Recognition:

Textbook

This book has a lot of material:

K. Grauman and B. Leibe

Visual Object Recognition

Synthesis Lectures On Computer Vision, 2011

How It All Began...

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

[Slide credit: A. Torralba]

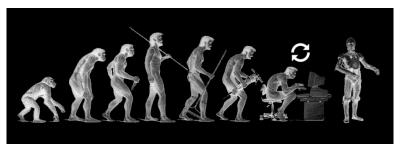
- What are the recognition tasks that we need to solve in order to finish Papert's summer vision project?
- How did thousands of computer vision researchers kill time in order to not finish the project in 50 summers?

- What are the recognition tasks that we need to solve in order to finish Papert's summer vision project?
- How did thousands of computer vision researchers kill time in order to not finish the project in 50 summers?
- What's still missing?

- What are the recognition tasks that we need to solve in order to finish Papert's summer vision project?
- How did thousands of computer vision researchers kill time in order to not finish the project in 50 summers?
- What's still missing?

- What are the recognition tasks that we need to solve in order to finish Papert's summer vision project?
- How did thousands of computer vision researchers kill time in order to not finish the project in 50 summers?
- What's still missing?
- What happens if we solve it?

Figure: Singularity?



http://www.futurebuff.com/wp-content/uploads/2014/06/singularity-c3po.jpg

- What are the recognition tasks that we need to solve in order to finish Papert's summer vision project?
- How did thousands of computer vision researchers kill time in order to not finish the project in 50 summers?
- What's still missing?
- What happens if we solve it?

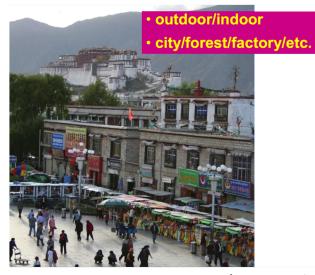
Figure: Nah... Let's start by having a more intelligent Roomba.

• Let's take some typical tourist picture. What all do we want to recognize?

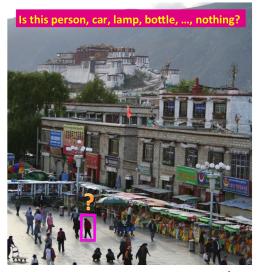
[Adopted from S. Lazebnik]

• Identification: we know this one (like our DVD recognition pipeline)

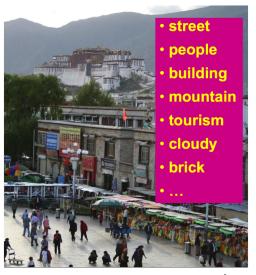
• Scene classification: what type of scene is the picture showing?



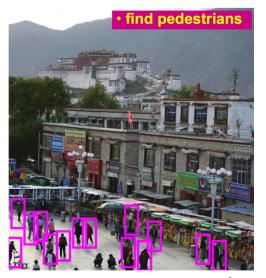
• Classification: Is the object in the window a person, a car, etc



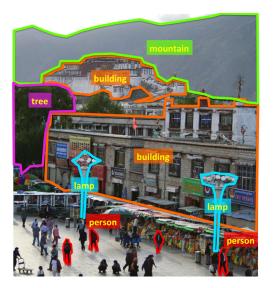
• Image Annotation: Which types of objects are present in the scene?



• Detection: Where are all objects of a particular class?



• Segmentation: Which pixels belong to each class of objects?



• Pose estimation: What is the pose of each object?

• Attribute recognition: Estimate attributes of the objects (color, size, etc)

• Commercialization: Suggest how to fix the attributes ;)

• Action recognition: What is happening in the image?

• Surveillance: Why is something happening?

Try Before Listening to the Next 8 Classes

- Before we proceed, let's first give a shot to the techniques we already know
- Let's try detection
- These techniques are:
 - Template matching (remember Waldo in Lecture 3-5?)
 - Large-scale retrieval (last week's lecture, Lecture 12): store millions of pictures, recognize new one by finding the most similar one in database. This is a Google approach.

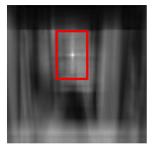
Template Matching

• Template matching: normalized cross-correlation with a template (filter)

chair template

Find the chair in this image

Output of normalized correlation



[Slide from: A. Torralba]

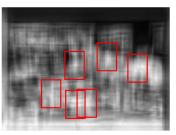
Template Matching

• Template matching: normalized cross-correlation with a template (filter)

template

Find the chair in this image

Pretty much garbage Simple template matching is not going to make it



My biggest concern while making this slide was: how do I justify 50 years of research, and this course, if this experiment did work?

[Slide from: A. Torralba]

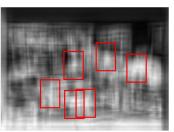
Template Matching

• Template matching: normalized cross-correlation with a template (filter)

template

Find the chair in this image

Pretty much garbage Simple template matching is not going to make it



A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nevatia & Binford, 1977.

[Slide from: A. Torralba]

 Upload a photo to Google image search and check if something reasonable comes out

query

- Upload a photo to Google image search
- Pretty reasonable, both are Golden Gate Bridge

query

- Upload a photo to Google image search
- Let's try a typical bathtub object

query

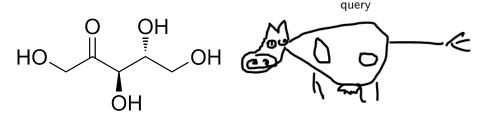
- Upload a photo to Google image search
- A bit less reasonable, but still some striking similarity

query

- Make a beautiful drawing and upload to Google image search
- Can you recognize this object?



