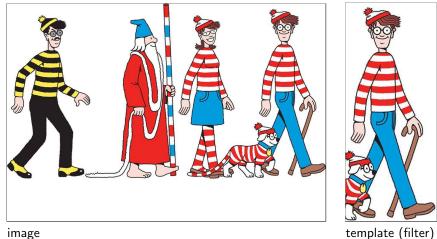
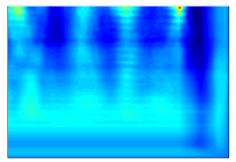
Edge Detection

- Let's revisit the problem of finding Waldo
- And let's take a simple example

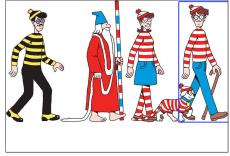


image

- Let's revisit the problem of finding Waldo
- And let's take a simple example



normalized cross-correlation

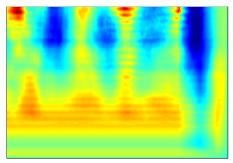


Waldo detection (putting box around max response)

- Now imagine Waldo goes shopping
- ... but our filter **doesn't know that**

image

- Now imagine Waldo goes shopping (and the dog too)
- ... but our filter doesn't know that



normalized cross-correlation

Waldo detection (putting box around max response)

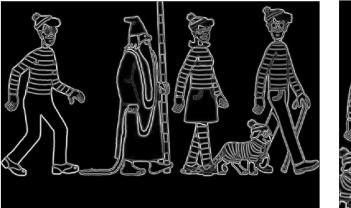
Finding Waldo (again)

• What can we do to find Waldo again?

۰

Finding Waldo (again)

- What can we do to find Waldo again?
- Edges!!!



template (filter)

Sanja Fidler

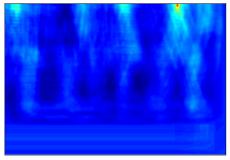
image

Intro to Image Understanding

Finding Waldo (again)

• What can we do to find Waldo again?

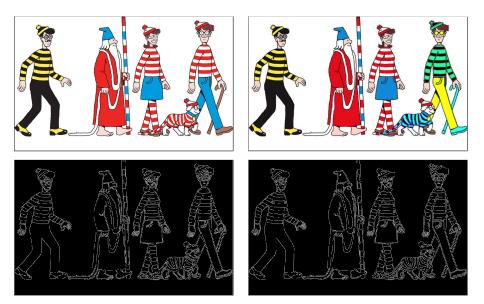
• Edges!!!



normalized cross-correlation (using the edge maps)

Waldo detection (putting box around max response)

Waldo and Edges



Edge detection

- Map image from 2d array of pixels to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition

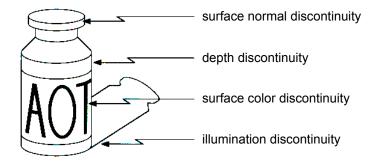


Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

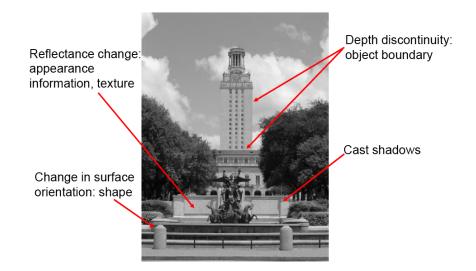
Origin of Edges

• Edges are caused by a variety of factors



[Source: N. Snavely]

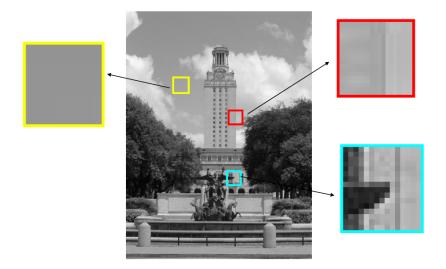
What Causes an Edge?



[Source: K. Grauman]

Sanja Fidler

Looking More Locally...

