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ABSTRACT
We present a new solution for finding joinable tables in mas-
sive data lakes: given a table and one join column, find tables
that can be joined with the given table on the largest number
of distinct values. The problem can be formulated as an over-
lap set similarity search problem by considering columns
as sets and matching values as intersection between sets.
Although set similarity search is well-studied in the field
of approximate string search (e.g., fuzzy keyword search),
the solutions are designed for and evaluated over sets of
relatively small size (average set size rarely much over 100
and maximum set size in the low thousands) with modest
dictionary sizes (the total number of distinct values in all sets
is only a few million). We observe that modern data lakes
typically have massive set sizes (with maximum set sizes
that may be tens of millions) and dictionaries that include
hundreds of millions of distinct values. Our new algorithm,
JOSIE (JOining Search using Intersection Estimation) mini-
mizes the cost of set reads and inverted index probes used in
finding the top-k sets. We show that JOSIE completely out
performs the state-of-the-art overlap set similarity search
techniques on data lakes. More surprising, we also consider
state-of-the-art approximate algorithm and show that our
new exact search algorithm performs almost as well, and
even in some cases better, on real data lakes.
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1 INTRODUCTION
Set similarity search has numerous applications ranging from
document search and keyword queries to entity-identification
and data cleaning [33]. Overlap set similarity search is an
instance of this problem where the similarity measure used
is the intersection size1 of the sets. Unlike other similarity
measures (like Jaccard or Cosine), set intersection size is not
biased toward small sets [25]. Recently, overlap set similarity
search was used to find joinable tables in a data lake [34]2.
We illustrate this application with an example.

Example 1. A user inputs a query table TQ and specifies
a column Q as the join column along with a threshold θ . The
join table search problem [34] is to find all tables TX with
a column X such that |Q ∩ X | ≥ θ meaning the intersection
size between X and Q is high. Table 1:(a) is an example query
table about air pollution emissions of industrial facilities in
Canada3. If the user sets Postal column as Q , we can find a
candidate table on political campaign contributions 4 with a
Postal Code column (X ) that contains Q . By joining these
two tables, we can produce an interesting analysis on pollution
and political orientation.

1Past work in set similarity search sometimes used “overlap similarity” [29,
32], while “intersection size” is less ambiguous. In this paper we use the
latter, but keep the common name “overlap set similarity search”.
2Zhu et al. [34] actually use containment ( |Q ∩ X |)/ |Q | ≥ θ , but contain-
ment is easily converted to intersection size.
3https://open.canada.ca/data/en/dataset/f6660f68-5e78-47b3-9306-9805e1d3d6e9
4https://open.canada.ca/data/en/dataset/ef1e3528-b570-4a42-92ef-18a9749af8f2
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(a) Example query table

Facility Comapny Postal NOx

Oil Sands Suncor Energy T9H3E3 9340.81
Carberry Factory McCain Foods R0K0H0 50.7
Grand Falls McCain Foods E3Y4A5 60.6
Ingleside Kraft Heinz K0C1M0 -99

(b) Example candidate table

Contributor Postal Code Recipient Party Amount

E*,B* T9H3E3 Liberal 397.46
J*,S* R0K0H0 Conservative 500.00
J*,S* R0K0H0 Conservative 250.00
M*,S* K0C1M0 Liberal 400.00

Table 1: Example joinable tables

Notice that the set intersection size is the number of tuples
in TQ that join with TX and hence is a good measure of
equi-joinability. It is immune to data value skew in Q and
aggregation operations that may be needed before or after
performing the join. For columns of floating point numbers
or long text, set intersection size may not be the right choice,
however, since the user must pickQ , the choice is on the user,
who should understand the semantic of equi-join. Finding
joinable tables can help data scientists to discover useful
tables that they may not know about, and may even lead to
surprising new data science.
Solutions for overlap set similarity search have focused

on relatively small sets such as keywords and titles [3, 9,
16, 28, 29, 31]. These approaches work well for applications
like similarity joins (where the sets are n-grams of a single
attribute value) or entity-resolution (where the sets are an
entity-name or tuple). These state-of-the-art solutions rely
on inverted indexes, which contain posting lists that map
every distinct value in a set (or token) to a list of indexed
sets that contain it. The solutions involve either 1) reading
all posting lists in the query to find candidates, and then
ranking them based on number of times they appear, or 2)
reading a subset of posting lists to locate candidates, and
then reading the candidates to find the final ranked list of
sets. Most of these solutions assume the inverted index is
relatively small.

The use of overlap set similarity search for finding joinable
tables and the characteristics of modern data lakes take this
classic problem to the next level. Data lakes may have large
set sizes and huge dictionaries (number of distinct values) as
shown in Table 2. In this table, we include three data lakes.
The first is a lake of Open Data (obtained from Nargesian et
al. [21]). The second is from theWDCWeb Table Corpus [14].

Table 2: Characteristics of sets derived from 215,393
Open Data tables in comparison with other datasets
used in previous works. For Open Data and Web Ta-
bles, all numerical values are removed, as explained
in Section 4.

#Sets MaxSize AvgSize #UniqTokens

OpenData 745,414 22,075,531 1,540 562,320,456
WebTable 163,510,917 17,030 10 184,644,583
Enterprise 2,032 859,765 4,011 3,902,604

AOL 10,054,184 245 3 3,900,000
ENRON 517,422 3,162 135 1,100,000
DBLP 100,000 1,625 86 6,864

The third are statistics from a private enterprise data lake
from a large organization (obtained from Deng et al. [7]).
The last three lines report not data lakes, but rather typical
datasets used in previous work for set similarity search [3, 29,
31] (numbers fromMann et al. [18]). Notice that the previous
work has used data with much smaller set sizes and far fewer
unique values.

These differences have significant implications. First, due
to the huge number of unique tokens, an inverted index will
use a lot of space – approximately 100 GB in PostgreSQL. So,
memory management becomes an issue for the index and
reading the whole index (all posting lists) becomes infeasible.
Second, sets are large as well so again memory management
is an issue and it is important to limit the number of sets
read. Consequently, the cost of reading a posting list or a
set in data lakes will be more expensive than considered in
previous work, and an approach that reads all the posting
lists of a large query, or reads too many candidates, will not
be feasible.
So far we have been considering exact solutions to over-

lap set similarity search. Approximate algorithms have also
been studied [25, 34]. These algorithms are scalable in per-
formance, however they tend to suffer from false positive
and negative errors, especially when the distribution of set
sizes is skewed, for example, following a Zipfian distribution.
Zhu et al. [34] showed that attribute sizes in both Open Data
and WebTables follow Zipfian distributions. One of our con-
tributions is to show that our new exact approach can have
just as good performance.

Previous work on set similarity search focuses on a version
of the problem that involves a threshold: given a set similarity
function that takes two sets as input and outputs a score,
for a query, find all sets whose scores, computed with the
query, meet a user-specified threshold [3, 16, 29]. Overlap set
similarity can be defined as a similarity function that outputs
the set intersection size. Zhu et al. [34] find all tables with
a column X whose intersection size with the query column



Q is greater than a threshold. However, for the problem of
searching data lakes, using a threshold may confuse users,
who have no knowledge of what data exists in the lake and
therefore do not know what is a good threshold that will
retrieve some, but not too many answers. A threshold that
is too low may severely delay response time as there are too
many results to process, potentially causing the user to get
frustrated.

An alternative version of this problem is top-k search: find
the best k sets that have the largest intersection withQ [31]..
The user does not need any prior knowledge to specify k .
For example, a small value (e.g., 10) may be sufficient to get
an understanding for what is available in the data lake. Xiao
et al. [31] proposed a top-k algorithm that can be used for
top-k overlap set similarity search (that we call ProbeSet), but
it has never been evaluated over large sets.

Our contributions include the following.

(1) A novel exact top-k overlap set similarity search algo-
rithm, JOSIE that scales to large sets and large dictio-
nary sizes (including data lakes), making it a solution
to the joinable table search problem.

(2) We show that our solution out-performs the state-of-
the-art solutions in query time by a factor of two, with
3× less standard deviation, on two real-world data
lakes: Government Open Data and Web Tables.

(3) Unlike the state-of-the-art solutions that are very sen-
sitive to data characteristics (and hence perform very
differently on different data lakes), our solution is adap-
tive to the data distribution and hence has robust per-
formance even on data lakes as diverse as Open Data
and Web Tables.

(4) Surprisingly, for reasonablek , our solution out-performs
the state-of-the-art approximate solution (which uses
approximate data sketches for sets) for query sizes up
to 10K. Ours is the first experimental comparison of
exact approaches to even consider queries of this size
and being able to beat approximate approaches is a
dramatic improvement in the field.

(5) We study massive queries up to 100K values and show
that we are competitive with approximate techniques
for small k . For larger k our performance is 3 to 4 times
slower than approximate search (meaning 6-8 seconds
instead of 1 or 2), but with this extra time we find exact
results and the approximate technique can be missing
from 10%-40% of the answers.