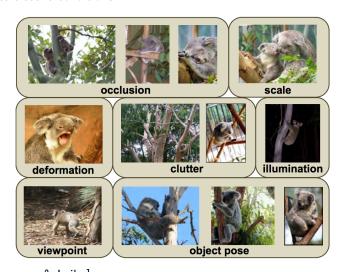
- Make a beautiful drawing and upload to Google image search
- Not a very reasonable result



other retrieved results:

Why is it a Problem?

Difficult scene conditions



[From: Grauman & Leibe]

Why is it a Problem?

• Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]

Why is it a Problem?

Tones of classes

- What if I tell you that you can do all these tasks with fantastic accuracy (enough to get a D+ in Papert's class) with a single concept?
- This concept is called Neural Networks

- What if I tell you that you can do all these tasks with fantastic accuracy (enough to get a D+ in Papert's class) with a single concept?
- This concept is called Neural Networks
- And it is quite simple.

- What if I tell you that you can do all these tasks with fantastic accuracy (enough to get a D+ in Papert's class) with a single concept?
- This concept is called Neural Networks
- And it is quite simple.

• Remember our Lecture 2 about filtering?

Input "image"

Filter

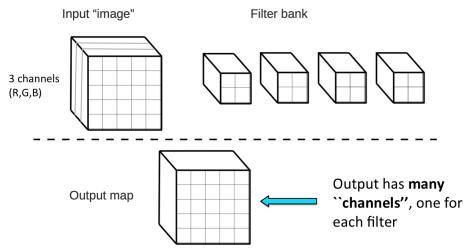
ullet If our filter was [-1,1], we got a vertical edge detector

Input "image"

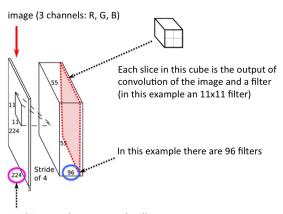
Filter

Output map

Now imagine we didn't only want a vertical edge detector, but also a
horizontal one, and one for corners, one for dots, etc. We would need to
take many filters. A filterbank.



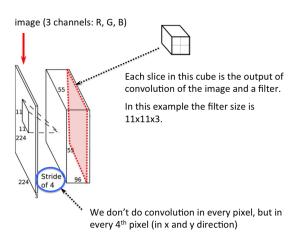
• So applying a filterbank to an image yields a cube-like output, a 3D matrix in which each slice is an output of convolution with one filter.



In this example our network will always expect a 224x224x3 image.

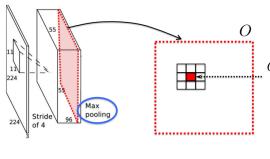
[Pic adopted from: A. Krizhevsky]

• So applying a filterbank to an image yields a cube-like output, a 3D matrix in which each slice is an output of convolution with one filter.



[Pic adopted from: A. Krizhevsky]

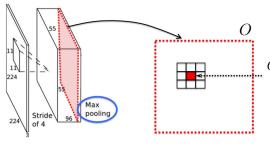
• Do some additional tricks. A popular one is called max pooling. Any idea why you would do this?



$$O(i,j) = \max_{\substack{k \in \{i-1,i,i+1\}\\l \in \{j-1,j,j+1\}}} O(k,l)$$

Take each slice in the output cube, and in each pixel compute a max over a small patch around it. This is called max pooling.

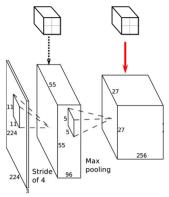
• Do some additional tricks. A popular one is called **max pooling**. Any idea why you would do this? To get **invariance to small shifts in position**.



$$O(i,j) = \max_{\substack{k \in \{i-1,i,i+1\}\\l \in \{j-1,j,j+1\}}} O(k,l)$$

Take each slice in the output cube, and in each pixel compute a max over a small patch around it. This is called max pooling.

• Now add another "layer" of filters. For each filter again do convolution, but this time with the output cube of the previous layer.

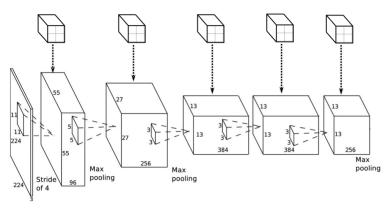


Add one more layer of filters

These filters are convolved with the output of the previous layer. The results of each convolution is again a slice in the cube on the right.

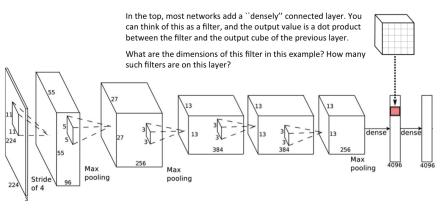
What is the dimension of each of these filters?

• Keep adding a few layers. Any idea what's the purpose of more layers? Why can't we just have a full bunch of filters in one layer?

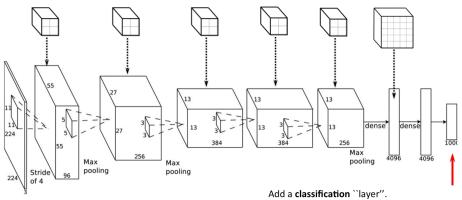


Do it recursively Have multiple ``layers''

 In the end add one or two fully (or densely) connected layers. In this layer, we don't do convolution we just do a dot-product between the "filter" and the output of the previous layer.



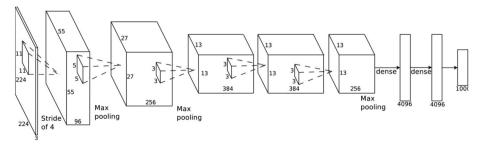
 Add one final layer: a classification layer. Each dimension of this vector tells us the probability of the input image being of a certain class.