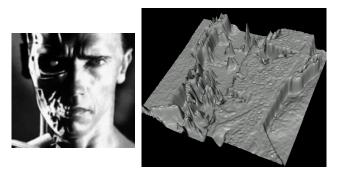


[Source: K. Grauman]

Sanja Fidler

Images as Functions

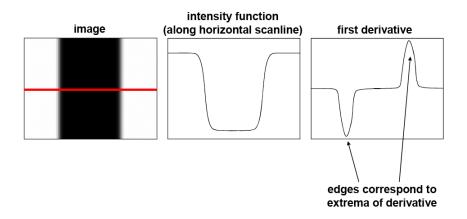
• Edges look like steep cliffs



[Source: N. Snavely]

Characterizing Edges

• An edge is a place of rapid change in the image intensity function.



[Source: S. Lazebnik]

How can we differentiate a digital image f[x, y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

How can we differentiate a digital image f[x, y]?

• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?

How can we differentiate a digital image f[x, y]?

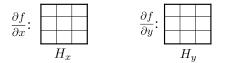
• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?



Sanja Fidler

How can we differentiate a digital image f[x, y]?

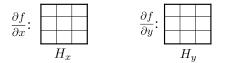
• Option 1: reconstruct a continuous image *f*, then compute the partial derivative as

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x)}{\epsilon}$$

• Option 2: take discrete derivative (finite difference)

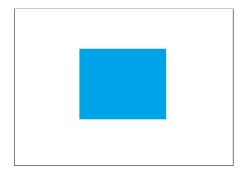
$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f[x+1,y] - f[x]}{1}$$

• What would be the filter to implement this using convolution?



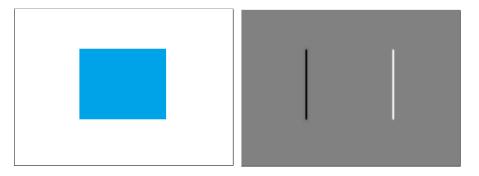
Sanja Fidler

• How does the horizontal derivative using the filter [-1,1] look like?



Image

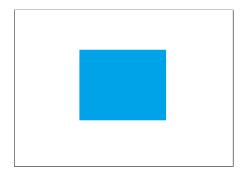
• How does the horizontal derivative using the filter [-1,1] look like?



Image

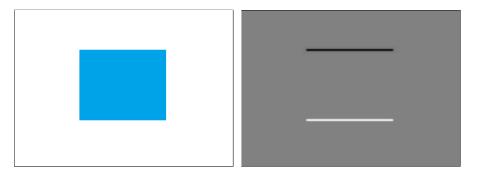
 $\frac{\partial f(x,y)}{\partial x}$ with [-1,1] and correlation

• How about the vertical derivative using filter $[-1,1]^T$?



Image

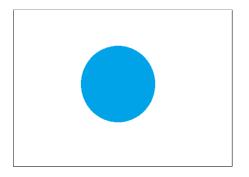
• How about the vertical derivative using filter $[-1,1]^T$?



Image

 $\frac{\partial f(x,y)}{\partial y}$ with $[-1,1]^T$ and correlation

• How does the horizontal derivative using the filter [-1,1] look like?



Image

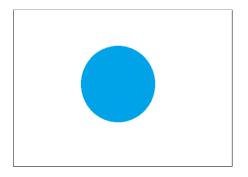
• How does the horizontal derivative using the filter [-1,1] look like?



Image

 $\frac{\partial f(x,y)}{\partial x}$ with [-1,1] and correlation

• How about the vertical derivative using filter $[-1,1]^T$?



Image

• How about the vertical derivative using filter $[-1,1]^T$?



