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Abstract:  The Halting Problem is a version of the Liar's Paradox.

Epimenides

An ancient Cretan named Epimenides is reported to have said “All Cretans are liars.” [1].    
This is supposed to be self-contradictory, but it misses the mark.  If there is any other Cretan, 
and that Cretan is a truth-teller, then Epimenides' sentence is simply false:  Epimenides is a liar, 
but not all Cretans are liars.  Saint Paul missed the point completely, taking Epimenides' 
statement at face value, and elaborating: “It was one of themselves, one of their own prophets, 
who said, “Cretans were never anything but liars, dangerous animals, and lazy”:  and that is a 
true statement.” [5].  I will refer to the simpler sentence

This sentence is false.
as the Liar's Paradox.  If that sentence is true, then, according to the sentence, it is false.  If it is 
false, then it is true.  That simple sentence is self-contradictory.

I give the sentence a name, say  L  for Liar.
L:   L  is false.

 As a mathematical formula, it becomes
L = (L=false)

As an equation in unknown  L , it has no solution, because the equation is  false  regardless of 
whether  L  is  true  or  false .  As a definition or specification of  L  it is called “inconsistent”.  
(I am using italic  true  and  false  for the binary values representing truth and falsity.)

A slightly more complicated version presents the inconsistency as two sentences.
The next sentence is true.
The previous sentence is false.

Naming the first sentence  B  and the second  G , as mathematical formulas, they become
B = (G=true)
G = (B=false)

These two equations in the two unknowns  B  and  G  have no solution:  there is no assignment 
of binary values to  B  and  G  that satisfies the two equations.  They are inconsistent.  If you 
look at either one of the sentences alone, there is no inconsistency.  It may make sense to say 
that the next sentence is true, and it may make sense to say that the previous sentence is false.  
But together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so  B  can say whether any 
sentence is true, not just sentence  G .  To reduce contention over truth and falsity, I will stick 
with mathematical sentences, otherwise known as binary expressions (allowing subexpressions 
of any type, including functions).  To pass sentences as data, we need to encode them in some 
way.  The easiest encoding is as a character string.  Now  B  becomes a function from strings to 
binary values, and the pair of sentences become

B (s)   =   true  if string  s  represents a binary expression with value  true ;
     false  otherwise

G        =   “ B (G) = false ” 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I have made two definitions:   B  and  G .  Since  G  is just a character string, there cannot be 
anything wrong with its definition;  it represents the binary expression  B (G) = false .  But the 
definition of  B , no matter how carefully worded, no matter how clear it sounds, conceals an 
inconsistency.  I am not concerned with computing  B ;  I just want to define a mathematical 
function.  The parameter allows us to show a large number of examples, like  B (“0=0”) = true  
and  B (“0=1”) = false , which are not problematic.  They may fool us into believing that the 
definition of  B  makes sense.  But they are irrelevant. The inconsistency is revealed by applying  
B  to  G .  If  B (G) = true , then  G  represents a  false  expression, so  B (G)  should be  false .  
If  B (G) = false , then  G  represents a  true  expression, so  B (G)  should be  true .  The 
inconsistency is the same as in the unparameterized, unencoded version of the Liar's Paradox.

Gödel

The Liar's Paradox is about truth.  Gödel used the same self-contradictory construction to talk 
about provability [2].  He used a numeric, rather than string, encoding of sentences, and he used 
the name  Bew  (short for Beweisbar, which is German for provable) for a function similar to  
B .   The sentence encoded by  G  is popularly called “the Gödel sentence”.  With our notations 
and encoding,  B  and  G  become

B (s)   =   true  if string  s  represents a provable binary expression;
     false  otherwise

G        =   “ B (G) = false ”

What is the value of  B (G) ?  If we suppose  B (G)  is  true , then  G  represents a  false  
sentence, and in a consistent logic, no  false  sentence is provable, so  B (G)  should be  false .  
If we suppose  B (G)  is  false , then  G  represents a  true  sentence, and in a complete logic, all  
true  sentences are provable, so  B (G)  should be  true .  Gödel concluded that if a logic is 
expressive enough to define  B , then the logic is either inconsistent or incomplete.