2 PRELIMINARIES
In this section we present a formal definition of the top-k
overlap set similarity search problem, and some background
material on inverted indexes, top-k, and canonicalization of
tokens using a global order.

2.1 Problem Definition
A search engine for joinable tables asks a user to input a
table and specify a column, and returns tables that can be
joined with the input table on the specified column. The
number of distinct values in the resulting join column is
used to measure the relevance of the returned tables.

This problem can be expressed as a top-k overlap set sim-
ilarity search problem. We take all columns of all tables in
a repository of tables, convert every column into a set of
distinct values, and call the big collection of sets Ω. Let Q be
the set of distinct values in the user specified column. The
top-k overlap set similarity search problem can be defined
as follow:

Definition 1. Top-k overlap set similarity search: given a
setQ (the query), and a collection of setsΩ, find a sub-collection
ω of at most k sets such that:

(1) |Q ∩ X | > 0, X ∈ ω, and
(2) min{|Q ∩ X |, X ∈ ω} ≥ |Q ∩ Y |, Y < ω, Y ∈ Ω

The key here is that the k-th (or the last) set in the result
ranked by the size of intersection with the query, has the
same or larger intersection size as any other set that is not
in the result. As we will explain in the next section, the k-th
intersection size in the result can be used as a threshold to
prune unseen sets.

2.2 Inverted Index and Dictionary
Here, we describe inverted indexes in the context of overlap
set similarity search. For a collection of sets X1,X2, ... ∈ Ω,
we extract the tokens (i.e., values) x1,x2, ... from all the sets,
and for each token, we build a posting list of pointers to the
sets that contain the token, and these posting lists together
form an inverted index.
An inverted index over a massive collection of sets with

millions of tokens and millions of sets is very large, so the
posting lists may have to be stored on disk or distributed
as scalability becomes an issue. A query set may contain
tokens not in the inverted index, and we need to determine
this quickly. Thus, solutions typically store a data structure
called a dictionary, that contains each token, its frequency
and a pointer to its posting list.
Using the dictionary and inverted index there is a sim-

ple algorithm, that we call MergeList, for top-k overlap set
similarity search [19]. First, initialize a hash map to store
the intersecting token counts of candidates – sets discovered
from posting lists. For every query token, use the dictionary
to check if the token exists in the inverted index; if exists
then read the entire posting list and increment counts for
candidates in the list. Once all posting lists are read, we can
sort the candidates by their intersecting token counts, and re-
turn the k sets with highest counts. The total time (ignoring



memory hierarchy concerns) is∑
xi ∈Q∩U

L(fi ) (1)

where U is the set of all tokens in the dictionary, fi is the
frequency of token xi , and L(·) is the time to read a posting
list as a function of the length of the list.

MergeList’s read time is linear to the number of matched
tokens. This is not a big issue when sets have less than a
few hundred tokens, however, in the context of joinable
table search, the sets extracted from columns can easily have
thousands or evenmillions of tokens, as evidenced by Table 2.
Thus, a better approach could be to reduce the number of
posting lists read.

2.3 Prefix Filter
Prefix filter, an idea proposed by Chaudhuri et al., to solve
the threshold version of set similarity search problem (see
Section 1) [6]. The main idea is that given an intersection size
threshold t , all candidates X such that |Q ∩ X | ≥ t must be
found in any subset (prefix) of posting lists given the subset’s
size is |Q | − t + 1, and posting lists outside the subset are not
required to be read.

Xiao et al. proposed a top-k algorithm that uses prefix filter.
It uses a fixed-size min-heap to keep track of the running
top-k candidates [31]. The main trick of the algorithm is
to use the running k-th candidate’s intersection size as the
threshold: after finishing reading a posting list, we need to
check the intersection size of the current k-th candidate Xk ,
|Q ∩ Xk |, and if the number of lists already read so far is
equal to |Q | − |Q ∩Xk | + 1, then the algorithm stops reading
new lists and returns the current running top-k candidates
as the results. Since |Q ∩ Xk | is the threshold, the first |Q | −
|Q ∩ Xk | + 1 posting lists become the prefix. We call this
algorithm ProbeSet, because as opposed to MergeList that
reads only posting lists, it probes candidates as it encounters
them.

2.4 Token Ordering and Position Filter
As described in the last section, ProbeSet reads and com-
putes exact intersection size for every new candidate encoun-
tered. Xiao et al. introduced an optimization techinique called
position filter that prunes out candidates whose intersection
sizes are less than a threshold before reading them [32]. For
the rest of this paper, ProbeSet always uses the position
filter.

There are two requirements to use position filter. First, we
must assign a global ordering (e.g., lexicalgraphic, length,
etc.) for the universe of all tokens, and all sets (including the
query set) must be sorted by the global ordering. The second
requirement is that each token’s posting list must contain

the positions of the token in the sets that contain it, as well
as the sizes of the sets.

Example 2. An example of sets and posting lists.

X1 = {x1,x100,x200}

X2 = {x2,x5}

X3 = {x2}

X4 = {x2, ...,x100,x101}

=⇒

x1 : {(X1, 1, 3)}
x2 : {(X2, 1, 2), (X3, 1, 1),
(X4, 1, 100)}

x100 : {(X1, 2, 3), (X4, 99, 100)}
x200 : {(X1, 3, 3)}

In each entry of a posting list, the second integer is the position,
and the third integer is the size of the set.

When we encounter a new candidate X from the posting
list of token xi (i.e., the i-th token in the sorted query set), we
can compute the upper-bound of its intersection size with
the query set Q using the equation:
|Q ∩ X | ≤ |Q ∩ X |ub = 1 +min

(
|Q | − i, |X | − jX ,0

)
(2)

Where jX ,0 is the position of token xi in X , it is also the
first intersecting token between Q and X , hence the 0 in the
subscript. If |Q ∩X |ub ≤ |Q ∩Xk |, we can skip X , and ignore
it in future encounters.

Another benefit of using the position filter is reducing the
time of reading individual candidate. Since there is no inter-
secting token between Q and X before their first matching
positions, we only need to read the suffix X [jX ,0 + 1 : ] to
compute the exact intersection size.

Example 3. Consider Example 2’s posting lists and let the
query set be Q = {x1,x2,x100,x200} and k = 2. We first read
the posting list of x1, which leads us to read and compute the
exact intersection size for X1 which is three. Then we read
the posting list of x2. Since the heap is not full, we read X2,
compute the exact intersection size, and push (X2, 1) to the heap.
The running heap is {(X1, 3), (X2, 1)} and the k-th candidate’s
intersection size is one.
Now the heap is full and we have running top-k, we can

use the position filter to check the next candidate X3. For X3,
because |Q ∩ X3 |ub = 1 + min(4 − 2, 1 − 1) = 1 ≤ 1, it
does not pass the position filter. So we skip X3. For X4, because
|Q ∩ X4 |ub = 1 + min(4 − 2, 100 − 1) = 100 > 1, it passes
the position filter. So we read X4, and compute the exact inter-
section size which is – pop and push the heap, which is now
{(X1, 3), (X4, 2)}.
We continue to read the third posting list x100, and we can

skip both X1 and X4 as we have seen them before. The prefix
size is 4 − 2 + 1 = 3, thus x100 is the last posting list. We skip
x200 and terminate search.

The total read time of the optimized ProbeSet is
p∗∑
i=1

L(fi ) +
∑

X ∈W \V

S(|X [jX ,0 : ]|) (3)



The first summation term is the total time spent in reading
posting lists of the prefix, where p∗ is the final prefix length
and p∗ = |Q | − |Q ∩ X ∗k | + 1, where X ∗k is the final k-th
candidate in the final result. The second summation term
is the total time spent in reading all qualified candidates
(W \ V ) encountered in the prefix, whereW is the set of
all candidates, and V is the set of candidates pruned by the
position filter. The position jX ,0 is the first matching token
position of X with Q . Lastly, S(·) is the time of reading a set
as a function of its size.

3 A NEW FRAMEWORK
ProbeSet takes advantage of the prefix filter to read fewer
posting lists, but requires extra work, which is partially re-
duced by using position filter, to verify the candidates by
reading and computing exact intersection sizes. In this sec-
tion, we present a novel framework that quantifies the bene-
fits (i.e., reduced cost) of reading posting lists and candidates,
and an algorithm, called JOSIE, that uses this framework.

3.1 To Read or Not to Read
Example 4. Let us revisit Ex. 3. Suppose after reading post-

ing list x2: instead of reading X2 before X3 and X4, let us read
X4 first. The running heap after readingX4 is {(X1, 3), (X4, 2)},
and by using position filter, |Q∩X2 |ub = 1+min(4−2, 2−1) =
2 ≤ 2, and |Q ∩X3 |ub = 1+min(4− 2, 1− 1) = 1 < 2, we can
skip both X2 and X3 before terminating.

