Write once, solve thrice:
Three gnarly problems,
one solution

November 27, 2002

(See the HTML version of this document at
www.cs.utoronto.ca/ ~ heap/Courses/270F02/A4/chains/chains.html)

Below are three problems that present themselves to the world as completely different. Somewhat sur-
prisingly, the DP algorithms to solve these problems are strongly similar (I'll try to convince you of this a
little later). If there is any justice in the world,! then the object-oriented features of C++ should allow you
to express their similarity. Rather than write separate, repetitious solutions to these problems, you’ll use
C++ tools to write code that solves them generically.

The problems

Here are sketches of each problem, and a sketch (in English) of an algorithm to solve them.

Minimal triangulation of a convex polygon

A convex polygon has interior angles that are each strictly less than 180° (or 7 radians, if you like). A
triangulation of a convex polygon is formed by drawing diagonals between non-adjacent vertices (corners),
provided you never intersect another diagonal (except at a vertex), until all possible choices of diagonals
have been used (see Figure 1).

Suppose a convex polygon has vertices vy, ..., v,. In any triangulation we can assign a weight to each
triangle: the length of its perimeter.? Let w(i, j, k) denote the length of the perimeter of Av;v;vy,. The cost
of a triangulation is just the sum of the weights of its component triangles. We want to find a triangulation
with the minimum cost.

Here’s a sketch of how to find a minimum cost triangulation of a convex polygon with n 4+ 1 vertices:

1. Number the vertices of your polygon from 0 to n.

2. Denote the cost of a minimal triangulation (which you haven’t yet found) of your polygon as c[0][n].
Similarly, your polygon contains sub-polygons with vertices ¢ through & (if k is at least 2 greater than
i), and you can denote the weight of a minimal triangulation of such a sub-polygon as c[é][k].

3. Possible values of c[i][k] fall into two cases. Case one: if k < i+ 2 then the polygon with vertices v; . ..
vy, has fewer than 3 vertices, and no triangulation is possible, so an appropriate minimum triangulation
cost is 0. Case two: if k¥ > i + 2, then there are one or more choices of j where i < j < k. For each

1 An unproved conjecture. . .
2Different weight functions may be used. If you make the weight of a triangle equal to its area, minimal triangulation
becomes really easy

0,2 (12) 0,2 (1.2)

(0,/0) (1,0 (0,0) (1,0

Figure 1: Two triangulations of the same convex pentagon. The triangulation on the left has a cost of 8 + 2¢/2 + 2v/5
(approximately 15.30), the one on the right has a cost of 4 + 2v/2 4+ 4+/5 (approximately 15.77). If you index the vertices
counter-clockwise from (0,0) (vertex 0) to (0,2) (vertex 4), then you could specify the triangulation on the left by listing the
indices of its component triangles: 0 3 4,0 1 3, and 1 2 3. You could specify the triangulation on the right similarly: 0 3 4,
023,01 2.

choice of j, calculate c[][j] + c[j][k] + w(%, j, k) — the minimum over all appropriate j is c[{][k]. These
two cases give the following recursive formula:

o k<i+?2
il = {minim{c[i]m + cljllk] +w(i, 5, B)} otherwise W

Record which index j corresponds to the minimum (you might denote it m[i][k]).

4. Suppose m[0][n] is denoted jo, then you know that Avgv;,v, is part of a minimal triangulation. You
can find more triangles in this minimal triangulation using m[0][jo] and m[jo][n]. Continue until you’ve
found all triangles in a minimal triangulation.

Although it is possible to build up a table of values c[i][k] iteratively (as described in your course notes),
for this assignment you must find ¢[0][n] recursively, using memoization (mentioned in lecture) to prevent
redundant calculations of the same value.

Optimal grouping of a matrix product

A matrix is a rectangular array of numbers. The product of two matrices, M1 M is defined, so long as M,
has the same number of columns as M, has rows. Suppose M; has r; rows and ¢; columns, Ms has ro
rows and ¢y columns (¢; must equal r2), then the product My M2 requires rirsco multiplications of array
elements. Matrix multiplication is associative (although not commutative), so three or more matrices can
be multiplied (so long as the appropriate adjacent dimensions match):

My MyMs = (My M) Mz = My (MyMs).

