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Motivation

• Command robots using natural 
language instructions 

• Free-form instructions are difficult 
for robots to interpret due to its 
ambiguity and complexity 

• Previous methods rely on language 
semantics to parse natural language 
instructions 

• Can robot learn the mapping from 
instructions to actions directly?



Previous Work
• Symbol grounding problem (Harnad 1990): What is the meaning of words (symbols)? 

• How do the words in our head connects to things they refer to in the real world? 

• Manual mapping of words to environment features and actions (MacMahon 2006) 

• Corpus of 786 route instructions from 6 people in 3 large indoor environments 

• Instructions were validated by 36 people with 69% completion rate 

• MACRO:  

• Interpret instructions linguistically to obtain meaning 

• Combine linguistic meaning with spatial knowledge to compose action sequence 

• Infer actions via exploratory actions  

• 61% completion rate



• MACRO: simulated environment for indoor navigation 

• Hallways with pattern on the floor 

• Paintings on the wall 

• Objects at intersections 

• This setup and dataset is used in this paper

Previous Work



Previous Work

• Translate instructions into formal language equivalent 

• Learning a parser to handle the mapping 

• Use probabilistic context free grammar to parse free-form instructions 
into formal actions (Kim and Mooney 2013) 

• Mapping instructions to features in the world model 

• Use generative model of the world and learn a model for spatial 
relations, adverbs and verbs (Kollar 2010) 

• Parse the free-form instructions and and use probability distribution to 
express the learned relation between words and actions



Problem Statement 

• Sequence to sequence learning problem 

• Translating navigational instructions to sequence of actions 

• Knowledge of the local environment in the agent’s line-of-sight 

• Understand the natural language commands and map words in the 
instructions to correct actions 

• Instructions may not be completely specified 



Problem Statement 

• Variables 

• x(i), variable length natural language instructions 

• y(i), observable environment (world state) 

• a(i), action sequence 

• Mapping instructions to action sequence 

• a1:T = arg max P(a1:T | y1:T, x1:N)
a1:T



Implementation: Encoder

• Encoder-decoder architecture for sequence to sequence 
mapping 

• Encoder: Bidirectional Recurrent Neural Net (BiRNN) 

• hj = f(xj, hj-1, hj+1), the encoder’s hidden state for word j 

• Hidden states h are obtained via feeding instructions x to 
Long Short-Term Memory(LSTM)-RNN 

• h describes the temporal relationships between previous 
words



Implementation: Overview



Implementation: Encoder

• Why LSTM-RNN? 

• RNN handles variable length input: input sequence of 
symbols are compressed into the context vector (h) 

• RNN models the sequence probabilistically 

• LSTM is shown to provide better recurrent activation 
function for RNN: LSTM unit “remembers” previous 
information better



Implementation: Multi-Level Aligner

• xj and hj describes the instruction and the context 

• aligner decides which part of input will have higher influence (attention 
weight) and help the decoder to focus depending on the context 

• This paper included xj in the aligner to improve performance 

• both high-level (h) and low-level (x) representations are considered by 
the aligner 

• The model can offset information lost in abstraction of the instruction 

• zt = c(h1, …, hN), the context vector to encode instructions at time t - 
this is for the decoder 



Implementation: Decoder

• LSTM-RNN 

• decoder takes world state (yt) and context of instruction (zt) 
as input 

• The output is the conditional probability for the next action 



Implementation: Training

• Objective 

•   

• Loss function 

•   

• Parameters are learned through back-propagation



Experiment: Setup

• SAIL route instruction dataset (MacMahon, 2006) 

• Local environment: features and objects in line-of-slight 

• Single-sentence and multi-sentence task 

• Training 

• 3 maps for 3-fold cross validation 

• for each map, 90% training and 10% validation



Results

• Outperforms state-of-the-art in single sentence task 

• Competitive result for multi-sentence task



Results: Ablation Studies and Distance Evaluation

• The encoder-decoder architecture using RNN with multi-level 
aligner can significantly improve performance

• In the failure cases, the model can produce end-points that are 
close to the destination



Conclusion

• LSTM-RNN with multi-level aligner achieves a new state-of-
the-art performance on single sentence navigation task 

• This model does not require linguistic knowledge and can be 
trained end-to-end 

• Low-level context (the original input) is shown to improve 
performance



Discussion

• This problem is very similar to the machine translation problem, with 
additional environment information for the model to make the decision 

• The authors’ approach is largely inspired by advances in neural machine 
translation and encoder-decoder architecture  

• The model does not implement exploratory behaviour nor correcting 
mistakes 

• It would be interesting to investigate the effect of error in the instructions 
in leading to the failed navigation 

• Multilevel alignment and the use of BiRNN greatly increase model 
complexity