In this example, we read only 2 sets X1 and X4, compared
to three sets in Example 3. The take away is that we do not
have to read a candidate immediately after we counter it. By
prioritizing reading some candidates before the others, we
can “lift” the running k-th intersection size higher, increas-
ing the pruning power of the position filter, and read fewer
candidates.

Example 5. Now suppose we make a different change after
reading posting list x2: instead of reading any sets, we continue
to read posting list x100.
The posting list x100 does not give us any new candidates

– both X1 and X4 are seen, however, the new position infor-
mation allows us to update the position filters for the seen
candidates: for X4, its last token we saw before x100 was x2,
thus no intersecting tokens between x2 (position 1) and x100
(position 99), and the only possible intersecting tokens exist in
the remaining 100 − 99 = 1 token after x100. Using this new
information, the position filter of X4 becomes |Q ∩ X4 |ub =

1 + 1 + min(4 − 3, 100 − 99) = 3, and most importantly, we
only need to read the last token from X4 (not the whole set)
to compute its exact intersection size. The rest is the same as
Example 4: we can safely ignore X2 and X3 using position fil-
ters, and terminate. The complete read sequence is shown in
Figure 1.

!

"#
"$
"%
"&

'# '$

'(

'#)) '$))

'#)#

1

2

3 4

5

Read sequence:
1. Posting list '#
2. Set "#
3. Posting list '$
4. Posting list '#))
5. Set "&

Figure 1: An example read sequence that alternates be-
tween reading posting lists and candidates. Each set is
a horizontal line, and each posting list is a vertical line,
which connects common tokens among sets.

In this example, we read in total three tokens from candi-
dates, as shown in Figure 1: 2 fromX1 and 1 fromX4, while in
Example 3 we read 2+ 1+ 99 = 102 tokens and in Example 4
we read 2 + 99 = 101 tokens. This example brings up two
points: first, we do not need to read all candidates before
reading the next posting list, as long as we come back to
them (when necessary) before terminating search, we are
still guaranteed to find the exact top-k; second, as Figure 1
shows, reading a posting list (e.g., x100) has the benefit of po-
tentially improving the position filters of unread candidates,
in addition to reducing the amount of data (i.e., number of
tokens) we have to read from candidates to compute exact
intersection sizes.
As we can see from these two examples, reading a candi-

date and reading a posting list each has its own benefit in
terms of reducing the time spent in reading other posting
lists or candidates. These benefits have not been defined by
the previous work and are data dependent. A quantitative
comparison of these benefits leads to an approach that al-
ternates between reading posting lists and reading sets, as
illustrated by Figure 1. In the following sections, we will an-
alyze these benefits quantitatively using a framework based
on statistical approximation techniques, and present an adap-
tive algorithm for exact top-k overlap set similarity search
that utilizes this framework.

3.2 Reading Candidates
As shown in Example 4, one potential benefit of reading a
candidate is to increase the running k-th intersection size
(i.e., increase |Q ∩Xk |) which is used by both the prefix filter
and position filter. Recall, the prefix filter prunes out posting
lists (those beyond the prefix) and all unseen candidates in
these lists. On the other hand, the position filter prunes out
seen candidates without reading them, by comparing the
upper-bound intersection size of a candidate with threshold
|Q ∩ Xk |.



Now the problem is how do we know whether a candidate
can make it into the running top-k and increase the threshold
|Q ∩Xk |? Let X be the current candidate. Should we read it?
We do not have full information about all the tokens in X ,
however, we actually know quite a lot:
• iX ,0 is the position inQ of the first token that intersects
withX , whereX first appears in the posting list of that
token;
• jX ,0 is the position inX of the first token that intersects
with the query;
• jX is the position in X of the most recent token that
intersects with the query; and
• |Q[1 : i] ∩ X | is the number of intersecting tokens be-
tween Q and X up to and including the token at the
current position i in Q , where Q[1 : i] is the prefix of
Q up and including token xi : x1,x2, ...,xi .

Both jX and |X | can be found in the posting list entry of
X . We read posting lists of Q’s tokens from left to right
according to the global token order, and keep track of iX ,0, jX ,
|Q[1 : i] ∩ X | and |X | for all seen candidates. As explained in
the previous section, we do not have to read every candidate
as we encounter it, as long as we read it or prune it before
terminating. Figure 2 illustrates.

Given this information about X , we can estimate its inter-
section |Q∩X |, which, together with the running top-k heap,
can be used to approximate the new threshold |Q ∩ Xk |.

If we consider the set Q ∩ X as a subset of Q[iX ,0 : ] – the
subset of Q starting from the first matching token with X ,
and assume the members of Q ∩ X is uniformly distributed
over Q[iX ,0 : ], an unbiased estimator for |Q ∩ X | is

|Q ∩ X |est =
|Q[iX ,0 : i] ∩ X |
i − iX ,0 + 1

× (|Q | − iX ,0 + 1)

=
|Q[1 : i] ∩ X | −(((((((

|Q[1 : iX ,0] ∩ X |

i − iX ,0 + 1
× (|Q | − iX ,0 + 1)

=
|Q[1 : i] ∩ X |
i − iX ,0 + 1

× (|Q | − iX ,0 + 1)

(4)

if we consider Q[iX ,0 : i] as a random sample of Q[iX ,0 : ]. A
proof of this can be done using techniques introduced in
Broder [4]. If the sample Q[iX ,0 : i] is small, the variance will
be high. Therefore, we should read a few posting lists starting
from position iX ,0 before using this estimation.

Armed with the knowledge of |Q ∩X |est , we can estimate
the new threshold |Q ∩X ′k |, where X

′
k is the new k-th candi-

date after reading X . We first compare |Q ∩ X |est with the
current threshold |Q ∩ Xk |. If |Q ∩ X |est ≤ |Q ∩ Xk |, then
we assume the candidate X likely will not qualify for the
running top-k, and the current threshold is unchanged. If
|Q ∩X |est > |Q ∩Xk |, we then look at what the new thresh-
old would be after pushing X to the heap (and popping Xk ),

by comparing |Q ∩X |est with |Q ∩Xk−1 |, where Xk−1 is the
(k − 1)-th candidate (done in constant time with a binary
heap). The estimation can be summarized using Equation 5
below.

|Q ∩ X ′k |est =


|Q ∩ Xk | if |Q ∩ X |est ≤ |Q ∩ Xk |

|Q ∩ X |est if |Q ∩ X |est > |Q ∩ Xk |

and|Q ∩ X |est ≤ |Q ∩ Xk−1 |

|Q ∩ Xk−1 | if |Q ∩ X |est > |Q ∩ Xk−1 |

(5)

Now using the new threshold, we can finally estimate the
benefit of reading candidate X in terms of time saved. As
mentioned earlier, the benefit consists of two parts. The first
part is from eliminated posting lists through the prefix filter
update. Let the current prefix length be p = |Q | − |Q∩Xk |+1,
and the new prefix length after reading X be p ′ = |Q | − |Q ∩
X ′k |est + 1. Then the posting lists from p ′ + 1 to p inclusive
will be eliminated, and the benefit is equal to the sum of the
time to read these posting lists.

Another benefit is from eliminating candidates by updat-
ing the position filter. The position filter for a candidate Y
has upper-bound intersection size:

|Q ∩ Y |ub = |Q[1 : i] ∩ Y | +min(|Q | − i, |Y | − jY ) (6)

This is different from Equation (2): the first term on the
right is the number of intersecting tokens seen so far, as
we do not read Y immediately after encountering it, this
number may no longer be one. If |Q ∩Y | ≤ |Q ∩X ′k |est , then
candidate Y will likely be eliminated after reading X . Thus,
using the updated position filter, we can determine whether
a candidate will be eliminated, and the benefit is the sum of
the time it would take to read the eliminated candidates.
Equation 7 gives the benefit of reading candidate X . The

setWi is all unread candidates at posting list i and I (·) is an
indicator function that evaluates to one only if the condition
argument is true, and zero otherwise.