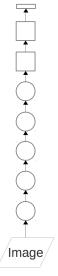


Add a classification layer.

For an input image, the value in a particular dimension of this vector tells you the probability of the corresponding object class.

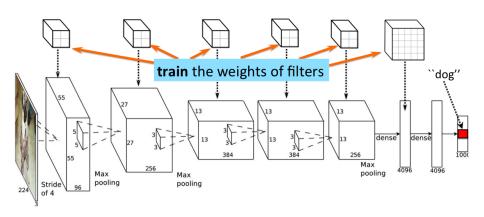
- This fully specifies a network. The one below has been a popular choice in the fast few years. It was proposed by UofT guys: A. Krizhevsky, I. Sutskever, G. E. Hinton, *ImageNet Classification with Deep Convolutional Neural Networks*, NIPS 2012. This network won the Imagenet Challenge of 2012, and revolutionized computer vision.
- How many parameters (weights) does this network have?





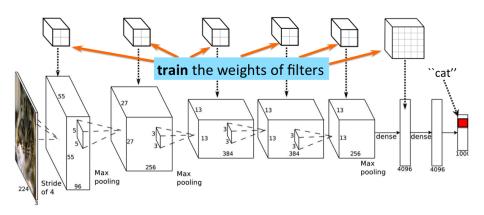
- Trained with stochastic gradient descent on two NVIDIA GPUs for about a week
- 650,000 neurons
- 60,000,000 parameters
- 630,000,000 connections
- Final feature layer: 4096-dimensional
 - Convolutional layer: convolves its input with a bank of 3D filters, then applies point-wise non-linearity
 - Fully-connected layer: applies linear filters to its input, then applies pointwise non-linearity

• The trick is to not hand-fix the weights, but to **train** them. Train them such that when the network sees a picture of a dog, the last layer will say "dog".

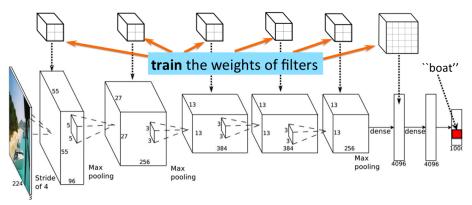


[Pic adopted from: A. Krizhevsky]

• Or when the network sees a picture of a cat, the last layer will say "cat".



• Or when the network sees a picture of a boat, the last layer will say "boat"... The more pictures the network sees, the better.

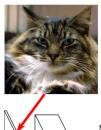


Train on **lots** of examples. Millions. Tens of millions. Wait a week for training to finish.

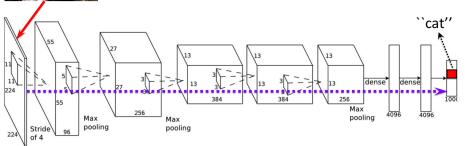
Share your network (the weights) with others who are not fortunate enough with GPU power.

Classification

 Once trained we can do classification. Just feed in an image or a crop of the image, run through the network, and read out the class with the highest probability in the last (classification) layer.



What's the class of this object?



Classification Performance

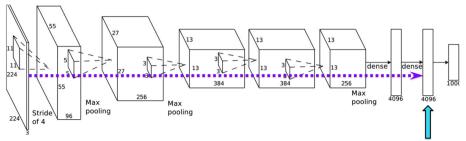
- Imagenet, main challenge for object classification: http://image-net.org/
- 1000 classes, 1.2M training images, 150K for test

Classification Performance Two Years Ago (2012)

• A. Krizhevsky, I. Sutskever, and G. E. Hinton rock the Imagenet Challenge

Team name	Filename	Error (5 guesses)	Description
SuperVision	test-preds-141-146.2009-131- 137-145-146.2011-145f.	0.15315	Using extra training data from ImageNet Fall 2011 release
SuperVision	test-preds-131-137-145-135- 145f.txt	0.16422	Using only supplied training data
ISI	pred_FVs_wLACs_weighted.txt	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
ISI	pred_FVs_weighted.txt	0.26602	Weighted sum of scores from classifiers using each FV.
ISI	pred_FVs_summed.txt	0.26646	Naive sum of scores from classifiers using each FV.
ISI	pred_FVs_wLACs_summed.txt	0.26952	Naive sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and

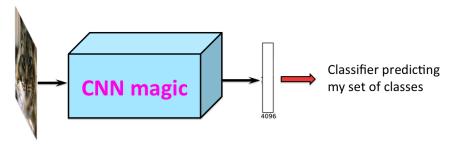
What vision people like to do is take the already trained network (avoid one
week of training), and remove the last classification layer. Then take the top
remaining layer (the 4096 dimensional vector here) and use it as a descriptor
(feature vector).



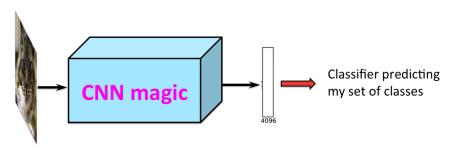
Vision people are mainly interested in this vector. **You can use** it as a descriptor. A much better descriptor than SIFT, etc.

Train your own classifier on top for your choice of classes.

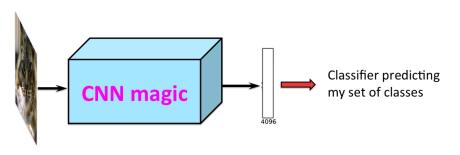
- What vision people like to do is take the already trained network, and remove the last classification layer. Then take the top remaining layer (the 4096 dimensional vector here) and use it as a descriptor (feature vector).
- Now train your own classifier on top of these features for arbitrary classes.