Although the value of M; M, M3 is the same whichever way you group them, the amount of work (multipli-
cations of array elements) is not. For example, suppose M; is a 2 X 3 matrix (2 rows, 3 columns), M, is
3 x4, and M3 is 4 x 5. Then the grouping (M; x My)Mj3 costs: 24 4+ 40 = 64 multiplications. The grouping
M (M3yM3) costs: 60 + 30 = 90 multiplications. This disparity gets worse for longer chains of matrices.
What is the best way to group

MoM; ... M?

Here is a first attempt at finding a minimum-cost grouping. In analogy with triangulation, denote the
minimum cost of grouping matrices My . .. M}, as c[0][k], and the product ror;jci as w(s, j, k). Then for each

choice of j with 0 < j < k we check the value of ¢[0][j — 1] + ¢[j][k] + w(i, j, k), and take the minimum. This
formula looks close to that for triangulation except for two things: the first part of the sum is ¢[0][j — 1]
rather than c[0][4] (since the matrices don’t overlap), and the function w(i, j, k) is different.

You can fix the first problem by changing notation slightly. Define c[i][k] to be the minimum cost of
grouping matrices Mg ... My_1 (instead of My --- My), so w(i, j, k) = rirjcg—1, and our recursive formula is
now the same as Equation 1, except for w(4, j, k) being different (and aren’t there C++ features that might
help with that?). You can use the same algorithm for both problems. The cost of a minimal grouping of
matrices My - -+ M, is ¢[0][n + 1].

Optimal structure of a BST

Suppose you need a binary search tree (BST) that makes searches as efficient as possible, given the frequency
of the keys. Given a list of pairs

(K07f0)7 (K17f1)7 ey (Knafn)7

... where the K; are keys, K; < K; (in some ordering) if i < j, and the f; are integers specifying how
frequently the keys occur. For each BST comprised of nodes containing these keys, denote the depth of the
node containing K; as d; (with the depth of the root node being 1, its children being 2, and so on). The cost
of such a BST is the sum of d; x f; (for all 1) — you expect to have to traverse depth d; f; times retrieving
the node with key K;. What is the best way to construct a BST in order to minimize the cost? Note: For
this assignment, BSTs have keys in all nodes, not just in the leaves.

Here is a first attempt. Denote the minimum cost of a BST comprised of nodes containing K; ... K
as c[i][k], and the weight added by selecting some K; (i < j < k) as the root with subtrees K;,..., K;_1
and Kjy1,..., K, asw(i,j,k) = fi+---+ fj +--- + fr. You should draw some small BSTs to see why this
w(i, j, k) is suitable. Now, for each each choice of j with i < j < k find c[i][j — 1] + ¢[j + 1][k] + w(i, j, k).
Again, this is close, but not identical, to the formula for triangulation and matrix multiplication, so you’ll
need to slightly change the notation.

Denote the minimum cost of a BST comprised of nodes containing K; 1, ..., Ki_1 as ¢[i][k], and w(i, j, k)
as the sum fiy1 + -+ + -+ 4+ fr—1. Now your recursive formula is Equation 1. If you set out to find a
minimal BST for values (K, fo), - - ., (Kn, fn), the corresponding minimal cost will be ¢[—1][n + 1], and the
algorithm is the same (except for the definition of w(i, j,k)) as the other two problems.

Your job

You’ll need to download testChain.cpp, chain.h, Makefile. You will need to see the HTML version of this
document:

www.cs.utoronto.ca/ ~ heap/Courses/270F02/A4/chains/chains.html

in order to click or shift-click on the appropriate links (no known pencil, pen, stylus, or digit appears to
work on the paper version).
Once you’ve downloaded the appropriate files, you have these tasks:

1. Implement minPartition(int i, int k) (see chain.h). This returns a minimal partition (a list of
components, see below) of the range i. ..k of a chain. Some definitions:

range i...k For a polygon, this means the (sub)polygon from vertex i to vertex k. For a matrix
chain, this means the (sub)chain from matrix i to matrix k-1. For a BST this means the (sub)BST
from node i+1 to node k-1.

component i j k A triple of integers that specify a component of a partition. For a polygon this
specifies the triangle with vertices vertex 4, vertex j, and vertex k. For a matrix chain this
specifies the parenthesization of matrices ¢ through j — 1 and then of matrices j through k& — 1.
For a BST this specifies that node j is the root of a (sub)tree with left child comprised of nodes
i+ 1 through j — 1 and right child comprised of nodes j + 1 through k — 1.