Most of Gödel's paper [2] is devoted to showing how to define  Bew .  His definition was 
equivalent to programming a prover, using a functional language, namely the logic of Principia 
Mathematica [6] (hence the name of his paper).  That was an amazing piece of work.  But 
Gödel needn't have gone to so much trouble.  Bew  is defined to apply to all sentence encodings.  
But there is only one sentence encoding he wants to apply it to.  For a single sentence, we don't 
need a sentence encoding.  Define

B  =  true  if  G  is a provable binary expression;
         false  otherwise
G  =  (B=false)

What is the value of  B ?  If we suppose  B  is  true , then  G  is a  false  sentence, and in a 
consistent logic, no  false  sentence is provable, so  B  should be  false .  If we suppose  B  is  
false , then  G  is a  true  sentence, and in a complete logic, all  true  sentences are provable, so  
B  should be  true .  We can conclude from this simpler construction that if a logic is expressive 
enough to define  B , then the logic is either inconsistent or incomplete.

Even this simpler construction includes one more definition than necessary.  We could define

B  =  true  if  B=false  is a provable binary expression;
         false  otherwise

What is the value of  B ?  If we suppose  B  is  true , then  B=false  is a  false  sentence, and in a 
consistent logic, no  false  sentence is provable, so  B  should be  false .  If we suppose  B  is  
false , then  B=false  is a  true  sentence, and in a complete logic, all  true  sentences are 
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provable, so  B  should be  true .  If a logic is expressive enough to define  B , then the logic is 
either inconsistent or incomplete.

Turing

Epimenides talked about truth;  Gödel talked about provability;  Turing talked about 
computability using the same sort of arguments [4].  For my examples, I will use the Pascal 
programming language, but the choice of language is irrelevant;  any other programming 
language would do just as well.  I'll start with a procedure named  twist  that is closely 
analogous to the Liar's Paradox.

procedure twist;
begin

if (execution of  twist  terminates) then twist
end

I have not finished writing procedure  twist ;  what remains is to replace the informal binary 
expression (execution of  twist  terminates) with either  true  or  false , whichever one is correct.  
The problem in doing so is that the informal binary expression refers to itself in a self-
contradictory manner:  if the execution of procedure  twist  terminates, it should be replaced 
with  true , creating a procedure whose execution does not terminate;  if the execution of  twist  
does not terminate, it should be replaced with  false , creating a procedure whose execution 
does terminate.  This is not a programming problem, not a computability problem, not a lack of 
expressiveness of Pascal.  The problem is that the informal binary expression is an inconsistent 
specification.  One might protest:

Either execution of  twist  terminates, or it doesn't.  If it terminates, use  true ;  if it 
doesn't, use  false .  How can there possibly be an inconsistency?

But I hope the inconsistency is clear enough that no-one will protest.

As we did with the Liar's Paradox, let's present the same inconsistency as two declarations.

const halts = {  true  if execution of  twist  terminates,  false  otherwise };

procedure twist;
begin

if halts then twist
end

The value of constant  halts  is missing.  In place of the value there is a comment to specify 
what the value should be.  If execution of procedure  twist  terminates, then the value should be  
true .  If execution of procedure  twist  does not terminate, then the value should be  false .  So 
there is no problem in programming the value of  halts  after we determine whether the 
execution of  twist  terminates.  If we suppose it does, then  halts=true , and so we see that 
execution of  twist  does not terminate.  If we suppose it does not, then  halts=false , and so we 
see that execution of  twist  does terminate.

Procedure  twist  has been written in its entirety.  To determine that  halts  is being used 
correctly within  twist , we need only the type of  halts , not the value, and we have the type.  To 
determine the meaning of  twist  we need only the specification of  halts , not its 
implementation, and we have the specification.

Note.  That important programming principle enables a programmer to use pieces of 
programs written by other people, knowing only their specifications, not their 
implementations.  It also enables a programmer to change the implementation of part of 
a program, but still satisfying the specification, without knowing where and why the part 
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is being used.  End of Note.
So there is nothing wrong with the definition of  twist .  The problem is that we cannot write the 
value of  halts  to satisfy its specification.  This is not a programming problem, not a 
computability problem, not a lack of expressiveness of Pascal.  The problem is that the 
specification of  halts  is inconsistent.  One might protest:

Either execution of  twist  terminates, or it doesn't.  If it terminates, use   true ;  if it 
doesn't, use  false .  How can there possibly be an inconsistency?