- What vision people like to do is take the already trained network, and remove the last classification layer. Then take the top remaining layer (the 4096 dimensional vector here) and use it as a descriptor (feature vector).
- Now train your own classifier on top of these features for arbitrary classes.
- This is quite hacky, but works miraculously well.



- What vision people like to do is take the already trained network, and remove the last classification layer. Then take the top remaining layer (the 4096 dimensional vector here) and use it as a descriptor (feature vector).
- Now train your own classifier on top of these features for arbitrary classes.
- This is quite hacky, but works miraculously well.
- Everywhere where we were using SIFT (or anything else), you can use NNs.



• For classification we feed in the full image to the network. But how can we perform detection?

Find all objects of interest in this image!

- Generate lots of proposal bounding boxes (rectangles in image where we think any object could be)
- Each of these boxes is obtained by grouping similar clusters of pixels

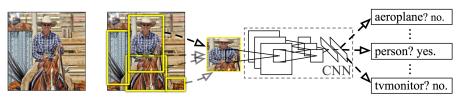


Figure: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14

- Generate lots of proposal bounding boxes (rectangles in image where we think any object could be)
- Each of these boxes is obtained by grouping similar clusters of pixels
- ullet Crop image out of each box, warp to fixed size (224 imes 224) and run through the network

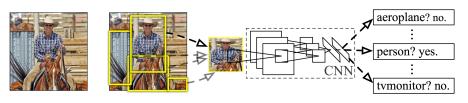


Figure: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14

- Generate lots of proposal bounding boxes (rectangles in image where we think any object could be)
- Each of these boxes is obtained by grouping similar clusters of pixels
- ullet Crop image out of each box, warp to fixed size (224 imes 224) and run through the network.
- If the warped image looks weird and doesn't resemble the original object, don't worry. Somehow the method still works.
- This approach, called R-CNN, was proposed in 2014 by Girshick et al.

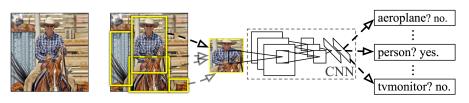


Figure: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14

 One way of getting the proposal boxes is by hierarchical merging of regions.
 This particular approach, called Selective Search, was proposed in 2011 by Uijlings et al. We will talk more about this later in class.

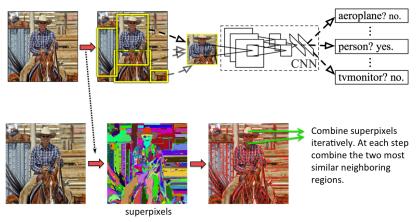


Figure: Bottom: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders, Selective Search for Object Recognition, IJCV 2013

 One way of getting the proposal boxes is by hierarchical merging of regions.
 This particular approach, called Selective Search, was proposed in 2011 by Uijlings et al. We will talk more about this later in class.

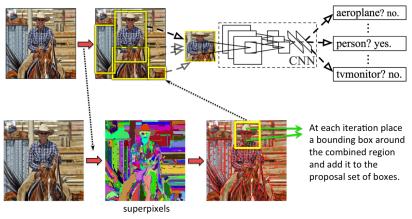


Figure: Bottom: J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders, Selective Search for Object Recognition, IJCV 2013

Detection Performance

• PASCAL VOC challenge: http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

Figure: PASCAL has 20 object classes, 10K images for training, 10K for test

Detection Performance a Year Ago: 40.4%

A year ago, no networks:

Results on the main recognition benchmark, the PASCAL VOC challenge.

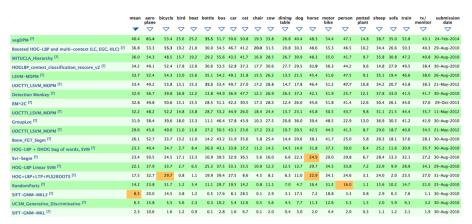


Figure: Leading method segDPM is by Sanja et al. Those were the good times...

S. Fidler, R. Mottaghi, A. Yuille, R. Urtasun, Bottom-up Segmentation for Top-down Detection, CVPR'13

Detection Performance 6 Months Ago: 53.7%

6 months ago, networks:

• Results on the main recognition benchmark, the **PASCAL VOC challenge**.

Figure: Leading method R-CNN is by Girshick et al.

R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14

- So networks turn out to be great.
- At this point Google, Facebook, Microsoft, Baidu "steal" most neural network professors from academia.

• But to train the networks you need quite a bit of computational power. So what do you do?

• Buy even more.



• And train more layers. 16 instead of 7 before. 144 million parameters.

add more layers

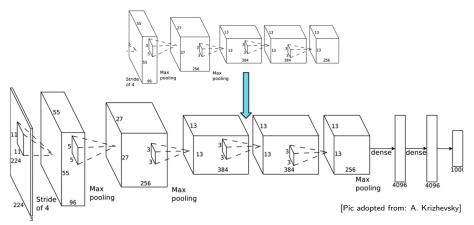


Figure: K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014

Detection Performance 5 Days Ago: 62.9%

As of five days ago, even bigger networks:

• Results on the main recognition benchmark, the PASCAL VOC challenge



Figure: Leading method R-CNN is by Girshick et al.

R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR'14

Neural Networks – Detections

[Source: Girshick et al.]

Neural Networks - Detections



[Source: Girshick et al.]

