Playing Atari with Deep Reinforcement Learning

Jonathan Chung

Objectives

- Provide some basic understanding of RL
- Apply this understanding to the paper
- Discuss possible future directions of the paper

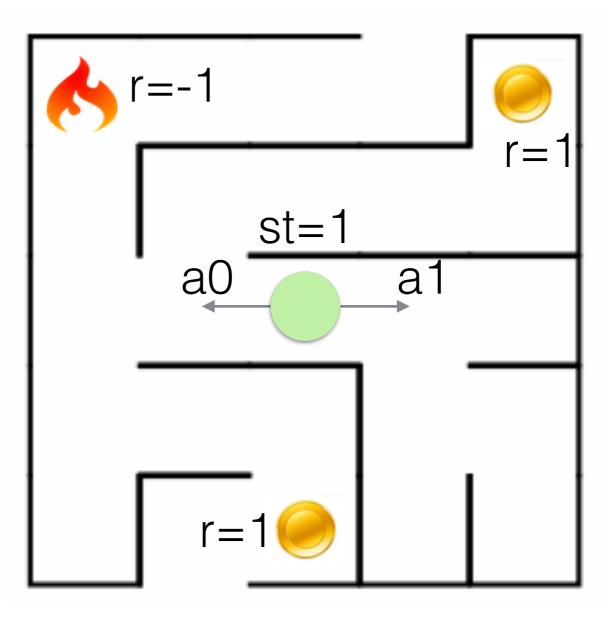
Reinforcement Learning

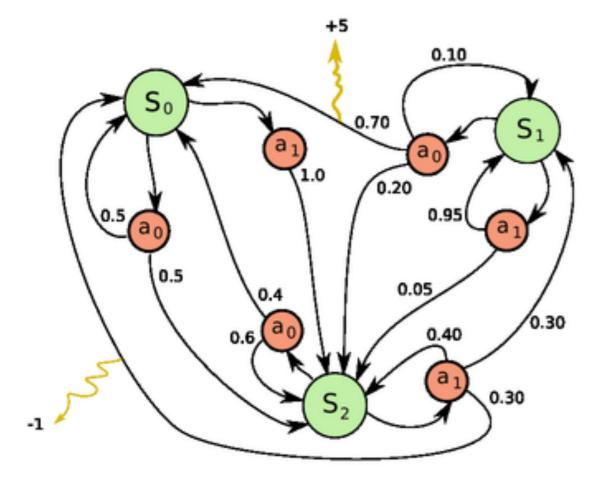
"Finding suitable actions in order to maximise the reward"

• States (st)

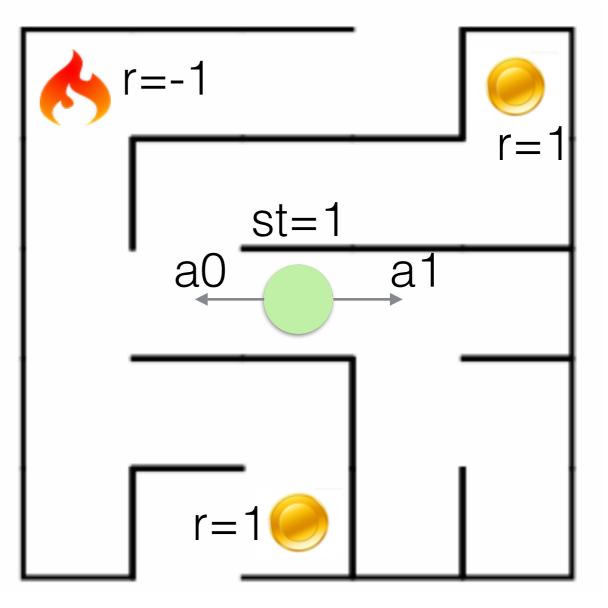
• Action (a)

• Reward (r)





