
Image Features:

Scale Invariant Interest Point Detection
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

When does this work?

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

More efficient to extract features that are stable in both location and scale.

[Source: K. Grauman, slide credit: R. Urtasun]
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Scale Invariant Interest Points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

Find scale that gives local maxima of a function f in both position and scale.

[Source: K. Grauman, slide credit: R. Urtasun]
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Automatic Scale Selection

Function responses for increasing scale (scale signature).

[Source: T. Tuyttellaars, slide credit: R. Urtasun]
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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What Can the Signature Function Be?

Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure.

[Source: R. Szeliski, slide credit: R. Urtasun]
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Blob Detection – Laplacian of Gaussian

Laplacian of Gaussian: We mentioned it for edge detection

∇2g(x , y , σ) =
∂2g(x , y , σ)

∂x2
+
∂2g(x , y , σ)

∂y2
, where g is a Gaussian

It is a circularly symmetric operator (finds difference in all directions)

It can be used for 2D blob detection! How?
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Blob Detection – Laplacian of Gaussian

It can be used for 2D blob detection! How?

[Source: F. Flores-Mangas]
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Blob Detection in 2D: Scale Selection

Laplacian of Gaussian = blob detector

[Source: B. Leibe, slide credit: R. Urtasun]
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Characteristic Scale

We define the characteristic scale as the scale that produces peak
(minimum or maximum) of the Laplacian response

[Source: S. Lazebnik]
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Example

[Source: K. Grauman]
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Scale Invariant Interest Points
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Example

[Source: S. Lazebnik]
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Blob Detection – Laplacian of Gaussian

That’s nice. But can we do faster?

Remember again the Laplacian of Gaussian:

∇2g(x , y , σ) =
∂2g(x , y , σ)

∂x2
+
∂2g(x , y , σ)

∂y2
, where g is a Gaussian

So computing our interest points means two convolutions (one for

each derivative) per scale

Larger scale (σ), larger the filters (more work for convolution)

Can we do it faster?
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Approximate the Laplacian of Gaussian

[Source: K. Grauman]
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Lowe’s DoG

Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

[Source: R. Szeliski, slide credit: R. Urtasun]
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Lowe’s DoG

First compute a Gaussian image pyramid

[Source: F. Flores-Mangas]
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Lowe’s DoG

First compute a Gaussian image pyramid

Compute Difference of Gaussians

At every scale

Find local maxima in scale

A bit of pruning of bad maxima and we’re done!
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Other Interest Point Detectors (Many Good Options!)

Lindeberg: Laplacian of Gaussian

Lowe: DoG (typically called the SIFT interest point detector)

Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuyttelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brady: Salient Regions
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Summary – Stuff You Should Know

To match the same scene or object under different viewpoint, it’s useful to
first detect interest points (keypoints)

We looked at these interest point detectors:

Harris corner detector: translation and rotation but not scale invariant
Scale invariant interest points: Laplacian of Gaussians and Lowe’s DoG

Harris’ approach computes I 2x , I 2y and Ix Iy , and blurs each one with a

Gaussian. Denote with: A = g ∗ I 2x , B = g ∗ (Ix Iy ) and C = g ∗ I 2y . Then

Mxy =

(
A(x , y) B(x , y)
B(x , y) C (x , y)

)
characterizes the shape of EWSSD for a window

around (x , y). Compute “cornerness” score for each (x , y) as
R(x , y) = det(Mxy )− α trace(Mxy )2. Find R(x , y) > threshold and do
non-maxima suppression to find corners.

Lowe’s approach creates a Gaussian pyramid with s blurring levels per
octave, computes difference between consecutive levels, and finds local
extrema in space and scale
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Local Descriptors – Next Time

Detection: Identify the interest points.

Description: Extract a feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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