Neural Networks - Detections

[Source: Girshick et al.]
Sanja Fidler

Neural Networks – Can Do Anything

- Classification / annotation
- Detection
- Segmentation
- Stereo
- Optical flow

How would you use them for these tasks?

Neural Networks - Years In The Making

• NNs have been around for 50 years. Inspired by processing in the brain.

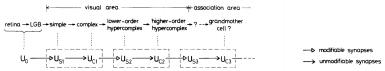
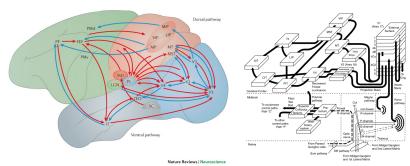


Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

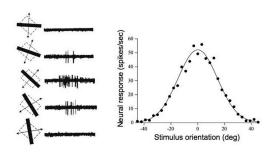
Figure: Fukushima, Neocognitron. Biol. Cybernetics, 1980



gure: http://www.nature.com/nrn/journal/v14/n5/figs/recognition/nrn3476-f1.jpg,

• V1: selective to direction of movement (Hubel & Wiesel)

V1 physiology: orientation selectivity



Hubel & Wiesel, 1968

Figure: Pic from: http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/LGN-V1-slides/Slide15.jpg

• V2: selective to combinations of orientations

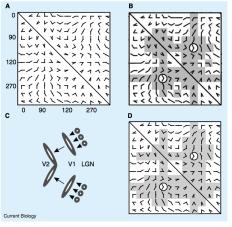


Figure 1. The selectivity of a V2 neuron can be explained by two V1 inputs.

(A) Angle stimuli, consisting of two line segments, used by Ito and Komatsu [9] to study the selectivity of V2 neurons. The orientation of one line segment varies along the rows and the orientation of the other line segment varies along the columns. (B) The pattern of responses for an example neuron. Circles surround the stimulus that evoked the maximal response, and stimuli that evoked more than half this maximum are shaded in grav. (C) Our model V2 neuron sums the responses from two orientation-selective V1 neurons that sum the inputs from LGN cells with center-surround receptive fields [11], (D) Predicted response from our model neuron to the stimulus set. Like the example V2 neuron, the model neuron responds to angle stimuli containing oriented line segments that match the preferred orientation of either of the two V1 input neurons.

Figure: G. M. Boynton and Jay Hegde, Visual Cortex: The Continuing Puzzle of Area V2, Current Biology, 2004

 V4: selective to more complex local shape properties (convexity/concavity, curvature, etc)

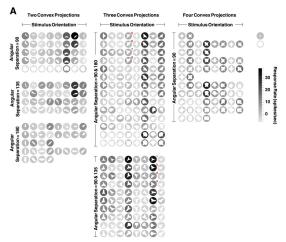


Figure: A. Pasupathy, C. E. Connor, Shape Representation in Area V4: Position-Specific Tuning for Boundary Conformation, Journal of Neurophysiology, 2001

• IT: Seems to be category selective

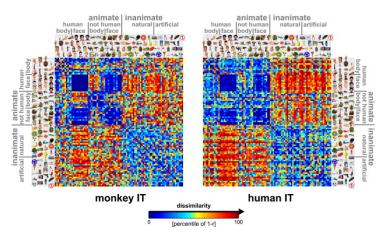


Figure: N. Kriegeskorte, M. Mur, D. A. Ruff, R. Kiani, J. Bodurka, H. Esteky, K. Tanaka, P. A. Bandettini, Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey, Neuron, 2008

• Grandmother / Jennifer Aniston cell?

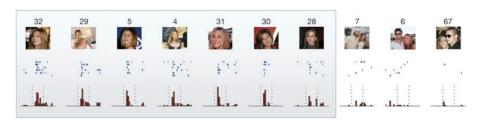


Figure: R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, I. Fried, Invariant visual representation by single-neurons in the human brain. Nature, 2005

Grandmother / Jennifer Aniston cell?

GRANDMOTHER CELLS REVISITED

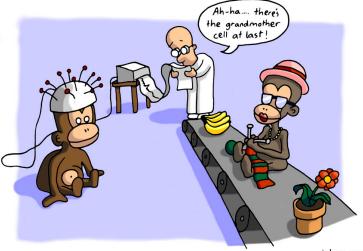
ARE NERVE CELLS such as the Jennifer Aniston neuron the long-debated grandmother cells? To answer that question, we have to be more precise about what we mean by grandmother cells. One extreme way of thinking about the grandmother cell hypothesis is that only one neuron responds to one concept. But if we could find one single neuron that fired to Jennifer Aniston, it strongly suggests that there must be more—the chance of finding the one and only one among billions is minuscule. Moreover, if only a single neuron would be responsible for a person's entire concept of Jennifer Aniston, and it were damaged or destroyed by disease or accident, all trace of Jennifer Aniston would disappear from memory, an extremely unlikely prospect.

A less extreme definition of grandmother cells postulates that many more than a solitary neuron respond to any one concept. This hypothesis is plausible but very difficult, if not impossible, to prove. We cannot try every possible concept to prove that the neuron fires only to Jennifer Aniston. In fact, the opposite is often the case: we often find neurons that respond to more than one concept. Thus.

A single neuron that responded to Luke Skywalker and his written and spoken name also fired to the image of Yoda.

if a neuron fires only to one person during an experiment, we cannot rule out that it could have also fired to some other stimuli that we did not happen to show.

 Take the whole brain processing business with a grain of salt. Even neuroscientists don't fully agree. Think about computational models.



jolyon.co.uk

Figure: Pic from: http://thebrainbank.scienceblog.com/files/2012/11/Image-6.jpg

Neural Networks – Why Do They Work?

