we do with it?
- Is vision a hard problem?
- What's an image?

• A field trying to develop automatic algorithms that would "see"



• What does it mean to see?

[text adopted from A. Torralba]

To know what is where by looking – Marr, 1982



• What does it mean to see?

[text adopted from A. Torralba]

- To know what is where by looking Marr, 1982
- Understand where things are in the world



• What does it mean to see?

- [text adopted from A. Torralba]
- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D properties?







• What does it mean to see?

- [text adopted from A. Torralba]
- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D properties?



• What does it mean to see?

- To know what is where by looking Marr, 1982
- Understand where things are in the world
- What are their 3D properties?
- What actions are taking place?

snake escaping!



boy scaring girl

Pic from www.cobblehillpuzzles.com

[text adopted from A. Torralba]

#### • Because it is challenging and fun



Jialiang Wang's (4th undergraduate year, UofT) video about his summer research in computer vision (click on the pic to see video – you'll need internet connection)

• You are curious how to one day make the robot walk your dog



#### (click on the pic to see video)

• ... and fold your laundry



(click on each pic to see videos)

• ... and drive you to work (video)



#### Amnon Shashua's Mobileye autonomous driving system

• Allows you to manipulate your images



• ... and make cool videos using a single image



3D Object Manipulation in a Single Photograph using Stock 3D Models, Kholgade, Simon, Efros, Sheikh, SIGGRAPH 2014

Sanja Fidler

• Fancy visualization and game analysis in sports



• Fancy visualization and special effects in movies



[Source: http://cvfxbook.com and http://vimeo.com/100095868]

• Reconstruct the world in 3D from online photos! (click on each pic to see videos)



Photosynth, https://photosynth.net/ (try it!)

Sanja Fidler

• Figure out what people are wearing



• Detect and analyze faces



http://www.rekognition.com (try it!)



confidence : true ( value : 1 ) pose :rol(0.9) ,yaw(3.59) ,pitch(8.63) race : white(0.28) emotion : calm:68%,happy:28% age : 29.52 ( value : 29.52 ) smile : true ( value : 0.65 ) glasses : no glass ( value : 0 ) sunglasses : false ( value : 0 ) eye\_closed : open ( value : 0 ) eye\_closed : open ( value : 0 ) mouth\_open\_wide : 3% ( value : 0.03 ) beauty : 99.42 ( value : 0 .99422 ) gender : female ( value : 0 )

• Detect and analyze faces



http://www.rekognition.com (try it!)



pose:roll(0.9) yaw(3.59) ,pitch(6.63) race : white(0.28) emotion : calm:68%,happy:28% age : 29.52 ( value : 29.52 ) smile : true ( value : 0.65 ) glasses : no glass ( value : 0 ) sunglasses : false ( value : 0 ) eye\_closed : open ( value : 0 ) mouth\_open\_wide : 3% ( value : 0.03 ) beauty : 99.42 ( value : 0 .99422 ) gender : female ( value : 0 )

Sanja Fidler

• Detect and analyze faces



http://www.rekognition.com



confidence : true (value : 1) pose :roll(4.3) .vaw(10.36) .pitch(-5.4) race : white(0.73) emotioin : happy:99%,calm:3% age: 29.12 (value: 29.12) smile : true ( value : 0.86 ) glasses : no glass (value : 0) sunglasses : false ( value : 0 ) eye\_closed : open ( value : 0 ) mouth\_open\_wide : 0% (value : 0) beauty : 53.67 (value : 0.53674) gender : female ( value : 0.03 )

#### • Detect and analyze faces



http://www.rekognition.com



confidence : true (value : 1) pose :roll(-6.26) ,yaw(-6.81) ,pitch(1.66) race : white(0.99) emotioin : happy:92%.confused:1% age : 60.9 ( value : 60.9 ) smile : true ( value : 0.87 ) glasses : no glass (value : 0.01) sunglasses : false ( value : 0 ) eve closed ; open (value ; 0) mouth open wide : 3% (value : 0.03) beauty: 78.62 (value: 0.78628) gender : male ( value : 1 )

Sanja Fidler

• You can make yourself look better (and competitors worse)



[Khosla, Bainbridge, Oliva, Torralba, Modifying the Memorability of Face Photographs, ICCV 2013]

• Fingerprint recognition





[Source: S. Lazebnik]

• You can do some movie-like Forensics



Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely]

Sanja Fidler



#### [Source: N. Snavely]

Sanja Fidler



Figure: Source: Nayar and Nishino, Eyes for Relighting

[Source: N. Snavely]

• Some more CSI



• Can you see something on the wall?

Torralba & Freeman, CVPR'12

• Some more CSI



#### • Object recognition (in mobile phones)



#### [Source: S. Seitz]

- Recognizing movie posters (in mobile phones)
  - iPhone Apps: kooaba (www.kooaba.com)





• Games, games & games: 3D Pose Estimation with Depth Sensors



# [Source: Microsoft Kinect]

# How It All Began...

#### How It All Began...

#### MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

#### THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

#### 50 years and thousands of PhDs later...

#### Popular benchmarks:





#### <u>Car</u>

| Rank                                                                                                                  | Method                                                                                                                                                        | Setting | Code        | Moderate | Easy    | Hard    | Runtime | Environment                        | Compare |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|----------|---------|---------|---------|------------------------------------|---------|--|--|--|--|
| 1                                                                                                                     | SubCat                                                                                                                                                        |         |             | 66.32 %  | 81.94 % | 51.10 % | 0.3 s   | 6 cores @ 2.5 Ghz (Matlab + C/C++) |         |  |  |  |  |
| E. Ohn-Bar a                                                                                                          | E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mobile Vision 2014. |         |             |          |         |         |         |                                    |         |  |  |  |  |
| 2                                                                                                                     | AOG                                                                                                                                                           |         | <u>code</u> | 67.03 %  | 80.26 % | 55.60 % | 3 s     | 4 cores @ 2.5 Ghz (Matlab)         |         |  |  |  |  |
| B. Li, T. Wu and S. Zhu: Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model. ECCV 2014. |                                                                                                                                                               |         |             |          |         |         |         |                                    |         |  |  |  |  |
| 3                                                                                                                     | SubCat-NoOcc                                                                                                                                                  |         |             | 58.91 %  | 79.90 % | 44.81 % | 0.3 s   | 6 cores @ 2.5 Ghz (Matlab + C/C++) |         |  |  |  |  |