Markov decision process



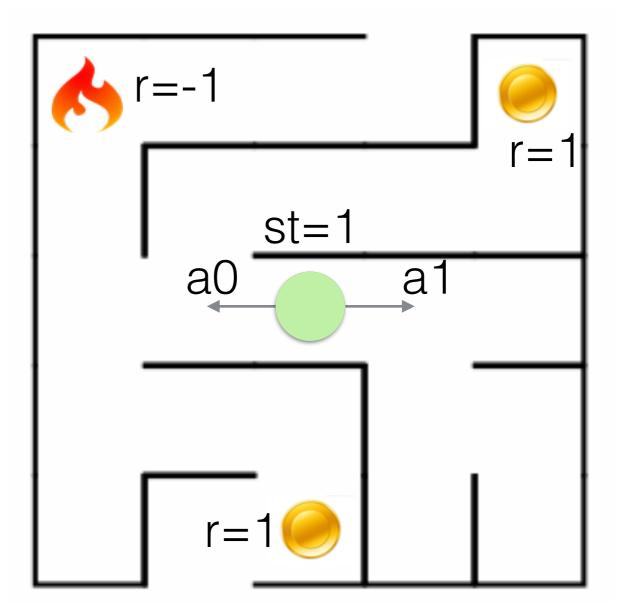
• States (st)

Where you are (and where you have been)

• Action (a)

What can you do

• Reward (r)



Rewards.are.Not. Always.immediate

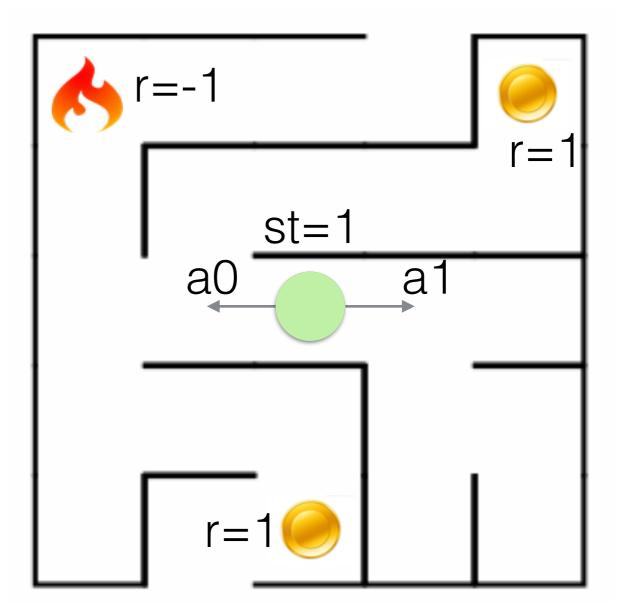
• States (st)

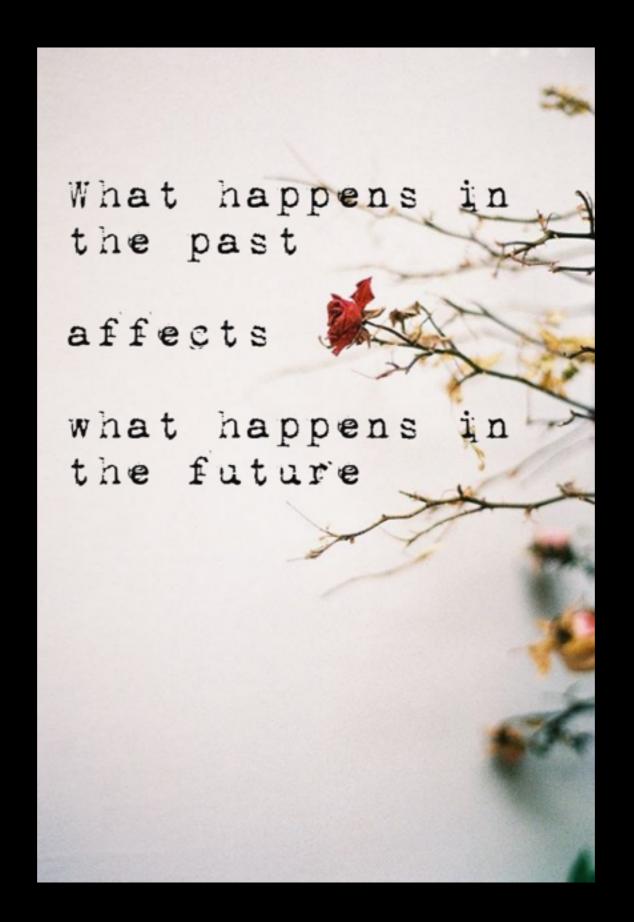
Where you are (and where you have been)