Bene f it(X ) =

p∑
i=p′+1

L(fi )+∑
Y ∈Wi ,Y,X

S(|Y [jY + 1 : ]|) · I (|Q ∩ Y |ub ≤ |Q ∩ X ′k |est )
(7)

3.3 Reading Posting Lists
We now provide a quantitative framework for estimating the
benefit of reading posting lists.
As before, let i be the position of the current posting list

that we just read. As discussed in the previous section, in
order to avoid a large variance in estimating intersection
size, we need to initially read a few posting lists for each
candidate. So posting lists are read in “batch”, and we use i ′ to
indicate the position of the end, or the last posting list, of the
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Figure 2: The query set Q and candidate X after read-
ing the posting list at position i. Pairs of dots with
solid lines represent intersecting tokens, pairs with
dotted lines represent future intersecting tokens, and
non-intersecting tokens in both sets are not shown.

next batch. This is shown in Figure 2, which also shows the
intersecting tokens between query Q and a candidate X . Let
jX be the most recent position in X whose token intersects
withQ , and j ′X be the position in the future after reading the
next batch of posting lists ending at i ′.
Reading the next batch always improves (or at worse

leaves unchanged) the pruning power of position filter, by
tightening upper-bound for all candidates. This can be un-
derstood using the future upper-bound intersection size for
candidate X at i ′:
|Q ∩ X |′ub = |Q[1 : i

′] ∩ X | +min(|Q | − i ′, |X | − j ′X )
= |Q[1 : i] ∩ X | + |Q[i + 1 : i ′] ∩ X |
+min(|Q | − i ′, |X | − j ′X )
≤ |Q[1 : i] ∩ X | + |Q[i + 1 : i ′]|
+min(|Q | − i ′, |X | − j ′X )
≤ |Q[1 : i] ∩ X | +min(|Q | − i, |X | − jX )
= |Q ∩ X |ub

(8)

Intuitively, reading the next batch verifies the exact inter-
section in that batch, and “exposes” the number of tokens
that do not intersect but have taken as part of the upper-
bound. So the total number of tokens we can count toward
the upper-bound is reduced, and the upper-bound is lowered.
Given the new upper-bound |Q ∩ X |′ub , by comparing it

with the current k-th candidate’s intersection size, or the
current threshold, |Q ∩ Xk |, we know for every candidate X
whether it would be eliminated or not. If not, we may still
have some benefit because we know we would only need to
read the tokens in X [j ′X + 1 : ].
So now the question is how do we estimate |Q ∩ X |′ub .

Calculating |Q ∩X |′ub requires |Q[i + 1 : i ′] ∩X |, the number
of intersecting tokens between Q and X in the next batch,
and j ′X , the future position of the last intersecting token.
First, we can estimate |Q[i + 1 : i ′] ∩ X | using the same

method we used for the total intersection size, |Q ∩ X |, in
Equation 4, by assuming uniform distribution of intersecting

tokens over the range Q[iX ,0 : ].

|Q[i + 1 : i ′] ∩ X |est =
|Q[iX ,0 : i] ∩ X |
|Q | − iX ,0 + 1

· (i ′ − i) (9)

Since we keep track of iX ,0 and |Q[iX ,0 : i] ∩ X | for every
candidate X , we can compute this estimate.

Second, we can estimate j ′X by first leveraging the fact that
the number of intersecting tokens between i + 1 and i ′ in Q
must be equal to that between jX + 1 and j ′X in X , as shown
in Figure 2. Then, we can apply the same estimation method
for intersection size in Equation 9 to create an approximate
equality, from which we derive an expression for j ′X ,est .

|Q[i + 1 : i ′] ∩ X |est ≈ |Q ∩ X [jX + 1 : j ′X ]|est

(((((((
|Q[iX ,0 : i] ∩ X |
|Q | − iX ,0 + 1

· (i ′ − i) ≈(((((((
|Q ∩ X [jX ,0 : jX ]|
|X | − jX ,0 + 1

· (j ′X − jX )

j ′X ,est = jX+
i ′ − i

|Q | − iX ,0 + 1
· (|X | − jX ,0 + 1)

(10)

In the above derivation, since |Q[iX ,0 : i] ∩ X | is exactly the
same as |Q ∩ X [jX ,0 : jX ]| (see Figure 2), we can cancel them
out on both sides of the equation.

Substituting |Q[i+1 : i ′]∩X |est and j ′X ,est for |Q[i+1 : i
′]∩

X | and j ′X , respectively, in Equation 8, we can obtain the
estimation for the future upper-bound of X in the position
filter:
|Q ∩ X |′ub,est = |Q[1 : i] ∩ X | + |Q[i + 1 : i

′] ∩ X |est

+min(|Q | − i ′, |X | − j ′X ,est )
(11)

Equipped with the estimation for the upper-bound, we
can finally summarize the benefit of reading the next batch
of posting lists for tokens Bi+1,i′ = xi+1, ...,xi′ .
Bene f it(Bi+1,i′)

=
∑
X ∈Wi

S(|X [jX : ]|) · I (|Q ∩ X |′ub,est ≤ |Q ∩ Xk |)

+
(
S(|X [jX : ]|) − S(|X [j ′X : ]|)

)
· I (|Q ∩ X |′ub,est > |Q ∩ Xk |)

(12)

The first term is the time spent on reading candidate X ,
corresponding to the cost saved due to the elimination of X
by reading the next batch of posting lists. The second term
is the reduction in read time for reading X when it is not
eliminated, but due to an updated position filter, fewer of its
tokens need to be read. As in Equation 7, I (·) is an indicator
function. It is important to note that, the benefit of reading
posting lists is always non-negative.

3.4 An Adaptive Algorithm
Given our quantitative framework for estimating the respec-
tive benefits of reading a candidate and reading a batch of
posting lists (in terms of the amount of read time saved), we



Algorithm 1 Algorithm JOSIE using the cost model
1: procedure JOSIE(U , I ,Q,k, λ) ▷ U , I are the dictionary

and inverted index, and λ is the batch size
2: Q ← Q ∩U ▷ Use the dictionary
3: x1,x2, ...,xn ← Sort(Q) ▷ Apply global ordering
4: h ← {} ▷ h is the heap for running top-k sets
5: u ← {} ▷ u is the hash map of unread candidates
6: i ← 1, i ′← 1+ λ, Xk ← ∅▷ Xk is the k-th candidate
7: p ← |Q | − |Q ∩ Xk | + 1
8: while i ≤ p or u , ∅ do
9: X ← Best(u)
10: if |h | = k and NetCost(X ) > NetCost(Bi+1,i′)

or (u = ∅ and X = ∅) then
11: u ← u ∪ Read(I ,Bi+1,i′) ▷ Read posting lists
12: i ← i ′, i ′← i ′ + λ
13: else
14: TryPopPush(h,k,X , |Q ∩ X |) ▷ Read set X
15: Xk , |Q ∩ Xk | ← Head(h)
16: p ← |Q | − |Q ∩ Xk | + 1
17: end if
18: u ← PositionFilter(u) ▷ Eliminate candidates
19: end while
20: return PopAll(h)
21: end procedure

now calculate the net cost as the difference between the read
time incurred and the read time saved.

NetCost(X ) = S(|X [jX + 1 : ]|) − Bene f it(X )

NetCost(Bi+1,i′) =
i′∑

x=i+1
L(fx ) − Bene f it(Bi+1,i′)

(13)

Clearly, the lower the net cost, the better the performance.
We now present our algorithm, JOSIE (JOining Search

using Intersection Estimation), that prioritizes reading post-
ing lists or candidates based on net cost computed using
estimated intersection sizes. The pseudo code is shown in
Algorithm 1.

Starting from reading the first batch of posting lists,
the algorithm relies on the functions NetCost(X ) and
NetCost(Bi+1,i′) to determine whether to read the best un-
read candidate, ranked by net cost, or to read the next batch
of posting lists. Each time candidate is read, the algorithm
updates a running top-k heap and the prefix filter. Each time
posting lists are read, the algorithm updates the pointers.
Either way, after the read, the algorithm applies the position
filter and eliminates unqualified candidates.
Since the threshold |Q ∩ Xk | is only valid (or non-zero)

after at least k candidates are read, JOSIE always chooses to
read candidates before the top-k heap is full (|h | = k), unless
it is reading the first batch (u = ∅ and X = ∅).

The algorithm terminates when the posting list pointer i
is outside of the prefix filter range (i > p), and there is no
unread candidate (u = ∅). If i > p but u , ∅, it means that
the algorithm still has to finish the remaining candidates by
either reading posting lists or reading sets.

The total time of JOSIE is

p∗∑
i=1

L(fi ) +

p∗+δ∑
i=p∗+1

L(fi ) +
∑

X ∈W \V ∗
S(|X [jX : ]|) (14)

The formula is similar to ProbeSet’s (Equation 3) however
it has a few differences. First, in ProbeSet, no more posting
lists are read after the last position in the final prefix, indi-
cated by p∗, while in our algorithm, the net cost of reading
the next batch of posting lists may be less than reading the
next candidate, leading to more posting lists read. We use δ
to indicate the extra posting lists read after the final prefix
position. It is important to note that the extra posting lists
are only used to help reduce the read time of existing can-
didates, and do not introduce any new candidate, as those
candidates will be pruned automatically by the prefix and
position filters.
The second difference is the last term. Instead of reading

every qualified candidate as we encounter it as in ProbeSet,
we read candidates in increasing order of their net costs,
and thus the candidates with the highest pruning effect (i.e.,
benefit) get read first. Thus, we are always going to read no
more candidates than ProbeSet and often many fewer. That
is, V ⊆ V ∗, where V is the set of candidates that are pruned
at first encounter only, andV ∗ is the set of all candidates that
are pruned in our algorithm. Note that V ∗ = ∅ is extremely
unlikely as it happens only when the candidates appear in
the order of strictly increasing intersection sizes with the
query.
The last difference is the read time for each candidate.

