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Testing the Canny Edge Detector

Let’s take this image

Our goal (a few lectures from now) is to detect objects (cows here)
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Testing the Canny Edge Detector

image gradients + NMS Canny’s edges
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Testing the Canny Edge Detector

image gradients + NMS Canny’s edges

Lots of “distractor” and missing edges

Can we do better?
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Annotate...

Imagine someone goes and annotates which edges are correct

... and someone has:
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Annotate...

Imagine someone goes and annotates which edges are correct

... and someone has:

The Berkeley Segmentation Dataset and Benchmark

by D. Martin and C. Fowlkes and D. Tal and J. Malik
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... and do Machine Learning

How can we make use of such data to improve our edge detector?
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... and do Machine Learning

How can we make use of such data to improve our edge detector?

We can use Machine Learning techniques to:

Train classifiers!

Please learn what a classifier /classification is

In particular, learn what a Support Vector Machine (SVM) is (some

links to tutorials are on the class webpage)

With each week it’s going to be more important to know about this

You don’t need to learn all the details / math, but to understand the

concept enough to know what’s going on
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Classification – a Disney edition (pictures only)

Each data point x lives in a n-dimensional space, x ∈ Rn

We have a bunch of data points xi , and for each we have a label, yi

A label yi can be either 1 (positive example – correct edge in our

case), or −1 (negative example – wrong edge in our case)
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Classification – a Disney edition (pictures only)
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Classification – a Disney edition (pictures only)

Sanja Fidler CSC420: Intro to Image Understanding 8 / 63



Training an Edge Detector

How should we do this?
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Training an Edge Detector

We extract lots of image patches
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Training an Edge Detector

We extract lots of image patches

These are our training data

We convert each image patch P (a matrix) into a vector x

Well... This works better: Extract image features for each patch

Image features are mappings from images (or patches) to other

(vector) meaningful representations. More on this in the next class!
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Using an Edge Detector

Once trained, how can we use our new edge detector?
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Using an Edge Detector

We extract all image patches
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Using an Edge Detector

We extract all image patches

Extract features and use our trained classifier
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Using an Edge Detector

We extract all image patches

Extract features and use our trained classifier

Place the predicted value (score) in the output matrix

Sanja Fidler CSC420: Intro to Image Understanding 10 / 63



Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness score” score + NMS
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Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness” score score + NMS

image gradient

“edgeness” score
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Comparisons: Canny vs Structured Edge Detector

image image gradients gradients + NMS

“edgeness” score score + NMS

image gradient

“edgeness” score
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Evaluation

Figure: green=correct, blue=wrong, red=missing, green+blue=output edges
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Evaluation

Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)

Recall =
# of green (correct edges)

# of all edges in ground-truth (second picture)
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Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)

Precision =
# of green (correct edges)

# of all edges in output (second picture)
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Evaluation

Recall: How many of all annotated edges we got correct (best is 1)

Precision How many of all output edges we got correct (best is 1)
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Lesson 1

Trained detectors (typically) perform better (true for all

applications)

In this case, the method seems to work better for finding object

boundaries (edges) than finding text boundaries. Any idea why?

What would you do if you wanted to detect text (e.g., licence

plates)?

Think about your problem, don’t just use code as a black box
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