Image

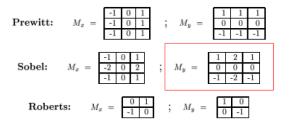
 $\frac{\partial f(x,y)}{\partial y}$ with $[-1,1]^T$ and correlation

Figure: Using correlation filters

[Source: K. Grauman]

Sanja Fidler

Finite Difference Filters



[Source: K. Grauman]

• The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

• The gradient points in the direction of most rapid change in intensity

• The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

• The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

• The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

• The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The edge strength is given by the magnitude $||\nabla f|| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$

[Source: S. Seitz]

• The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

• The gradient points in the direction of most rapid change in intensity

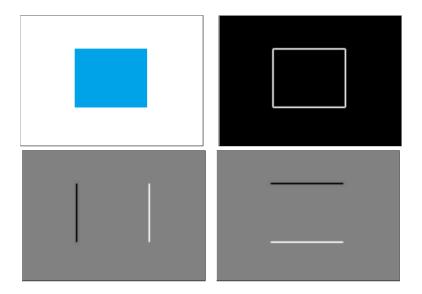
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$
$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

• The gradient direction (orientation of edge normal) is given by:

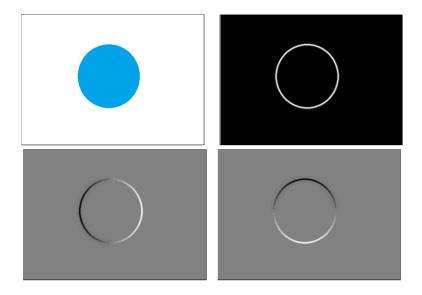
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The edge strength is given by the magnitude $||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$ [Source: S. Seitz]

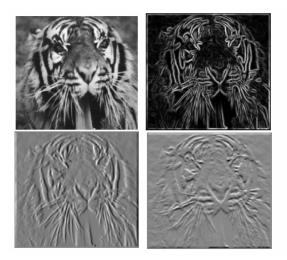
Example: Image Gradient



Example: Image Gradient



Example: Image Gradient

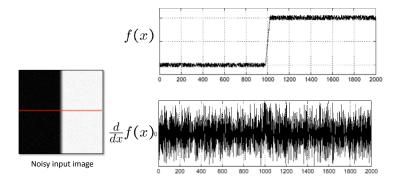


[Source: S. Lazebnik]

Sanja Fidler

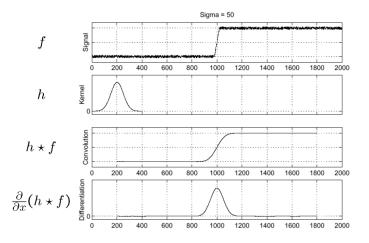
Effects of noise

- What if our image is noisy? What can we do?
- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.



Effects of noise

• Smooth first with h (e.g. Gaussian), and look for peaks in $\frac{\partial}{\partial x}(h * f)$.



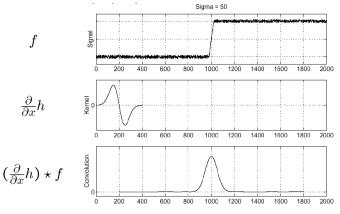
[Source: S. Seitz]

Derivative theorem of convolution

• Differentiation property of convolution

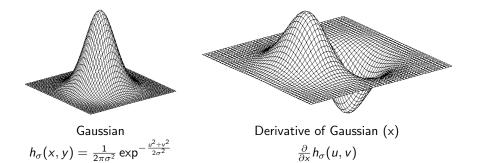
$$\frac{\partial}{\partial x}(h*f) = \left(\frac{\partial h}{\partial x}\right)*f = h*\left(\frac{\partial f}{\partial x}\right)$$

It saves one operation



[Source: S. Seitz]

2D Edge Detection Filters



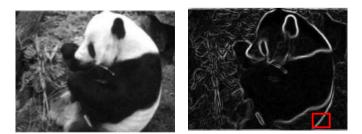
[Source: N. Snavely]

Derivative of Gaussians



[Source: K. Grauman]

• Applying the Gaussian derivatives to image



• Applying the Gaussian derivatives to image

Properties:

- Zero at a long distance from the edge
- Positive on both sides of the edge
- Highest value at some point in between, on the edge itself

Effect of σ on derivatives

The detected structures differ depending on the Gaussian's scale parameter:

- Larger values: larger scale edges detected
- Smaller values: finer structures detected