- NNs have been around for 50 years, and they haven't changed much.
- So why do they work now?

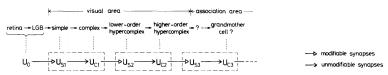


Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

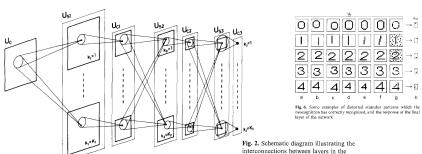


Figure: Fukushima, Neocognitron. Biol. Cybernetics, 1980

neocognitron

Neural Networks – Why Do They Work?

- NNs have been around for 50 years, and they haven't changed much.
- So why do they work now?

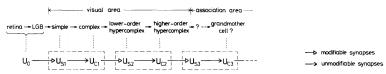


Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

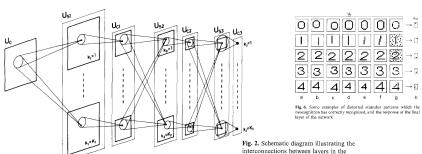


Figure: Fukushima, Neocognitron. Biol. Cybernetics, 1980

neocognitron

Neural Networks – Why Do They Work?

- Some cool tricks in design and training:
 A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
- Mainly: computational resources and tones of data
- NNs can **train millions** of parameters from tens of **millions of examples**

Figure: The Imagenet dataset: Deng et al. 14 million images, 1000 classes

Neural Networks - Imagenet Challenge 2014

Classification / localization error on ImageNet

Team name	Entry description	Classification error	Localization error
GoogLeNet	No localization. Top5 val score is 6.66% error.	0.06656	0.606257
VGG	a combination of multiple ConvNets, including a net trained on images of different size (fusion weights learnt on the validation set); detected boxes were not updated	0.07325	0.256167
<u>VGG</u>	a combination of multiple ConvNets, including a net trained on images of different size (fusion done by averaging); detected boxes were not updated	0.07337	0.255431
<u>VGG</u>	a combination of multiple ConvNets (by averaging)	0.07405	0.253231
<u>vgg</u>	a combination of multiple ConvNets (fusion weights learnt on the validation set)	0.07407	0.253501
MSRA Visual Computing	Multiple SPP-nets further tuned on validation set (B)	0.0806	0.354924
MSRA Visual Computing	Multiple SPP-nets further tuned on validation set (A)	0.08062	0.354769
Andrew Howard	Combination of Convolutional Nets with Validation set adaptation + KNN	0.08111	0.610365
MSRA Visual Computing	Multiple SPP-nets (B)	0.082	0.355568
Andrew Howard	Combination of Convolutional Nets with Validation set adaptation	0.08226	0.611019
MSRA Visual	Multiple SPP-nets (A)	0.08307	0.3562

Neural Networks – Vision solved?

Detection accuracy on ImageNet

Team name	Entry description	Description of outside data used	mean AP	Number of object categories won
GoogLeNet	Ensemble of detection models. Validation is 44.5% mAP	Pretraining on ILSVRC12 classification data.	0.439329	142
CUHK DeepID- Net	Combine multiple models described in the abstract without contextual modeling. The training data includes the validation dataset 2.	ImageNet classification and localization data	0.406998	
CUHK DeepID- Net	Combine multiple models described in the abstract without contextual modeling	ImageNet classification and localization data	0.406659	29
Deep Insight	Combination of three detection models	Three CNNs from classification task are used for initialization.	0.404517	27
CUHK DeepID- Net2	Combine multiple models described in the abstract without contextual modeling. The training data includes the validation dataset 2.	ImageNet classification and localization data	0.40352	
CUHK DeepID- Net2	Combine multiple models described in the abstract without contextual modeling	ImageNet classification and localization data	0.403417	
Deep Insight	A single detection model.	A CNN from classification task is used for initialization.	0.401568	
Deep Insight	Another single detection model.	A CNN from classification task is used for initialization.	0.396982	

Vision in 2014 – Neural Networks

Code

Main code:

Training, classification:

http://caffe.berkeleyvision.org/

Detection:

https://github.com/rbgirshick/rcnn

• Unless you have strong CPUs and GPUs, don't try this at home.

- The question is, can we solve recognition by just adding more and more layers and playing with different parameters?
- If so, academia is doomed. Only Google, Facebook, etc, have the resources.

- The question is, can we solve recognition by just adding more and more layers and playing with different parameters?
- If so, academia is doomed. Only Google, Facebook, etc, have the resources.
- This class could finish today, and you should all go sit on a Machine Learning class instead.

- The question is, can we solve recognition by just adding more and more layers and playing with different parameters?
- If so, academia is doomed. Only Google, Facebook, etc, have the resources.
- This class could finish today, and you should all go sit on a Machine Learning class instead.
- But if this really was the case, vision research would become pretty boring.
- The challenge is to design computationally simpler models to get the same accuracy.

- The question is, can we solve recognition by just adding more and more layers and playing with different parameters?
- If so, academia is doomed. Only Google, Facebook, etc, have the resources.
- This class could finish today, and you should all go sit on a Machine Learning class instead.
- But if this really was the case, vision research would become pretty boring.
- The challenge is to design computationally simpler models to get the same accuracy.

Neural Networks – Still Missing Some Generalization?

Neural Networks – Still Missing Some Generalization?