ProbeSet reads a qualified candidate at first encounter, thus
the read time is S(|X [jX ,0 : ]|). Our algorithm, on the other
hand, reads a candidate at some posting list after the first
encounter, due to reading in batch and using the cost model.
Thus, we will almost always have fewer tokens to read
for any candidate (in the worst case read the full set like
ProbeSet). Thus less time is spent on reading the candidates.

In conclusion, our algorithm reads fewer candidates than
ProbeSet, and often a smaller portion of those candidates.
This reduction in read time is at the expense of reading the
extra δ number of posting lists. However, due to the use of
cost model, every step of the algorithm chooses the direction
with the least net cost, thus the total cost of reading the
extra posting lists is likely much less than the reduced cost
of reading candidates.



3.5 Distinct Posting Lists
Although the cost model works with any global order, for
this work, we use increasing frequency order as the global
order, because it tends to minimize the number of candidates
in the prefix, as suggested by Chaudhuri et al. [6]. For details
on indexing, please see Appendix 7.1. Another advantage
of using frequency order is that duplicate posting lists are
together, and we use this to further optimize the search
engine.

Two posting lists are duplicates if they point to the same
sets. Because of the frequency ordering (and within a fre-
quency we order lists by some fixed ordering on sets), dupli-
cate lists will be adjacent. Importantly, we observed many
duplicate posting lists in both Open Data and Web Table.
This is due to many data values appear only once in a single
column (e.g., UUIDs), or they strictly co-occur with some
other values, such as provinces’ names of a country. The
statistics are in Table 3.

Table 3: Posting lists in Open Data and Web Tables.

#Original %Dup #AfterDe-dup

Open Data 563,320,456 98% 9,003,658
Web Tables 184,644,583 83% 45,395,793
Enterprise Data 3,902,604 99.87% 9,133

Even though reading multiple duplicate posting lists does
not yield more candidates than reading just one, it still pro-
vides the benefit of reducing the cost of reading existing
candidates, as discussed in Section 3.3. So how can we avoid
reading duplicate lists, while still getting the benefit?
To avoid reading duplicate posting lists, we assign each

token in the dictionary a duplicate group ID, which is a unique
identifier for a group of duplicate posting lists. So when
matching a query with the dictionary, a duplicate group
ID is also mapped to every query token, in addition to the
frequency and posting list pointer.
The cost model assumes the posting lists of a query set

are read sequentially in the frequency order of their tokens.
When going through the posting lists, we read just the post-
ing list of the last token in each group present in the query.
This can be done by checking if the next token has the same
or different duplicate group ID as the current one. If the next
one has the same duplicate group ID, then the posting list can
be skipped. This idea can be illustrated using the example
in Figure 3: the first and second posting lists with duplicate
group ID 1 are skipped, and the first two posting lists with
duplicate group ID 5 are also skipped.
We modified our cost model to handle duplicates. First,

we count groups, rather than lists when forming batches
and ignore the skipped posting list in calculating the read

Group IDs 1 1 1 4 5 5 5 6 7

Query 
Tokens

Posting 
Lists …

Reads

Figure 3: A read sequence of distinct posting lists.

cost. Second, we need to account for the number of post-
ing lists skipped when reading the last posting list in the
same duplicate group. So the information about candidates
(see Section 3.2), such as the number of intersecting tokens
observed, is updated correctly.

4 EXPERIMENTS
We now demonstrate the performance of JOSIE through ex-
periments using real-world data lakes, and compare it to the
state-of-the-arts in both exact and approximate approaches.

4.1 Data Lakes
We used two data lakes in our experiments, Open Data (ob-
tained from Nargesian et al. [21]) and WebTables, (a public
corpus [14]).
For each lake, we extracted sets by taking the distinct

values in every column of every table. We also removed
all numerical values, as they create casual joins that are
not meaningful. The characteristics of the extracted sets are
shown in Table 2. Web Tables has 219× more sets than Open
Data, while its average set size is much smaller (10 vs. 1,540).
This means reading a set in Web Table is usually cheaper.
Tokens in Web Tables appear in more sets overall than those
in Open Data. This implies that the posting lists of Web
Tables tokens are often longer, and thus more expensive to
read.

4.2 Query Benchmarks
We generated three query benchmarks from each data lake.
Each benchmark is a set of queries (sets) selected from a size
range in order to evaluate performance on different query
sizes.

For Open Data, the benchmarks are from three ranges: 10
to 1k, 10 to 10k, and 10 to 100k. For the rest of the paper,
we will refer to each benchmark using its upper-bound. For
example, the benchmark with range 10 to 100k is simply
called “100k”. For each benchmark, we divide its range into
10 equal-width intervals except for the first interval, which
starts from 10. For example, for range 10 to 1k, the intervals
are [10, 100], [100, 200], and all the way to [900, 1000]. We



then sample 100 sets from each interval using uniform ran-
dom sampling. Sampling by interval prevents a benchmark
that has the same skewed distribution as the repository itself,
and heavily biased to sample smaller sets.

For Web Tables, we used different ranges for benchmarks:
10 to 100, 10 to 1k, and 10 to 5k. The last range only has 5
intervals. This is because the sets in Web Tables tend to be
much smaller than Open Data, and there are not enough sets
in the 5k to 10k range to sample 100 sets for every interval.
In order to make up for the total, we sampled 200 sets for
each of the 5 intervals.
For a query set Q , and dictionary of all tokens U in the

index excluding the query, we used |Q ∩U | instead of |Q |
to decide which range the query belongs to. This is because
any token that only exists in Q , but not in U will not have a
posting list, and add uncontrolled noise to the experiment
when we want to measure the effect of number of posting
lists on performance.

We have made the benchmarks available online5.

4.3 Setup
We build an inverted index and dictionaries for each of the
Open Data andWeb Tables repositories using Apache Spark6.
The details of index creation is discussed in Appendix 7.1.
The posting lists and sets are then stored in a PostgreSQL7
database as two separate tables, with BTree indexes built on
tokens and sets. All experiments are conducted on a machine
with two Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz (16
cores), 128 GB DDR4 memory, and an Intel® SSD DC S3520
3D MLC.

4.4 Algorithms
MergeList-D This is based on the MergeList algorithm in-
troduced in Section 2.2, modified to read only the distinct
posting lists using the technique introduced in Section 3.5.

ProbeSet-D This is based on the ProbeSet algorithm in-
troduced in Section 2.4, modified to also read only distinct
posting lists. This algorithm relies on prefix filter to limit the
number of posting lists to read, and uses position filter to
reduce the number of candidates to read.

LSHEnsemble-60 This is an implementation of the al-
gorithm introduced by Zhu et al. for approximate join-
able table search [34]. It uses a transformation that allows
Minhash LSH to be used with set containment similarity,
|Q∩X |
|Q | → R[0.0, 1.0], which is the normalized version of set

intersection size. The algorithm first uses an LSH index to
acquire some candidates that are more likely than the rest to
have set containment similarities above some threshold, and

5https://github.com/ekzhu/set-similarity-search-benchmarks
6https://spark.apache.org
7https://www.postgresql.org
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Figure 4: Mean query time, Open Data benchmark.

then the algorithm reads and computes exact set intersec-
tion size for those candidates to obtain the ranked final re-
sults. The original algorithm8 only supports threshold-based
search, so we modified the algorithm to support top-k search
by trying a sequence of decreasing thresholds starting at 1.0
with a step size equal to 0.05, until enough candidates have
been acquired. Since this is an approximate algorithm, it can
be extremely fast by just returning any candidate. So for a
fair comparison we require the algorithm to keep acquiring
and reading (distinct) candidates until a minimum recall of
60% is reached for the top-k candidates. The ground truth is
provided to the algorithm for every query.

LSHEnsemble-90 This is the same algorithm as the previ-
ous one, with the only difference being the minimum recall
is 90%. A higher minimum recall means the algorithm has to
read more candidates in order to improve accuracy.

JOSIE-D This is the cost-based algorithm presented in
Section 3.4, with the distinct posting list optimization.

4.5 Open Data Results
We compare the running time of JOSIE-D with the baseline
algorithms MergeList-D and ProbeSet-D on benchmarks
generated from Open Data tables. The result is shown in
Figure 4. Each row corresponds to a different k , which is
the number of top results to retrieve, and each column cor-
responds to a different query benchmark (i.e., 1k, 10k, and
100k). Each point is the mean running time of benchmark
queries from a single intervals (i.e., 100 queries).

8https://github.com/ekzhu/lshensemble

https://github.com/ekzhu/set-similarity-search-benchmarks
https://spark.apache.org
https://www.postgresql.org
https://github.com/ekzhu/lshensemble


0

1

2

3

S
td

.
o
f

D
u

ra
ti

o
n

0

2

4

6

0

5

10

0

100

200

300

400

M
ea

n
#

of
S

et
s

R
ea

d

0

250

500

750

1000

0

50

100

150

200

0

200

400

600

M
ea

n
#

o
f

L
is

ts
R

ea
d

0

1000

2000

3000

4000

0

5000

10000

15000

20000

250 500 750

Query Size

100

200

300

400

M
ea

n
F

o
ot

p
ri

n
t

(K
B

)

2500 5000 7500

Query Size

0

250

500

750

1000

25000
50000

75000

Query Size

0

500

1000

1500

2000

MergeList-D ProbeSet-D JOSIE-D

Figure 5: Standard deviation of durations, mean num-
ber of set and posting lists read per query, and query
memory footprint on Open Data benchmark (k = 10).