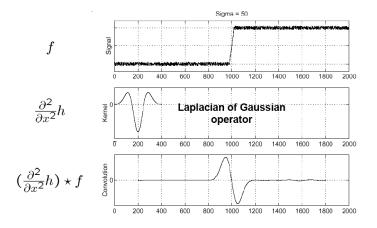
σ = 1 pixel

 σ = 3 pixels

[Source: K. Grauman]

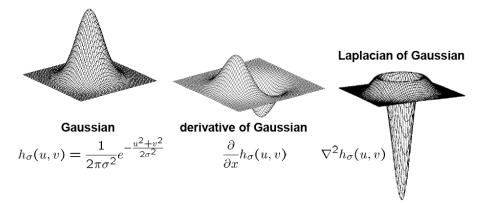
Laplacian of Gaussians

• Edge by detecting zero-crossings of bottom graph



[Source: S. Seitz]

2D Edge Filtering



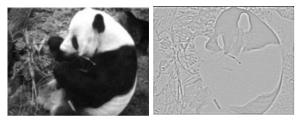
with ∇^2 the Laplacian operator $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

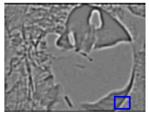
[Source: S. Seitz]

 $\sigma=1 \text{ pixels}$

 $\sigma={\rm 3\ pixels}$

• Applying the Laplacian operator to image





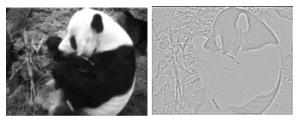
 $\sigma = 1 \text{ pixels}$

 $\sigma = 3$ pixels

• Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the darker side of edge
- Negative on the lighter side
- Zero at some point in between, on edge itself



 $\sigma = 1$ pixels

 $\sigma = 3 \text{ pixels}$

• Applying the Laplacian operator to image

Properties:

- Zero at a long distance from the edge
- Positive on the darker side of edge
- Negative on the lighter side
- Zero at some point in between, on edge itself

Locating Edges – Canny's Edge Detector

Let's take the most popular picture in computer vision: Lena (appeared in November 1972 issue of Playboy magazine)

[Source: N. Snavely]

Locating Edges

Figure: Canny's approach takes gradient magnitude

[Source: N. Snavely]

Locating Edges

Figure: Thresholding

[Source: N. Snavely]

Locating Edges

Figure: Gradient magnitude

[Source: N. Snavely]

Non-Maxima Suppression

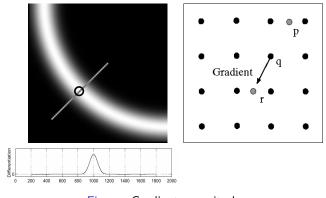


Figure: Gradient magnitude

- Check if pixel is local maximum along gradient direction
- If yes, take it

[Source: N. Snavely]

Finding Edges

Problem: pixels along this edge didn't survive the thresholding

Figure: Problem with thresholding

[Source: K. Grauman]

Hysteresis thresholding

• Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]

Hysteresis thresholding

original image

high threshold (strong edges)

thold low threshold lges) (weak edges)

hysteresis threshold

[Source: L. Fei Fei] Sanja Fidler

Located Edges!

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]

Canny Edge Detector

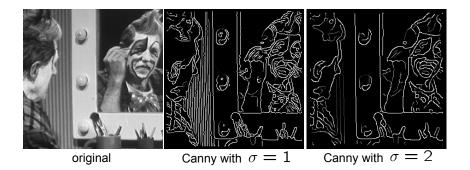
Matlab: edge(image, 'canny')

- Filter image with derivative of Gaussian
- Pind magnitude and orientation of gradient
- On-maximum suppression
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]