[Pic from: S. Dickinson]

person conf = -1.131

chair conf = -0.551

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources
 - They didn't have enough or even any data

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources
 - They didn't have enough or even any data
 - Machine Learning techniques weren't as powerful yet, or at least the Vision researchers haven't learned them yet

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources
 - They didn't have enough or even any data
 - Machine Learning techniques weren't as powerful yet, or at least the Vision researchers haven't learned them yet
- What makes a good researcher:
 - Recognizing good ideas
 - Figuring out why something doesn't work and what has the potential of making it to work
 - Taking risks

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources
 - They didn't have enough or even any data
 - Machine Learning techniques weren't as powerful yet, or at least the Vision researchers haven't learned them yet
- What makes a good researcher:
 - Recognizing good ideas
 - Figuring out why something doesn't work and what has the potential of making it to work
 - Taking risks
- As we go through history, try to spot good ideas!

- We will do a quick fast-forward through the history of recognition
- For every type of approach, try to factor out the time when it was done. Why?
 - Because in the old days people didn't have enough computational resources
 - They didn't have enough or even any data
 - Machine Learning techniques weren't as powerful yet, or at least the Vision researchers haven't learned them yet
- What makes a good researcher:
 - Recognizing good ideas
 - Figuring out why something doesn't work and what has the potential of making it to work
 - Taking risks
- As we go through history, try to spot good ideas!

Textbook

This paper has a lot of old-age material:

J. L. Mundy

Object Recognition in the Geometric Era: a Retrospective

Paper: http://www.di.ens.fr/~ponce/mundy.pdf

Summary – Stuff Useful to Know

- Important tasks for visual recognition: classification (given an image crop, decide which object class or scene it belongs to), detection (where are all the objects for some class in the image?), segmentation (label each pixel in the image with a semantic label), pose estimation (which 3D view or pose the object is in with respect to camera?), action recognition (what is happening in the image/video)
- Bottom-up grouping is important to find only a few rectangles in the image which contain objects of interest. This is much more efficient than exploring all possible rectangles.
- Neural Networks are currently the best feature extractor in computer vision.
- Mainly because they have multiple layers of nonlinear classifiers, and because they can train from millions of examples efficiently.
- Going forward design computationally less intense solutions with higher generalization power that will beat 100 layers that Google can afford to do.

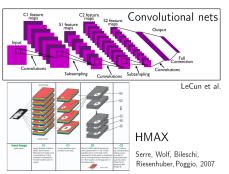
People Doing Neural Networks

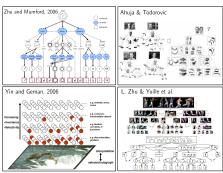
We only mentioned a few, but more researchers are working on NNs:

- Geoff Hinton et al
- Yann Lecun et al.
- Joshua Bengio et al
- Andrew Ng et al
- Ruslan Salakhutdinov et al
- Rob Fergus et al
- and others

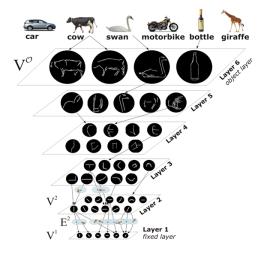
Other Hierarchies

- Neural Networks are not the only hierarchies in computer vision
- There used to be quite a few approaches: HMAX (similar to NNs; by Poggio et al.), grammars (like in language there is a "grammar" that can generate any object; Zhu & Mumford), compositional hierarchies (objects are composed out of deformable parts, the parts are composed out of deformable subparts, etc; Geman, Amit, Todorovic & Ahuja, Yuille, and yours truly Sanja)

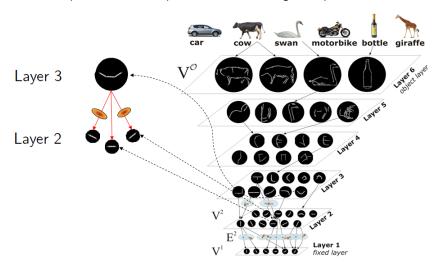




- A hierarchical compositional shape vocabulary
- The compositions model spatial relations among their parts

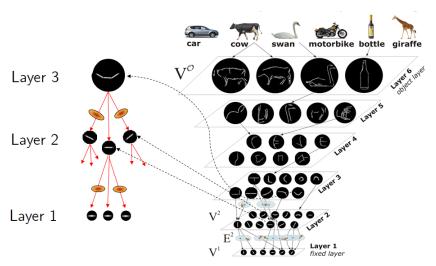


- A hierarchical compositional shape vocabulary
- The compositions model spatial relations among their parts

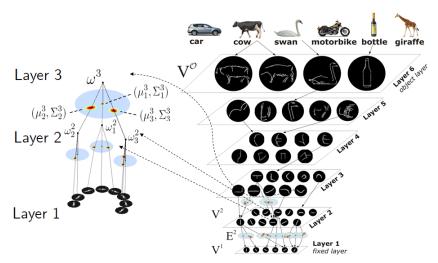


- Representation arXiv, 2014]

 A hierarchical compositional shape vocabulary
 - The compositions model spatial relations among their parts



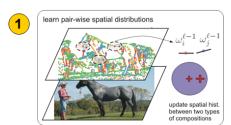
- A hierarchical compositional shape vocabulary
- The compositions model spatial relations among their parts

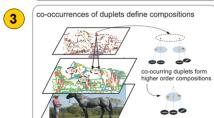


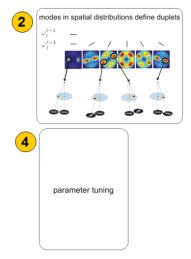
Learning

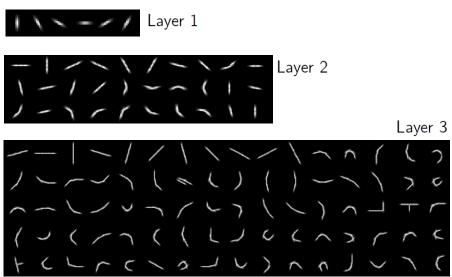
[S. Fidler, M. Boben, A. Leonardis. Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation arXiv, 2014]