ProbeSet-D’s performance deteriorates quickly as k in-
creases. This is because with larger k , the prefix filter is
larger and has less pruning power, as the k-th candidate’s
intersection size can be much lower. Thus, ProbeSet-Dmust
read more posting lists and all the candidates appear in those
posting lists. In contrast, MergeList-D simply reads all the
distinct posting lists and none of the candidates, regardless
of k . So its performance is constant with respect to k .
We can also observe that ProbeSet-D’s running time is

much more volatile than MergeList-D, as shown in the first
row of Figure 5, which plots the standard deviation of query
duration. This is because ProbeSet-D reads all candidates it
encounters and has no control over the sizes of candidates
it reads, thus its running time is heavily dependent on the
distribution of posting list lengths (i.e., token frequencies)
and set sizes.
Now we look at our proposed algorithm JOSIE-D. It out-

performs both ProbeSet-D and MergeList-D, on all bench-
marks and all ks, often by 2 to 4 times, except for the k = 20
and 1k benchmark, on which it is on par with MergeList-D.

Let us discuss the effect of increasing k on JOSIE-D, as it
also reads candidates, similar to ProbeSet-D. The running
time of JOSIE-D increases with k , but at a much slower rate
than ProbeSet-D. This is because unlike the latter, JOSIE-D
does not read all the candidates it encounters – it always
reads the next candidate with the lowest net cost (and likely
carrying the most pruning power, or benefit) evaluated by
the cost model, and aggressively prunes out unqualified can-
didates using the position filter.

We compare the mean number of sets read by ProbeSet-D
and JOSIE-D per query in the second row of Figure 5. It
is evident that JOSIE-D drastically reduced the sets read
by an order of magnitude (from well over 100 to around
30). This shows that the cost model is extremely effective
in choosing the best next candidate to read, which causes
the most aggressive pruning. We also compare the mean
number of posting lists read in the third row of Figure 5,
which shows that JOSIE-D reads more posting lists than
ProbeSet-D. This is because the net cost of reading posting
lists may be lower than reading the next best candidates, as
discussed in Section 3.3.
What happened at k = 20 on the 1k benchmark? The

estimation time becomes a major fraction of the total time
when read time is small – this happens when the candidates
are small in size, but large in total number as happens with
small queries at large k . The estimation time is linear in
the total number of candidates, as JOSIE-D must always go
through all unread candidates. In this case, MergeList-D
may benefit from the fact that it does not read any candidate,
and the number of posting lists to read is also small for small
queries.

We also compares the memory footprint of query process-
ing for the three algorithms, in the fourth row of Figure 5.
For the detail of memory footprint measurement, please refer
to Appendix 7.3. Based on the results, ProbeSet-D uses the
most memory, and JOSIE-D comes the second. This is due to
the large sets in the Open Data benchmark, as the two algo-
rithms both need to allocate buffer for reading candidate sets.
The relatively short posting lists in the OpenData benchmark
also lead to the low memory usage of MergeList-D.

4.6 Webtable Results
In comparison with Open Data, Web Tables has different
characteristics – it has 219× more sets, but much smaller
sets (average size 10 versus 1,540), and its tokens have higher
frequencies overall (average 4 versus 23), leading to larger
posting lists that are more expensive to read.

The effect of large posting lists directly impacts the perfor-
mance of MergeList-D, which must read all distinct posting
lists for a query set. As shown in Figure 6, it has the longest
running time, and can be 3× slower than ProbeSet-D and
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Figure 6: Mean query time on WebTable benchmark.

JOSIE-D on k = 5. On the other hand, ProbeSet-D benefits
from the small set sizes inWeb Tables, as the time saved from
reading fewer large posting lists is larger than the time to
read tiny sets. So in consequence, for table repositories with
similar distributions to Web Table – high token frequencies
and small set sizes, search algorithms making use of prefix
filter (e.g., ProbeSet-D and JOSIE-D) would benefit the most
from the distribution.
What about JOSIE-D? It still out-performs the other two

algorithms, as shown in Figure 6, with lower variance as
shown in the first row of Figure 7. The most interesting part
is that it still mostly out-performs ProbeSet-D despite the
high estimation time caused by having many candidates to
look through. The second row of Figure 7 shows that the
number of candidates in Web Tables is much higher than
Open Data, approximately 15× on the 1k benchmark, for
example. JOSIE-D still reads an order of magnitude fewer
candidates than ProbeSet-D, so the estimation time ismostly
paid-off by the time saved from pruned candidates.

The fourth row of Figure 7 shows the memory footprint of
the three algorithms on Web Table benchmark. The result is
very different from the Open Data benchmark: MergeList-D
comes first in memory usage, exceeding the other two by
an order of magnitude for query size larger than 250. This
is due to the relatively much longer posting lists in the Web
Table benchmark, making it much more costly space-wise to
read posting lists. The smaller set sizes reduce the memory
usage of both ProbeSet-D and JOSIE-D, however, because
the latter still reads more posting lists (δ more, as explained
in Section 3.4), it tends to use more memory.
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Figure 7: The standard deviation, number of sets and
posting lists read, and query memory footprint on
Web Table benchmark (k = 10).

One interesting result is that JOSIE-D uses a lot more
memory for smaller queries than larger ones. This is because
the algorithm tends to read posting lists rather than sets for
small queries, as shown in the second row of Figure 7, and
posting lists requires larger buffer than sets in this bench-
mark. JOSIE-D also uses more memory than MergeList-D
for those small queries, because unlike MergeList-D, it
needs to read token positions and set sizes in addition to
set IDs (see Appendix 7.3).

4.7 Comparison with LSH Ensemble
The most interesting comparison comes from JOSIE-D and
LSH Ensemble algorithm (LSHEnsemble-60 and 90). Figure 8
shows the mean query durations. The LSH Ensemble query
duration includes the time of retrieving candidates from the
LSH index and the time to read and compute exact intersec-
tion sizes for candidates. The common key to the success of
LSH algorithms is that the first stage of candidate retrieval is
extremely fast and can be very selective, such that the total
query duration can be lower than exact algorithms.
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on Open Data benchmark.
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Figure 9: The standard deviation, number of sets read
and query memory footprint on Open Data bench-
mark for k = 10.

However, based on Figure 8, we observe the performance
of JOSIE-D can beat LSH Ensemble by 2× on the 1k bench-
mark for k = 5 to k = 10. This is surprising, because LSH
Ensemble is an approximate algorithm (though we have mod-
ified it to achieve a minimum 60% recall for LSHEnsemble-60

and 90% for -90) while JOSIE-D gives exact results. As query
size increases, for example, on the 100k benchmark, LSH En-
semble begins to out-perform JOSIE-D by a large margin.
This is also true with increasing k , as at k = 20 on the 100k
benchmark, LSH Ensemble out-performs JOSIE-D by 3.5×.

The reason for JOSIE-D being faster at smallerk is actually
related to observations made by Bayardo et al. who showed
experimentally that prefix filter based exact techniques can
be faster than LSH [2]. This is because prefix filter can be
much more selective than LSH index at high thresholds or
small k , leading to very few posting list reads and smaller
number of candidates reads.
Why is LSH Ensemble slower than JOSIE-D for small

queries? Our investigation shows that this is because the
transformation from containment similarity (i.e., normalized
intersection size |Q∩X |

|Q | ) to Jaccard similarity used by LSH En-
semble introduces additional false positive candidates [34],
which causes wasted time spent in reading those sets. We
found that this influx of false positive candidates is the most
severe at small queries, due to the skewed set size distribu-
tion where there are many more small sets than large sets.
The sudden drop of candidates can be observed in the sec-
ond row of Figure 9, the plot for the 10k benchmark. Unlike
JOSIE-D, LSH Ensemble cannot use position filter to prune
out false positive candidates, it must read all candidates it
encounters.

As shown in the 10k and 100k benchmarks of Figure 9, the
number of candidates read by LSH Ensemble drops closer to
that of JOSIE-D, while its running time becomes relatively
faster than the latter. This is because LSH Ensemble does not
need to read any posting lists, and the candidate retrieval
time is purely in-memory and extremely fast, while JOSIE-D
must issue read operations for posting lists to retrieve candi-
dates.
The third row of Figure 9 compares the query memory

footprint of LSH Ensemble and JOSIE-D. Because JOSIE-D
needs to read posting lists in addition to sets, it is expected
to use more memory than LSH Ensemble.

In conclusion, LSH Ensemble can be a better choice if the
user wants to retrieve many results (k ≥ 20) and the query
size is large (more than 10k) and most importantly, if the
user does not care very much about recall of the results.
Otherwise, a cost-based exact algorithm such as JOSIE-D is
the better choice.