• Action (a)

What can you do

• Reward (r)





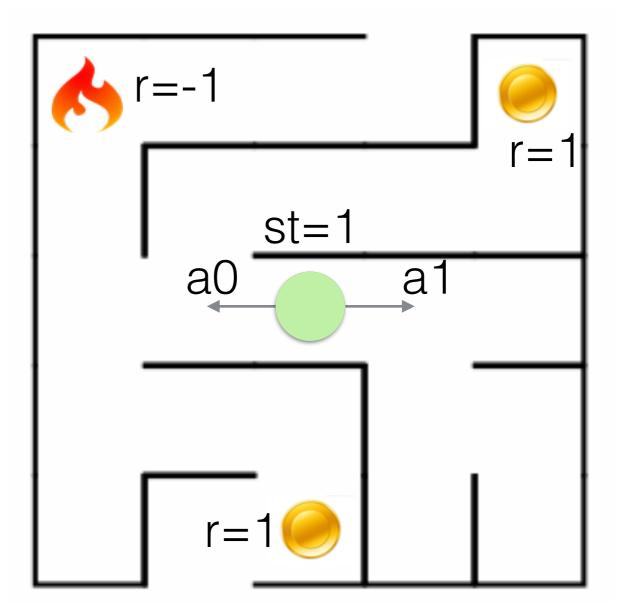
• States (st)

Where you are (and where you have been)

• Action (a)

What can you do

• Reward (r)



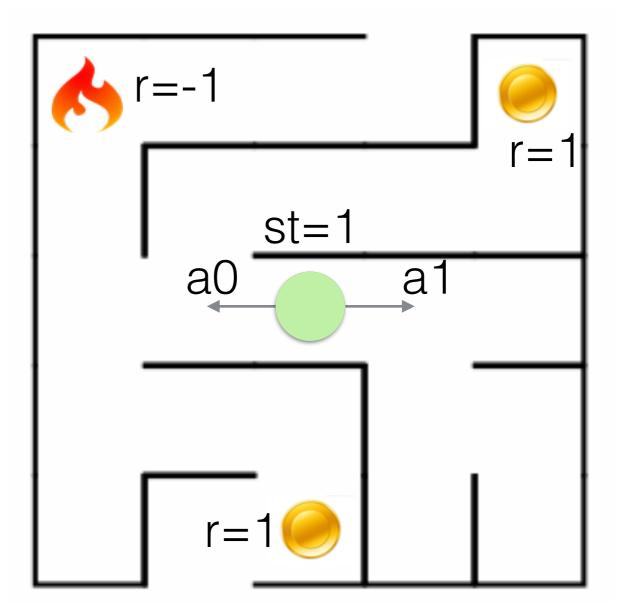
• States (st)

Where you are (and where you have been)

• Action (a)

What can you do

• Reward (r)



Aim

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[R_t | s_t = s, a_t = a, \pi\right]$$

 Q is defined as the maximum expected reward (R_t) after sequence s and taking action a