#### **Cyclist**

| Rank                                                                                                                                               | Method                    | Setting        | Code        | Moderate                                                        | Easy             | Hard             | Runtime         | Environment                       | Compare |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|-------------|-----------------------------------------------------------------|------------------|------------------|-----------------|-----------------------------------|---------|--|--|--|
| 1                                                                                                                                                  | pAUC                      |                |             | 38.03 %                                                         | 51.62 %          | 33.38 %          | 60 s            | 1 core @ 2.5 Ghz (Matlab + C/C++) |         |  |  |  |
| S. Palsitkriangkrai, C. Shen and A. Hengel: Efficient pedestrian detection by directly optimizing the partial area under the ROC curve. ICCV 2013. |                           |                |             |                                                                 |                  |                  |                 |                                   |         |  |  |  |
| 2                                                                                                                                                  | DPM-C8B1                  | бб             |             | 29.04 % 43.49 % 26.20 % 15 s 4 cores @ 2.5 Ghz (Matlab + C/C++) |                  |                  |                 |                                   |         |  |  |  |
| Anonymous submission                                                                                                                               |                           |                |             |                                                                 |                  |                  |                 |                                   |         |  |  |  |
| 3                                                                                                                                                  | LSVM-MDPM-us              |                | <u>code</u> | 29.88 %                                                         | 38.84 %          | 27.31 %          | 10 s            | 4 cores @ 3.0 Ghz (C/C++)         |         |  |  |  |
| P. Felzen                                                                                                                                          | szwalb, R. Girshick, D. M | Allester and I | D. Ramana   | n: Object Detect                                                | ion with Discrin | ninatively Train | ed Part-Based M | odels, PAMI 2010.                 |         |  |  |  |

|                  | mean | aero<br>plane      | bicycle            | bird               | boat               | bottle             | bus                | car                | cat                | chair              | cow                | dining<br>table    | dog                | horse              | motor<br>bike      | person             | potted<br>plant    | sheep              | sofa               | train              | tv/<br>monitor     | submission<br>date |
|------------------|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                  | •    | $\bigtriangledown$ |
| Feature Edit     | 56.4 | 74.8               | 69.2               | 55.7               | 41.9               | 36.1               | 64.7               | 62.3               | 69.5               | 31.3               | 53.3               | 43.7               | 69.9               | 64.0               | 71.8               | 60.5               | 32.7               | 63.0               | 44.1               | 63.6               | 56.6               | 2014-Sep-04        |
| R-CNN (bbox reg) | 53.7 | 71.8               | 65.8               | 53.0               | 36.8               | 35.9               | 59.7               | 60.0               | 69.9               | 27.9               | 50.6               | 41.4               | 70.0               | 62.0               | 69.0               | 58.1               | 29.5               | 59.4               | 39.3               | 61.2               | 52.4               | 2014-Mar-13        |
| R-CNN            | 50.2 | 67.1               | 64.1               | 46.7               | 32.0               | 30.5               | 56.4               | 57.2               | 65.9               | 27.0               | 47.3               | 40.9               | 66.6               | 57.8               | 65.9               | 53.6               | 26.7               | 56.5               | 38.1               | 52.8               | 50.2               | 2014-Jan-30        |

#### 50 years and thousands of PhDs later...

- Algorithms work pretty well
- Still some embarrassing mistakes...
- The general vision problem is not yet solved



Where pink means "person"

• Half of the cerebral cortex in primates is devoted to processing visual information. This is a lot. Means that vision has to be pretty hard!



Lots of data to process:

- Thousands to millions of pixels in an image
- 100 hours of video added to YouTube per minute [source: YouTube]
- Over 6 billion hours of video are watched each month on YouTube – almost an hour for every person on Earth [source: YouTube]



Lots of data to process:

- $\bullet \sim$  5000 new tagged photos added to Flickr per minute (7M per day)
- $\bullet \sim 60 {
  m M}$  photos uploaded to Instagram every day [source: Instagram]

# How many photos are uploaded to Flickr every day, month, year?





#### All this is dog...

#### [slide adopted from: R. Urtasun]



Sanja Fidler



Sanja Fidler

44 / 53

- Human vision seems to work quite well.
- How well does it really work?
- Let's play some games!



#### • Which square is lighter, A or B?



Edward H. Adelson

#### • Which square is lighter, A or B?



Figure: 2006 Walt Anthony

• Which red line is longer?



#### Figure: 2006 Walt Anthony

• Which red line is longer?



Figure: Ames room

• Assumptions can be wrong



Figure: Chabris & Simons

- Count the number of times the white team pass the ball
- Concentrate, it's difficult!



Figure: Simons et al. (more videos here: http://www.perceptionweb.com/misc.cgi?id=p3104)

• Is something happening in the picture?



Figure: Torralba et al.

• Can you describe what's going on in the video?



Figure: Torralba et al.

• Can you describe what's going on in the video?

# What do I need...

What do I need to become a good Computer Vision researcher?

- Some math knowledge
- Good programming skills
- Imagination
- Even better intuition
- Lots of persistence
- Some luck always helps