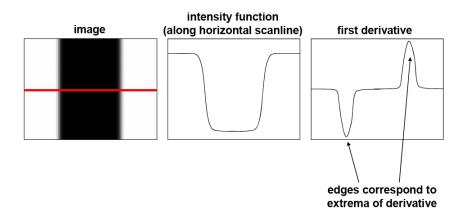
Canny Edge Detector

- large σ detects large-scale edges
- small σ detects fine edges

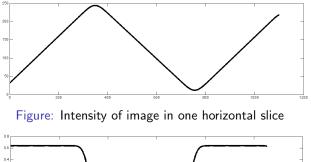


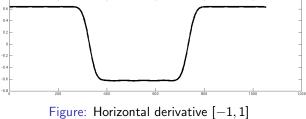
[Source: S. Seitz]

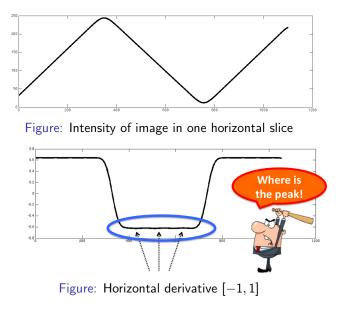
• Remember this?



• What happens with an image with the following intensity profile?







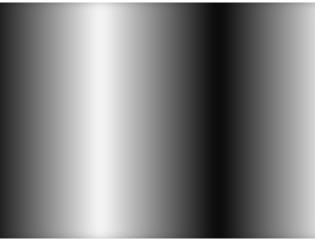


Figure: The image

• Is there really an edge in this image?

Figure: Canny's edge detection

• Is there really an edge in this image?

Canny edge detector

- Still one of the most widely used edge detectors in computer vision
- J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
- Depends on several parameters: σ of the **blur** and the **thresholds**

[Source: R. Urtasun]

Summary – Stuff You Should Know

Not so good:

- Horizontal image gradient: Subtract intensity of left neighbor from pixel's intensity (filtering with [-1, 1])
- Vertical image gradient: Subtract intensity of bottom neighbor from pixel's intensity (filtering with $[-1, 1]^T$)

Much better (more robust to noise):

- **Horizontal image gradient**: Apply derivative of Gaussian with respect to x to image (filtering!)
- Vertical image gradient: Apply derivative of Gaussian with respect to y to image
- Magnitude of gradient: compute the horizontal and vertical image gradients, square them, sum them, and $\sqrt{}$ the sum
- Edges: Locations in image where magnitude of gradient is high
- Phenomena that **causes** edges: rapid change in surface's normals, depth discontinuity, rapid changes in color, change in illumination

Summary – Stuff You Should Know

• Properties of gradient's magnitude:

- Zero far away from edge
- Positive on both sides of the edge
- Highest value directly on the edge
- Higher σ emphasizes larger structures

• Canny's edge detector:

- Compute gradient's direction and magnitude
- Non-maxima suppression
- Thresholding at two levels and linking

Matlab functions:

- FSPECIAL: gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- SMOOTHGRADIENT: function to compute gradients with derivatives of Gaussians. Find it in Lecture's 3 code (check class webpage)
- EDGE: use EDGE(I, 'CANNY') to detect edges with Canny's method, and EDGE(I, 'LOG') for Laplacian method

Edge Detection State of The Art

P. Dollar and C. Zitnick Structured Forests for Fast Edge Detection ICCV 2013

> Code: http://research.microsoft.com/en-us/downloads/ 389109f6-b4e8-404c-84bf-239f7cbf4e3d/default.aspx

(Time stamp: Sept 15, 2014)

Testing the Canny Edge Detector

- Let's take this image
- Our goal (a few lectures from now) is to detect objects (cows here)

Testing the Canny Edge Detector

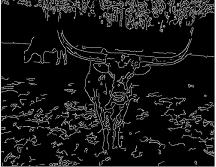
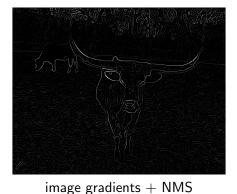
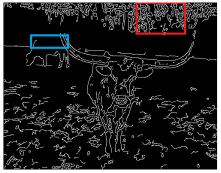


image gradients + NMS

Canny's edges

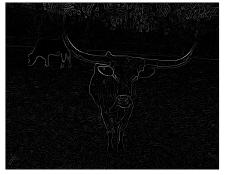
Testing the Canny Edge Detector





Canny's edges

Testing the Canny Edge Detector



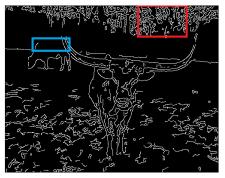


image gradients + NMS

Canny's edges

- Lots of "distractor" and missing edges
- Can we do better?