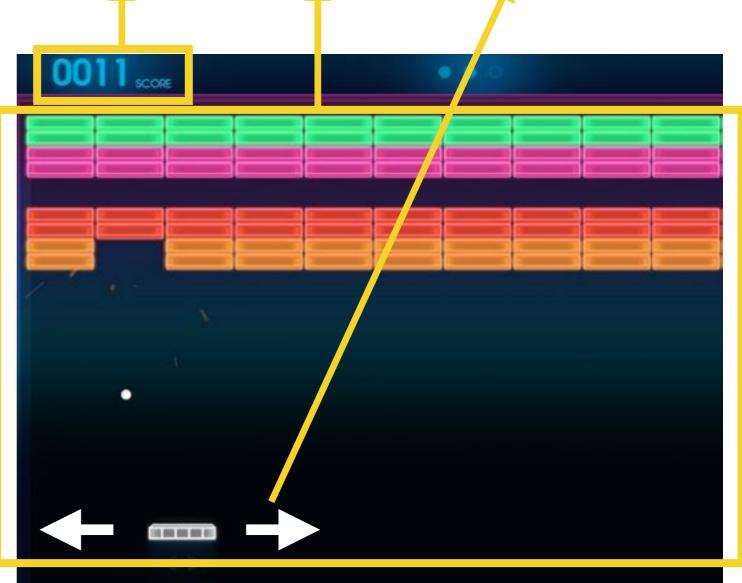
Playing Atari with Deep Reinforcement Learning

Inputs

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[R_t | s_t = s, a_t = a, \pi\right]$$

- Images ~ s[#]
- Actions = a[^]
- Score ~ Reward*

#A sequence of images are useptendentesenthsegarenece s.

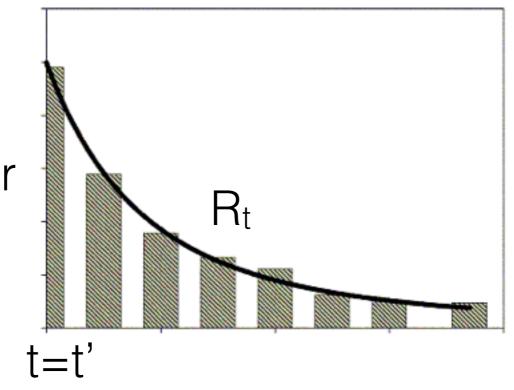


Inputs

$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[R_t | s_t = s, a_t = a, \pi\right]$

- Images ~ s[#]
- Actions = a[^]
- Score ~ Reward*

*All future rewards are considered but discounted based on the time

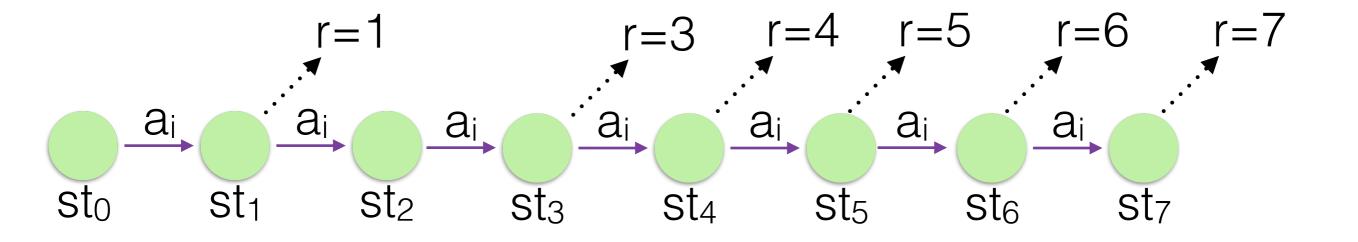


Bellman equation

$$Q(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a') \middle| s,a \right]$$