w(i, j, k) The weight of component 7 j k. For a polygon, this is the perimeter of the triangle with
vertices vertex ¢, vertex j, and vertex k. For a chain of matrices this is the product rirjci—_1,
where 7; is the number of rows in matrix ¢, r; the number of rows in matrix j, and cx—; the
number of columns in matrix £ — 1. For a BST this is the sum of frequencies f;+1 + -+ + fr—1-

link The basic unit of a chain. For a vertexChain, this is a vertex with a pair of double values for
its coordinates. For a matrixChain, this is a single matrix with a pair of doubles describing its
dimensions (number of rows, number of columns). For a bstChain, this is a node with a pair of
doubles representing its key and frequency.

2. Implement partitionTally(componentNode *partitionList) (see chain.h). This returns the sum
of the weights w(i, 7, k) of components in the linked list partitionList.

3. Implement constructors for classes chain in a file called chain.cpp, vertexChain in a file called

vertexChain. cpp, matrixChain in a file called matrixChain. cpp, and bstChain in a file called bstChain. cpp.

4. Implement any other functions, constants, or types needed to make testChain.cpp work when it is
provided with input of the form described below. You may not change testChain.cpp. You may add
to chain.h, but you may not change any functions or types originally declared there.

For a chain with n links (e.g. a polygon with n sides, a chain of n matrices, a BST with n nodes), your
code should have worst-case O(n?) running time. Your solution should combine a recursive algorithm with
memoization. Your solution should use generic code, rather than three repetitive solutions.

Here is what testChains.cpp expects on standard input:

1. One of the strings polygon, matrix, or bst, followed by white space. This indicates the type of chain
that is being partitioned.

2. An integer (we’ll call it n) followed by white space. This indicates the number of links in the chain.
3. n pairs of double literals, separated and followed by white space. These are the values of the links.

4. A single double literal, followed by white space. This represents the (approximate) calculated minimum
value for partitioning this chain.

As an example, look at triangle.chn or any of the other examples in ../Code/TestChains. Once your code is
working, you should be able to see the following test result:

./testChains < triangle.chn
Chain type: polygon Minimal partition

What to submit

Assignments are due 11:59:59 on Friday, December the 6th.

You'll need to submit your chain.cpp, vertexChain.cpp, matrixChain.cpp, and bstChain.cpp. If
you modify chain.h (you may add declarations, but not change those already present), then submit your
versionof chain.h. It is your responsibility to ensure that when all these files are present in the same
directory with the supplied Makefile (which you don’t change nor submit), the command

make

...executes without error.
Once you're satisfied with your results, you may submit your work:

submit -c csc270h -a a4 chain.h chain.cpp vertexChain.cpp matrixChain.cpp bstChain.cpp
Your can check that your assignment has been submitted with

submit -1 -c csc270h -a a3

You can replace a file of the same name that you have previously submitted with (using vertexChain.cpp
as an example):

submit -c csc270h -a a3 -f vertexChain.cpp

Late assignments are not normally accepted, and always require a written explanation (e-mail is a form
of writing).

Submit your own work! We detected a case of excessively similar code in A2, and we are pursuing a
possible academic offense due to it. Don’t be the next one.

1 Above and beyond

Warning: The material in this section won’t (directly) earn you any marks.

Your course notes describe the similarity between the matrix chain multiplication problem and the optimal
BST problem, however the suggested solution is iterative and doesn’t qualify for this assignment. Algorithms
by Cormen, Leiserson and Rivest (CL&R) describes the similarity between polygon triangulation, matrix
chain multiplication, and parse trees. Be warned that CL&R use slightly different notation, so the formula
for c[4][k] might be off-by-one from this handout. CL&R also describe a single algorithm that solves an entire
class of DP problems (CL&R, Section 26.4). You need some familiarity with abstract algebra to read this
section.

The similarity of these three problems is discussed in www.ics.uci.edu/ ~ eppstein/260/011023/, where
all three are reduced to triangulations. Be warned that my formulation of the optimal BST structure allows
keys to occupy all nodes (both internal and leaves), whereas on this page the keys occur only at the leaves.