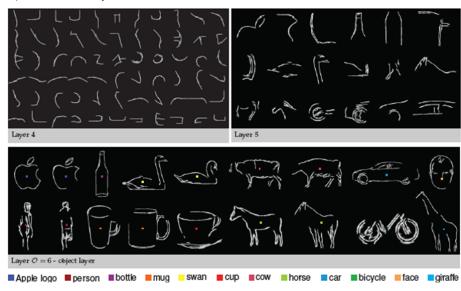
Learning the hierarchical vocabulary





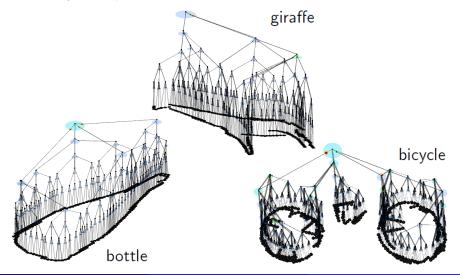


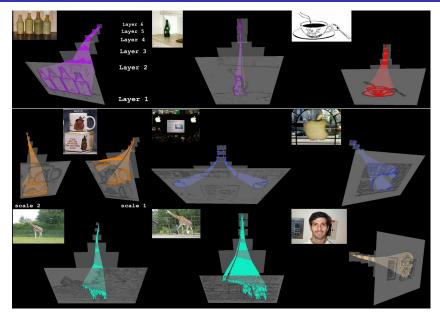


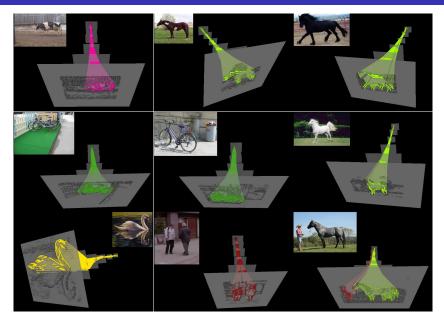


[S. Fidler, M. Boben, A. Leonardis. Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation arXiv, 2014]

Full object compositions

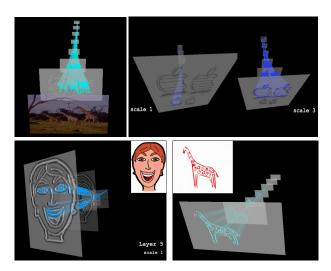






[S. Fidler, M. Boben, A. Leonardis. Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation arXiv, 2014]

Invariance

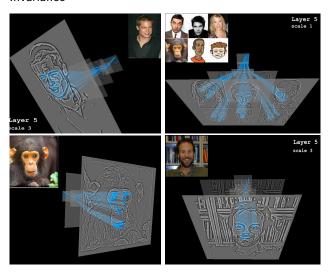


Scale

Real / Hand-drawn

[S. Fidler, M. Boben, A. Leonardis. Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation arXiv, 2014]

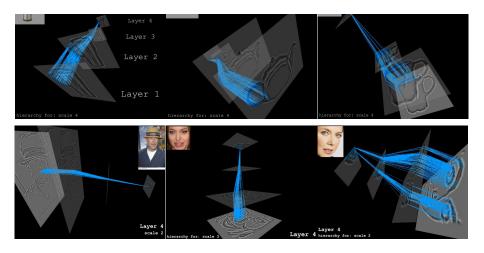
Invariance

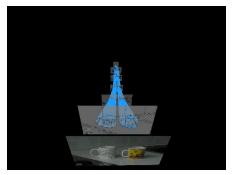


 Intra-class variability

[S. Fidler, M. Boben, A. Leonardis. Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation arXiv, 2014]

• Parsing objects at multiple layers





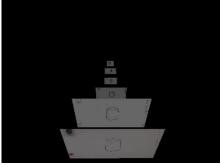


Figure: http://www.cs.utoronto.ca/~fidler/slides/CSC420/videos/mugs.mp4, http://www.cs.utoronto.ca/~fidler/slides/CSC420/videos/mugs_trick.mp4

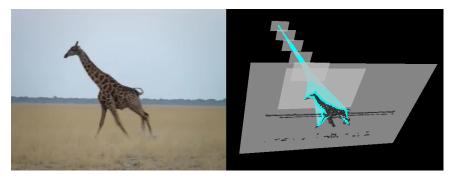


Figure: http://www.cs.utoronto.ca/~fidler/slides/CSC420/videos/giraffe_full.mp4

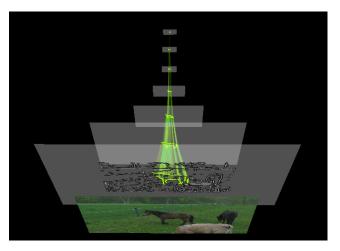


Figure: http://www.cs.utoronto.ca/~fidler/slides/CSC420/videos/horse.mp4

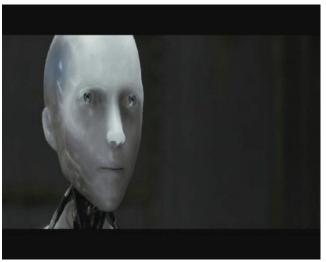


Figure: http://www.cs.utoronto.ca/~fidler/slides/CSC420/videos/irobot.mp4