Bellman equation

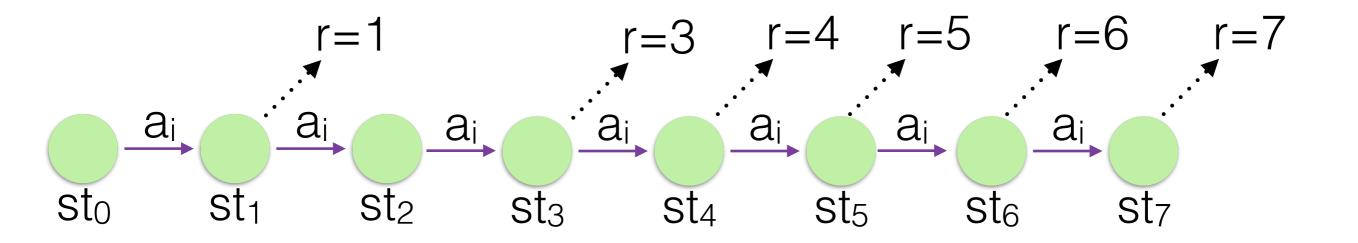
$$Q \left(s, a
ight) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q \left(s', a'
ight) \middle| s, a
ight]$$



• Bellman equation

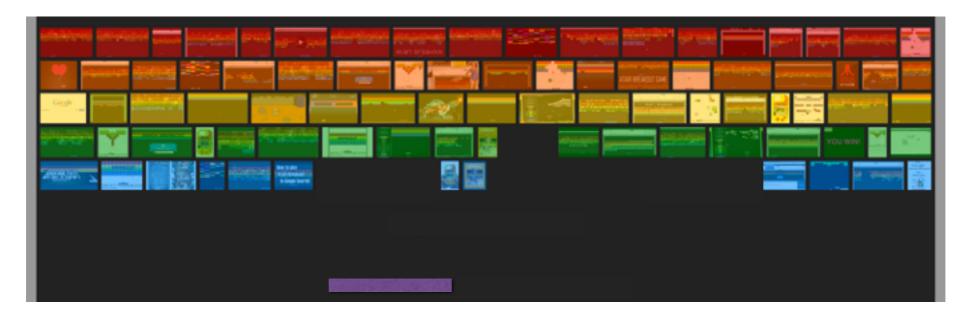
$$Q(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a') \middle| s,a \right]$$

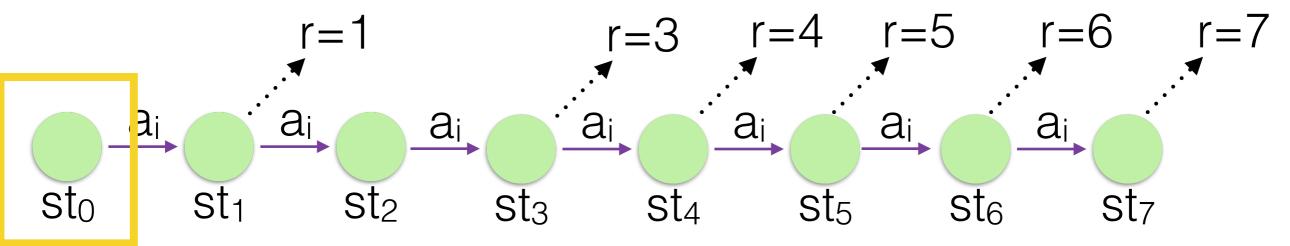
- s sequence, a series of states
- a action