5 RELATEDWORK
The overlap set similarity search problem is a type of set sim-
ilarity search where the similarity measure is set intersection
size. A very similar problem is set similarity join, which is also
know as all-pair set similarity search. Given a collection of
sets, set similarity join finds all the set pairs whose similarity



is less than a threshold. There are many work on in-memory
set similarity join. Mann et al. [18] present an excellent ex-
perimental study. Specifically, Arasu et al. [1] designed a
filtering condition with guaranteed false positive rate while
not missing any result. Bayardo et al. [2] proposed to use
prefix filter for set similarity join. Xiao et al. [32] extended
the work by Bayardo et al. [2] with two additional filters:
the position filter, which we have discussed extensively in
Section 2.4, and the suffix filter. We do not use the suffix filter
given the later Mann et al. study showed it was not very ef-
fective (something we confirmed in our initial development
of JOSIE). Instead of using a fixed-length prefix as done by
Bayardo et al., Wang et al. [29] designed an adaptive prefix
filter framework. Wang et al. [30] further improved Xiao et
al.’s work by leveraging the relation between sets.
A lot of research on parallel set similarity join has been

done [10, 20, 22, 24, 26, 27]. Fier et al. [12] present a re-
cent experimental study of this work. Vernica et al. [27]
designed a parallel algorithm based on the prefix filter.
MassJoin [10] uses partition-based string similarity join [17].
ClusterJoin [24] partitions the sets and distributes the parti-
tions to different nodes. The goal of these parallel approaches
is to scale in the number of sets, not necessarily in the size
of the sets. For example, in the comparative study of Fier et
al., the maximum dictionary size is 8M.
In addition to threshold-based set similarity join algo-

rithms, Xiao et al. [31] proposed an in-memory algorithm
for top-k set similarity join with Jaccard/Cosine similarity
measures. We have introduced the search version of this
algorithm in Section 2.3. Deng et al. [9] and Wang et al. [28]
studied the top-k string similarity search problem. Behm et
al. [3] studied the string similarity search problem in external
memory. Note that all these techniques are not designed for
data lakes. They are typically evaluated on sets with small
average size and small dictionaries.
There is also research on finding related (not necessarily

joinable) tables in data lakes. Sarma et al. [23] use keyword
search and similarity measures other than set intersection
size to find tables that are candidates for join and candi-
dates for union from Web Tables [5]. The Mannheim Search
Engine applies keyword search techniques to find joinable
attributes by treating attribute values as keywords and rank-
ing candidate attributes using a fuzzy Jaccard similarity [15].
This work is not intended to scale to large sets. Lehmberg et
al. [13] found that stitching small web tables can help match
them with knowledge bases. Nargesian et al. [21] proposed
techniques to search for unionable tables from data lakes.
Deng et al. [8] designed a set relatedness metric which can
be used to find related tables.
Approximate set similarity search techniques have been

used for finding related tables. Both Asymmetric Minwise
Hashing [25] and LSH Ensemble [34] use MinHash-based

indexing for set containment search. LSH Ensemble was
shown to handle data sets with skewed cardinality distribu-
tion much better than Asymmetric Minwise Hashing, hence
we have used LSH Ensemble in our experimental study in
Section 4. Fernandez et al. [11] use MinHash LSH to find
similar tables based on Jaccard similarity between columns.
For the skewed distributions we consider, Jaccard is not an
appropriate measure.

6 CONCLUSION
We have presented JOSIE, a new exact overlap set similarity
search algorithm. Unlike previous approaches, JOSIE uses
a cost model to adapt to the data distribution enabling sig-
nificantly better performance over data lakes with large sets
than the state-of-the-art approach ProbeSet. For queries
with sizes up to 10K (a larger size than has been studied in
the exact set similarity search literature), JOSIE even out-
performs what is currently the best approximate approach.
Our extensive experimental evaluation is the first to compare
overlap set similarity search approaches over a repository
with sets of average size over 1K and maximum size in the
millions (two orders of magnitude larger than previous eval-
uations).
During the search, our approach estimates the likely set

intersection size between a candidate and the query. Going
forward, we are considering how to improve the estimation
of set intersection size in a way that takes into account the
frequency of tokens. We believe this would lead to better
estimation of the net cost and make our cost model more
accurate. In addition, we also looking into automate the
selection of query column based on pre-computed statistics,
and generalize the single-column model of equi-join to multi-
column equi-joins. Lastly, fuzzy join is another interesting
direction of future work.

Our work and our competitors for both exact and approx-
imate search all use set intersection size to rank results. Of
course, when searching relational tables, attributes may be
bags. An open problem is to use bag semantics (including
the multiplicities of tokens within a set) to rank results. This
would allow a data scientist to be more informed about the
relative usefulness of search results because it would reflect
the actual size of the joined tables.
Acknowledgments: The work was partially funded by
NSERC.
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7 APPENDIX
7.1 Indexing Data Lakes
In this section, we discuss how we build an inverted index
from a data lake in three major steps, implementation details,
a strategy for incremental updates and how to process query
in parallel.

7.1.1 Extracting Raw Tokens. In the first step, we extract
sets from tables in the data lake. Each set is assigned a SetID,
a unique integer identifier for the original table and column
from which the set is extracted; Sets are flatterned into a
mapping called RawTokens of tuples (RawToken, SetID).

7.1.2 Building Token Table. In the second step, we build
a mapping called TokenTable, that maps every token
RawToken to a unique integer ID, TokenID, which indicates
the token’s position in the global order, and an integer du-
plicate group ID, GroupID. Each tuple of the mapping is
(RawToken, TokenID, GroupID).

To build TokenTable, we first build posting lists of sorted
SetID, by grouping tuples in RawTokens by RawToken. Then
we sort all posting lists by length (i.e., token frequency),



MurmurHash3 hash values9, and the lists themselves. The
use of MurmurHash3 hash helps us avoid most of expensive
pair-wise comparisons of same-length posting lists that did
not have hash collision. Then we use the sorted position
of each posting list as the TokenID of the corresponding
RawToken to obtain the mapping (RawToken, TokenID). It
is important to note that, even though we are using token
frequency as the global order, our algorithm described in
Section 3.4 works for any other global order, for example, the
original positions of posting lists before sorting. In order to
leverage the distinct list optimization described in Section 3.5,
however, we must use frequency order.
As described in Section 3.5, each duplicate group spans

a consecutive interval in the global order by frequency. To
create duplicate groups, we must identify their starting and
ending positions. The starting positions are indentified by
by comparing every pair of adjancent posting lists (lower
and upper) in the global order: for a pair, if the lower and
upper posting lists are different, then the upper posting list’s
TokenID is the starting position of a new duplicate group.
The first duplicate group’s starting position is 0. Similary,
the ending positions are identified by scanning every pair of
adjacent groups’ starting positions: the upper group’s start-
ing position is the ending position of the lower duplicate
group. Once all the starting and ending positions are identi-
fied, we can generate the GroupID as the groups’ positions
in the sorted order, and the mapping (TokenID, GroupID)
by enumerating from the starting to the ending position of
every group.

Lastly in this step, we join the two mappings, (RawToken,
TokenID) and (TokenID, GroupID) to obtain TokenTable.

7.1.3 Creating Integer Sets. The last step is to convert all
tokens in sets to integers (TokenID). We use integers because
computing intersection between integer sets is faster than
between string sets, and storage systems such as Postgres10
can read integer sets efficiently. Another benefit of using in-
teger sets is better estimation of read cost, which is discussed
in Section 7.2.
We create integer sets by first joining mappings

RawTokens and TokenTable on RawToken, and then group-
ing by SetID to get sets while selecting only TokenID and
GroupID. Each set is sorted by TokenID to reflect the global
order. Lastly, we create the posting lists as shown in Sec-
tion 2.4 from the integer sets.

7.1.4 Implementation and Performance. We implemented
the indexing algorithm using Apache Spark11. The input
is the RawTokens table of tuples (RawToken, SetID), and

9https://github.com/aappleby/smhasher
10https://www.postgresql.org/docs/10/static/intarray.html
11https://spark.apache.org

Table 4: Indexing benchmark sets using Apache Spark
on a cluster of 3 worker nodes each with 100 GB of
memory and 63 cores.

Open Data Web Tables

Input RawTokens 37.3 GB 51.4 GB
Output Posting Lists 51.3 GB 36.0 GB
Output Integer Sets 10.6 GB 16.3 GB
Duration 2.4 h 1.1 h
Max Per-Task Peak Memory 7.1 GB 9.1 GB

the outputs are the integer sets and posting lists. Apache
Spark automatically creates a series of tasks, some with inter-
dependencies, for parallel execution on a cluster. Since Spark
tasks can be scheduled one after another or simultaneously,
the maximum per-task peak memory usage indicates the
minimum amount of memory that must be available on each
worker node before running into out-of-memory error. Ta-
ble 4 lists the results on input and output sizes, duration, and
maximum per-task peak memory.