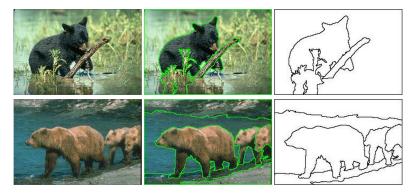
Annotate...

- Imagine someone goes and annotates which edges are correct
- ... and someone has:

- Imagine someone goes and annotates which edges are correct
- ... and someone has:

The Berkeley Segmentation Dataset and Benchmark

by D. Martin and C. Fowlkes and D. Tal and J. Malik



... and do Machine Learning

• How can we make use of such data to improve our edge detector?

... and do Machine Learning

- How can we make use of such data to improve our edge detector?
- We can use Machine Learning techniques to:

Train classifiers!

- Please learn what a classifier /classification is
- In particular, learn what a **Support Vector Machine** (SVM) is (some links to tutorials are on the class webpage)
- With each week it's going to be more important to know about this
- You don't need to learn all the details / math, but to understand the concept enough to know what's going on

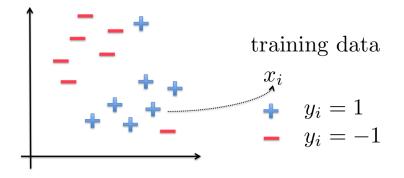
... and do Machine Learning

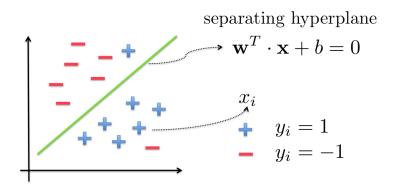
- How can we make use of such data to improve our edge detector?
- We can use Machine Learning techniques to:

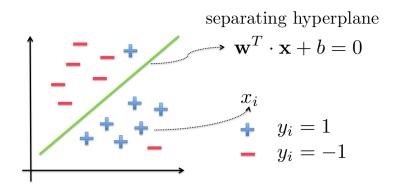
Train classifiers!

- Please learn what a classifier /classification is
- In particular, learn what a **Support Vector Machine** (SVM) is (some links to tutorials are on the class webpage)
- With each week it's going to be more important to know about this
- You don't need to learn all the details / math, but to understand the concept enough to know what's going on

- Each data point **x** lives in a *n*-dimensional space, $x \in \mathbb{R}^n$
- We have a bunch of data points \mathbf{x}_i , and for each we have a **label**, y_i
- A label y_i can be either 1 (positive example correct edge in our case), or -1 (negative example wrong edge in our case)

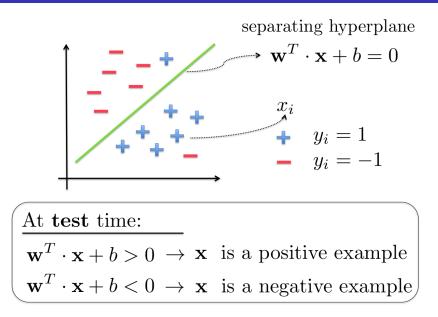






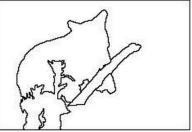
At **training** time:

Finding weights w so that positive and negative examples are optimally separated



• How should we do this?