• Bellman equation

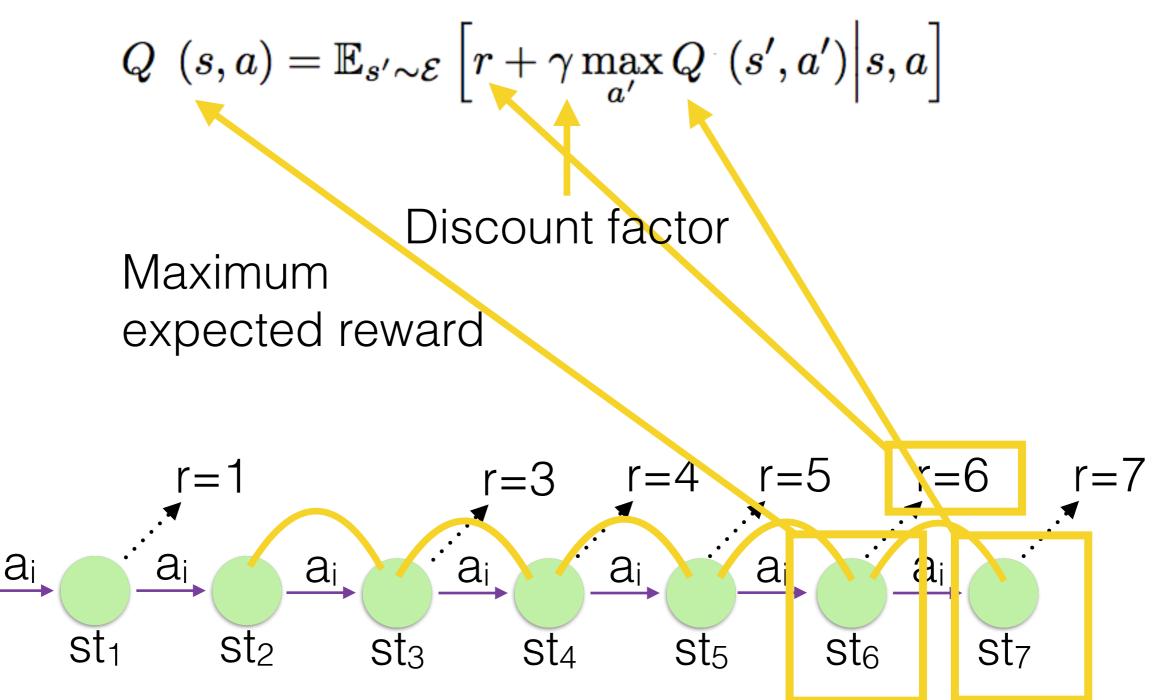
$$Q(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s',a') \middle| s,a \right]$$