7.1.5 Handling Incremental Updates. The posting lists and
integer sets in our index can be updated incrementally. To
do so we must maintain the global order of tokens to ensure
the correctness of our algorithm as described in Section 3.4.

Any update to the index, such as adding a new set, a new
token, or removing a token, can be expressed as a sequence
of ADD and DELETE operations given (RawToken, SetID)
tuples. For ADD, there are 4 different cases:
Case 1: RawToken and SetID both exist. This requires no

action because a set consists of unique tokens.
Case 2: RawToken exists, and SetID is new. We create a

new integer set using the existing TokenID. and then append
to the posting list of TokenID a new entry (SetID, 0, 1). See
Section 2.4 for posting list entry. Due to the append, we
invalidate the duplicate group ID of this posting list. The
global order is unchanged.

Case 3: RawToken is new, and SetID exists. Because the
token is not in our index, we assign a new integer TokenID
by incrementing the maximum existing TokenID, effectively
expending the global order by one and keeping the existing
positions unchanged. Because the new token is at the end
of the global order, we append its new TokenID to the end
of the existing set given by the SetID. For existing posting
lists of the set, we update the set’s entry by incrementing
the size: (SetID, ∗, size + 1) – because the new token is ap-
pended, the existing tokens’ positions are unchanged. Lastly,
we create a new posting list for the new token with entry
(SetID, size, size + 1).
Case 4: RawToken and SetID are both new. This is the

combination of the previous two cases. We first assign a new

https://github.com/aappleby/smhasher
https://www.postgresql.org/docs/10/static/intarray.html
https://spark.apache.org


TokenID to the RawToken, then create a new integer set, and
lastly create a new posting list with entry (SetID, 0, 1). The
global order of tokens is expanded by one, but the rest is
unchanged.
This incremental update strategy can also be applied di-

rectly to an empty index and the resulting global order would
be the order in which tokens are added.
For DELETE, we first remove the entry from the posting

list corresponding to RawToken, and update the entries in
other posting lists of the tokens in the set: some positions
need to be shifted by one, and the sizes are decremented by
one. Then we also remove the token from the integer set.
In summary, the incremental update strategy keeps the

global order of existing tokens unchanged, ensuring the cor-
rectness of our search algorithm (Section 3.4). The caveat
is that we cannot assign duplicate group IDs for the newly
added posting lists as well as those with append or removal,
because finding the duplicate groups requires sorting all
posting lists. Thus, we cannot skip the new and updated
posting lists even if they are duplicates. This only affects the
query performance, and since the tables in data lakes are
often used for analytics tasks, updates are rare. The index
can keep track of the number of posting lists affected and
statistics on query runtimes, so that it can inform the system
administrator to choose an appropriate time to rebuild the
index for better performance.

7.1.6 ParallelQuery Processing. A simple strategy to scale
out the index is to randomly partition the sets into partitions,
and build an index on each partition. Query processing is
distributed across the partitions and the top-k results are
merged to obtain the global top-k. To gracefully balance the
partitions under updates, however, requires a more advanced
solution. We will study it in our future work.
Within each partition, it is possible to utilize multi-core

hardware to read and process postings lists in parallel. How-
ever, parallelizing reading candidates is more challenging,
due to the k-th intersection size threshold for position filter
pruning being mutable. It is possible to achieve parallism
and improve running time if we allow less effective pruning.
This problem warrants a future research work.

7.2 Estimating Costs
In this section we describe the functions S(·) and L(·) for
computing the cost of reading sets and posting lists.

There are multiple components in the cost functions. First,
there is index access time – the time to find where the set or
posting list is located in the storage layer (e.g., disk, memory,
etc.) given its pointer. For Open Data, since there are more
than 563M posting lists, this time can be significant. Then,
there is the time to read the set or posting list from the storage
layer, and the time to transfer the data through network or
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Figure 10: Samples of read costs of sets and posting
lists in Open Data (top) and Web Tables (bottom), and
fitted lines.

inter-process communication, which involves serialization
and deserialization. These components can be collectively
called read time.

The index access time is likely a constant, especially with
popular indexes such as B+ Tree used by many storage layers.
On the other hand, the read time is proportional to the size
of data, which needs to be transferred to the search engine
process, regardless of the type of the storage system.

Thus, we use linear functions to express the read cost:

S(|X |) = s0 + s1 · |X |, L(fi ) = l0 + l1 · fi (15)

Where s0 and l0 are the index access times, and s1 and l1 are
the factors for the read times.
In order to estimate the parameters in Equation 15, we

sampled 1,000 sets and 1,000 posting lists andmeasure the I/O
times, and then fit the functions to the sampled data points.
Figure 10 shows the samples and fitted lines from sets and
posting lists in Open Data and Web Tables, respectively.

7.3 Measuring Query Memory Footprint
Measuring memory footprint based on heap usage has to
deal with noise such as overhead in programming language
runtime, garbage collection, and various compiler optimiza-
tions. Thus, we only measure the amount of data structure
allocated for the purpose of processing the query. In this sec-
tion, we explain our approach to measure the query memory
footprint of the algorithms in Section 4.4.

We use Equation 16 to calculate the memory footprint of
MergeList-D. The first term is the size of a hash map for
tracking the counts of times the candidates appear in posting
lists. Its size is calculated using the number distinct sets
encountered (|WML |), times the size of each set ID and count.



The second term is the size of the buffer that is allocated
to read posting lists. We use the longest posting list read
to calculate the size. Since MergeList-D only needs the set
IDs in the each posting list, and does not need the token
positions and set sizes, the buffer size is simply the total size
of integer set IDs in the longest posting list.

|WML | · 2 · SizeOf(Int) + max
i ∈[1, |Q |]

fi · SizeOf(Int) (16)

We use Equation 17 to calculate the memory footprint of
ProbeSet-D. The first term is the size of the buffer allocated
for reading posting lists. Due to the use of prefix filter (subset
of posting lists from 1 to p∗), the buffer size is the size of the
longest posting list in the prefix. However, since ProbeSet-D
needs the token positions and set sizes for position filter, in
addition to set IDs, the size of each posting list entry is 3
integers. The second term is the size of the buffer allocated for
reading sets. Similar to the other buffer, its size is calculated
using the maximum size read. The third term is the size
of the hash set allocated for tracking sets that have been
pruned or read, so it is simply the size of the IDs of all the
sets that appeared in the prefix posting lists. The set of all
sets appeared in the prefix isW .

max
i ∈[1,p∗]

3fi · SizeOf(Int) + max
X ∈W \V

|X [jX ,0 : ]|

+|W | · SizeOf(Int)
(17)

Equation 18 is used to calculate the memory footprint for
JOSIE-D, where δ is the extra posting lists read after the
prefix filter,V ∗ is the set of pruned candidates using position
filter, andWi is the set of candidates after reading posting
list i . See Equation 14 and 7 for their usages in running
time analysis. The first three terms have nearly indentical
expression as those of ProbeSet-D, however the magnitudes
can be different, as p∗ + δ ≥ p∗, andW \V ∗ ⊆W \V . The
last term is the maximum size of the hash map allocated
for unread candidates (Wi ) after reading a batch of posting
lists ends at i . As described in Section 3.2, in addition to
the set ID, we keep track of 4 additional integers for each
candidate. Also, since pruned candidates are removed from
the hash map, we use the maximum count of candidate sets
during query processing to calculate the allocated size, as
the deleted slots can be reused.

max
i ∈[1,p∗+δ ]

3fi · SizeOf(Int) + max
X ∈W \V ∗

|X [jX ,0 : ]|

+|W | · SizeOf(Int) + max
i ∈[1,p∗+δ ]

5|Wi | · SizeOf(Int)
(18)

For the LSH Ensemble algorithms, LSHEnsemble-60 and
LSHEnsemble-90, we use Equation 19. The first term is size
of buffer allocated for reading sets, which is the maximum
size over all sets read. The second term is the size of the hash
set allocated for tracking the candidates retrieved from the

LSH indexes.
max

X ∈WLSH
|X | + |WLSH | · SizeOf(Int) (19)

During experiment, we record all the relevant variables
needed to calculate memory footprint. The experimental re-
sults on Open Data and Web Table benchmarks are shown in
Figure 5, 7, and 9. Please see Section 4 for detailed discussion.

7.4 Caching
The search algorithm itself does not deal with memory man-
agement or caching, which is handled by the storage layer
which stores the posting lists and integer sets. The storage
layer could be a separate process and its communications
with the query prcessing process may involve serialization.

During the experiment, we used Postgres as the storage
layer for posting lists and sets. In order to better reflect the
worst case running time of the algorithms, we set the shared
memory buffer size of Postgres to 128 MB, which is small
enough compared to the data size (see Table 4) to avoid
caching too many results.

In a practical deployment of the search engine, increasing
the shared memory buffer size to utilize caching may be
helpful, as it also depends on the choice of the storage layer,
for example, a disk-based storage system would benefit but
not an in-memory database.
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