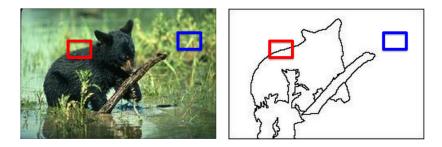
• How should we do this?



image

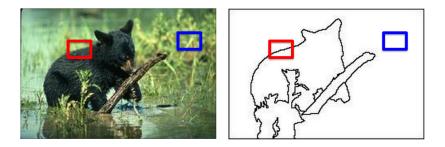
annotation

• We extract lots of image patches



We call each such crop an **image patch**

- We extract lots of image patches
- These are our training data



$$\rightarrow$$
 edge
 \rightarrow no edge

- We extract lots of image patches
- These are our training data
- We convert each image patch P (a matrix) into a vector x



- We extract lots of image patches
- These are our training data
- \bullet We convert each image patch ${\bf P}$ (a matrix) into a vector ${\bf x}$
- Well... This works better: Extract image features for each patch

matrix **P**

compute gradients

matrix \mathbf{G}

 $\mathbf{x} = \mathbf{G}(:)$

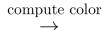
- We extract lots of image patches
- These are our training data
- We convert each image patch P (a matrix) into a vector \mathbf{x}
- Well... This works better: Extract image features for each patch
- Image features are mappings from images (or patches) to other (vector) meaningful representations. More on this in the next class!

matrix \mathbf{P}

compute gradients \rightarrow

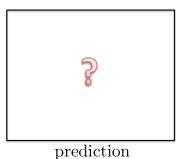
 $\mathbf{x} = \mathbf{G}(:)$

matrix \mathbf{G}

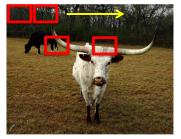


• Once trained, how can we use our new edge detector?

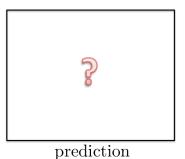
image



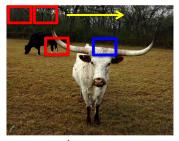
• We extract all image patches



image



- We extract all image patches
- Extract features and use our trained classifier

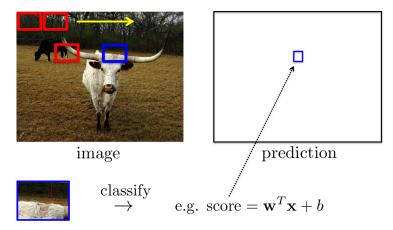


image

prediction

$$\begin{array}{l} \text{classify} \\ \rightarrow \end{array} \quad \text{e.g. score} = \mathbf{w}^T \mathbf{x} + b$$

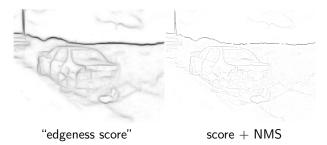
- We extract all image patches
- Extract features and use our trained classifier
- Place the predicted value (score) in the output matrix



image

image gradients

 $\mathsf{gradients} + \mathsf{NMS}$



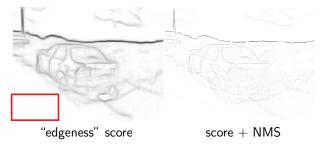
image

image gradients

gradients + NMS

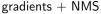
image gradient

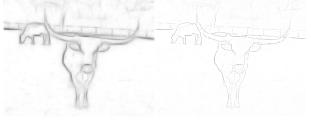
"edgeness" score



image

image gradients

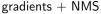




"edgeness" score

image

image gradients



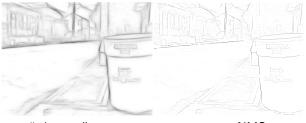


"edgeness" score

image

image gradients

$\mathsf{gradients} + \mathsf{NMS}$



"edgeness" score

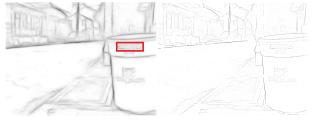
image

image gradient

"edgeness" score

image gradients

gradients + NMS



"edgeness" score

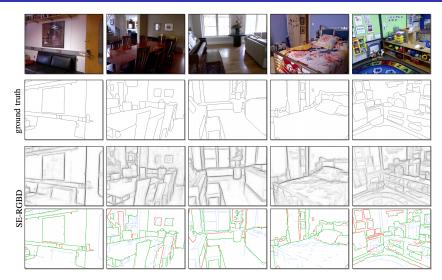
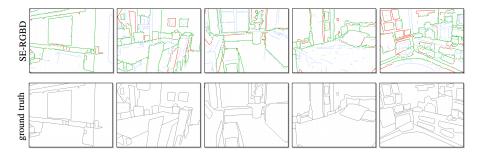