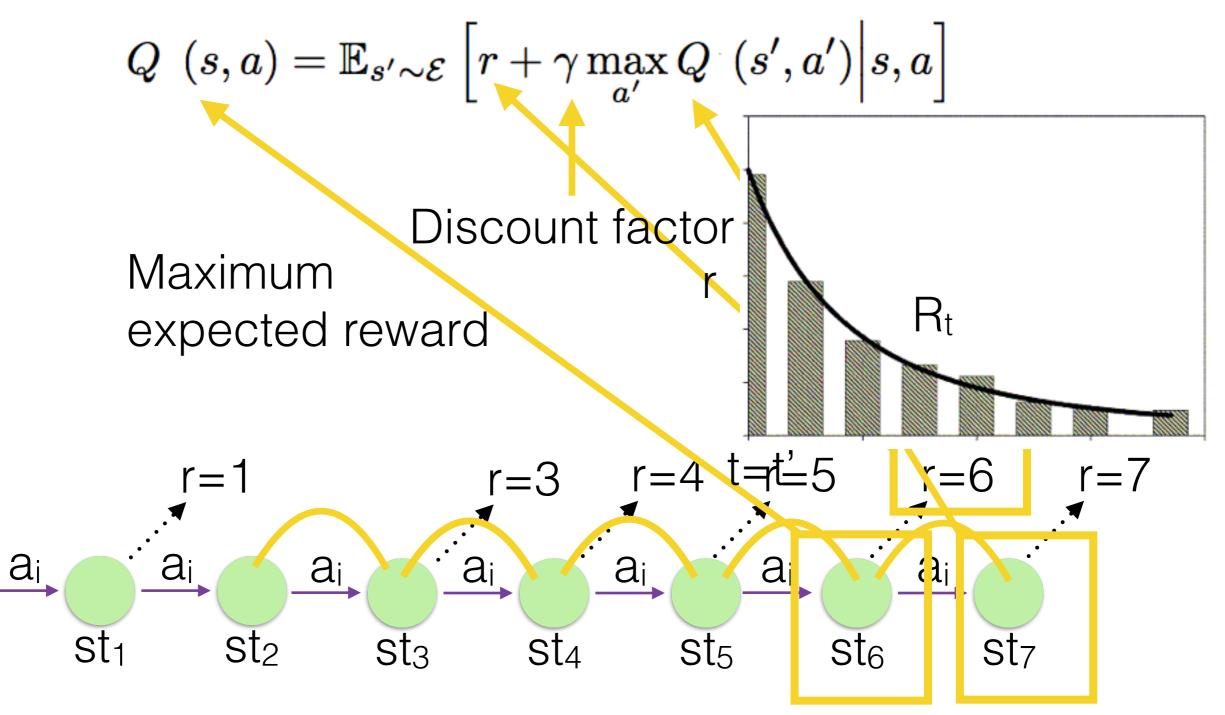
Bellman equation

st₀



• Bellman equation

st₀



Bellman equation

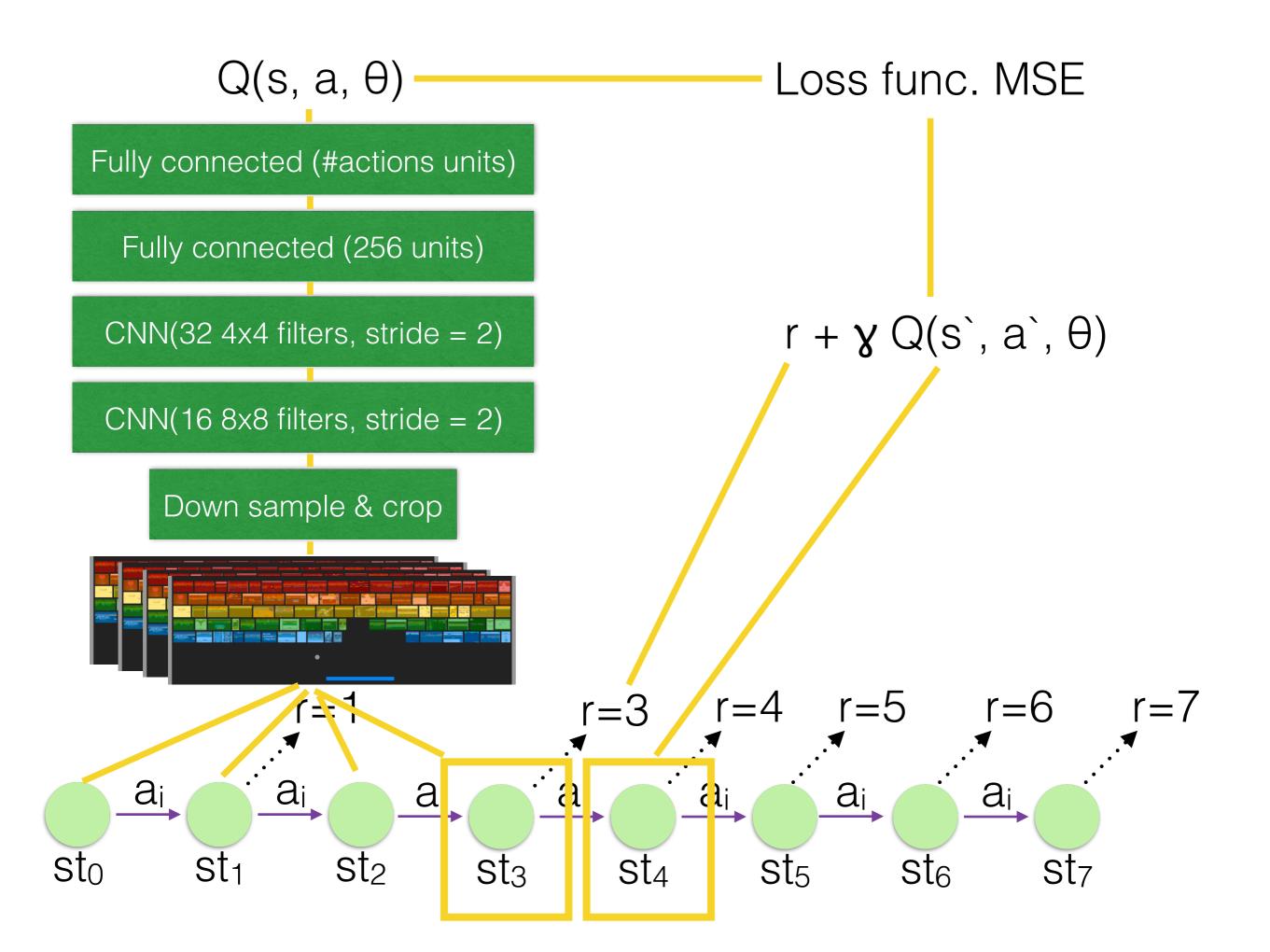


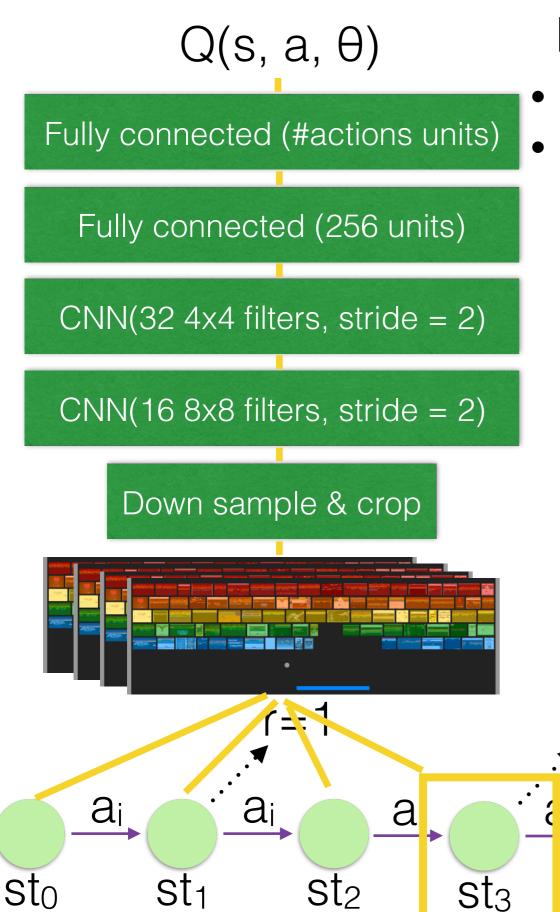
• Bellman equation

$$Q_{-}(s,a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^{+}(s',a') \middle| s,a \right]$$

•
$$Q_i \rightarrow Q^*$$
 as $i \rightarrow \infty$

- $Q(s, a; \theta) \approx Q^*(s, a)$
- where Q(s, a; θ) is modelled with a deep neural network called a "Q-network"





Deep Q-learning

- Initialise data and Q weights
- For each episode:

ai

St₄

- Init. and preprocess sequence $\phi(s_t)$
- For t in T
 - Select the best action a_t according to $Q(\mathbf{\phi}(s_t), a, \theta)$
 - Execute action to get reward rt and image xt+1
 - Store $\phi(s_t)$, a_t , r_t , $\phi(s_{t+1}) \rightarrow D$
 - Sample a mini batch ^ from D then perform gradient decent to update weights

r=3 r=4 r=5 r=6 r=7

St₆

ai

St₇

ai

St₅

Experiments

- 7 ATARI game (Beam rider, Breakout, Enduro, Pong, Q*bert, Seaquest, Space Invaders)
- Each trained on the same network (except actions, and scaled rewards according)
- Sequences contained the actions and states from the last 4 frames

Experiments

- Randomly sampled s, a and s', a'
- RMSProp algorithm with mini batch of size 32
- Total of 10 million frames while training on every 4 (or 3) frames

Experiments

- Outperformed previous state of the art Sarsa and Contingency
- Preformed better that humans in Breakout, Enduro, Pong

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Future direction

Future direction