Figure: green=correct, blue=wrong, red=missing, green+blue=output edges

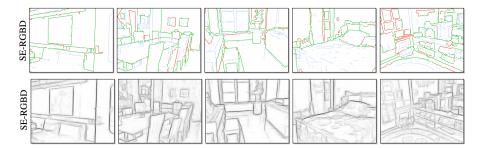
- Recall: How many of all annotated edges we got correct (best is 1)
- Precision How many of all output edges we got correct (best is 1)

$$\mathbf{Recall} = \frac{\text{\# of green (correct edges)}}{\text{\# of all edges in ground-truth (first picture)}}$$

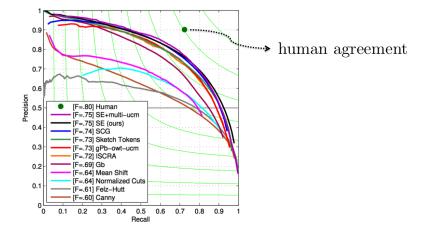


- Recall: How many of all annotated edges we got correct (best is 1)
- Precision How many of all output edges we got correct (best is 1)

$$Precision = \frac{\# \text{ of green (correct edges)}}{\# \text{ of all edges in output (first picture)}}$$



- Recall: How many of all annotated edges we got correct (best is 1)
- **Precision** How many of all **output** edges we got correct (best is 1)



- **Trained detectors** (typically) perform better (true for all applications)
- In this case, the code seem to work better for finding object boundaries (edges) than finding text boundaries. Any idea **why**?
- What would you do if you wanted to detect text (e.g., licence plates)?
- Think about your problem, don't just use code as a black box

So much trouble for just edge computation... Can we do something cool with it already?

S. Avidan and A. Shamir Seam Carving for Content-Aware Image Resizing SIGGRAPH 2007

Paper: http://www.win.tue.nl/~wstahw/edu/2IV05/seamcarving.pdf

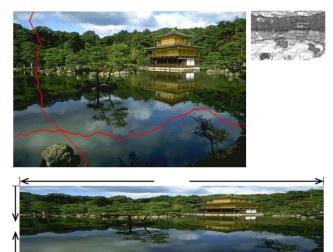
Simple Application: Seam Carving

• Content-aware resizing

- Find path from top to bottom row with minimum gradient energy
- Remove (or replicate) those pixels

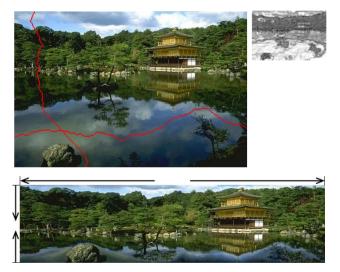
Simple Application: Seam Carving

• Content-aware resizing



Simple Application: Seam Carving

• Content-aware resizing



Seam Carving

- A vertical seam **s** is a list of column indices, one for each row, where each subsequent column differs by no more than one slot.
- Let G denote the image gradient magnitude. Optimal 8-connected path:

$$\mathbf{s}^* = \operatorname{argmin}_{\mathbf{s}} E(\mathbf{s}) = \operatorname{argmin}_{\mathbf{s}} \sum_{i=1}^n G(s_i)$$

- Can be computed via dynamic programming
- Compute the cumulative minimum energy for all possible connected seams at each entry (*i*, *j*):

$$M(i,j) = G(i,j) + \min(M(i-1,j-1), M(i-1,j), M(i-1,j+1))$$

• Backtrack from min value in last row of M to pull out optimal seam path.

Seam Carving – Examples

• Implement seam carving for 5% extra credit on first assignment

Next time: Image Features