The inconsistency cannot be seen by looking only at  halts  or only at  twist .  Each refers to the 
other, and together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so  halts  can say whether 
execution of any parameterless Pascal procedure terminates, not just  twist .  To pass procedures 
as data, we need to encode them in some way, and the easiest encoding is as a character string.  
(Whenever programs are presented as input data to a compiler or interpreter, they are presented 
as character strings.)  We could pass the whole procedure as text, but it is simpler to pass just 
the procedure name as text, and to assume there is a dictionary of function and procedure 
definitions that is accessible to  halts , so that the call  halts ('twist')  allows  halts  to look up  
'twist'  and  'halts'  in the dictionary, and retrieve their texts for analysis.

function halts (p: string): boolean;
{ return  true  if  p  represents a parameterless Pascal procedure whose execution terminates; }
{ return  false  otherwise }

procedure twist;
begin

if halts ('twist') then twist
end

To determine that  twist  is syntactically a Pascal procedure, we need only the header for  halts , 
not the body, and we have the header.  To determine the semantics of  twist , we need only the 
specification of  halts , not its implementation, and we have the specification.

As before, we cannot write the body of  halts  to satisfy the specification.  No matter how 
carefully worded it is, no matter how clear it sounds, the specification conceals an 
inconsistency.  The inconsistency is revealed by applying  halts  to  'twist' .  If  
halts ('twist') = true , then execution of  twist  is nonterminating, so  halts ('twist')  should be  
false .  If  halts ('twist') = false , then execution of  twist  is terminating, so  halts ('twist')  should 
be  true .  This is still not a programming problem, not a computability problem, not a lack of 
expressiveness of Pascal.  It is still the same inconsistency that was present in the 
unparameterized, unencoded version, and the same inconsistency that was present in the  twist  
procedure.  One might protest:

Either execution of a procedure represented by  p  terminates, or it doesn't.  If it 
terminates,  halts (p)  should return  true ;  if it doesn't,  halts (p)  should return  false .  
How can there possibly be an inconsistency?

Now the protest starts to sound more plausible because the parameter allows us to show a large 
number of examples which are not problematic.  For example, if we define  stop  and  go  as

procedure stop; begin end
procedure go; begin go end

then
halts ('stop') = true
halts ('go') = false

These nonproblematic examples may fool us into believing that the specification of  halts  
makes sense.  But they are irrelevant.  Procedure  twist  shows us the inconsistency.
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There is one last complication:  a second parameter so  halts  can say whether execution of any 
Pascal procedure with an input parameter terminates.

function halts (p, i: string): boolean;
{ return  true  if  p  represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input  i ;  return  false  otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

This is now a modern version of Turing's Halting Problem.  Turing's argument is as follows.

Assume that  halts  is computable, and that it has been programmed according to its 
specification.  Does execution of  twist ('twist')  terminate?  If it terminates, then  
halts ('twist', 'twist')  returns  true , and so we see from the body of  twist  that execution 
of  twist ('twist')  does not terminate.  If it does not terminate, then  halts ('twist', 'twist')  
returns  false , and so we see from the body of  twist  that execution of  twist ('twist')  
terminates.  This is inconsistent.  Therefore function  halts  cannot have been 
programmed according to its specification;  halts  is incomputable.

The two parameters  (p, i)  make a two-dimensional space, and point  ('twist', 'twist')  is on its 
diagonal, which is why the argument is sometimes called a “diagonal argument”.  But any 
string would do equally well as a value for the second parameter, and the second parameter 
adds nothing to Turing's argument.

The surprise, and the main point of this paper, is that the computability assumption is 
unnecessary to the argument.  Without assuming that  halts  is computable, I ask what the 
specification of  halts  says the result of  halts ('twist', 'twist')  should be.  If the specification 
says the result should be  true  , then the semantics of  twist ('twist')  is nontermination, so  
halts ('twist', 'twist')  should be  false .  If the specification says the result should be  false , then 
the semantics of  twist ('twist')  is termination, so  halts ('twist', 'twist')  should be  true .  This is 
inconsistent.  Therefore  halts  cannot be programmed according to its specification.  But the 
problem is not incomputability;  it is inconsistency of specification.  It is the same inconsistency 
that was present in all previous versions, before I added the complications of parameters and 
encodings.  It is just the Liar's Paradox in fancy clothing.  In fact, Turing's argument could have 
been applied to the simplest version of  twist  with equal (in)validity.

procedure twist;
begin

if (execution of  twist  terminates) then twist
end

Assume that the expression (execution of  twist  terminates) is computable, and that it 
has been programmed according to its specification.  Does execution of  twist  terminate?  
If it terminates, then (execution of  twist  terminates) is  true , and so we see from the 
body of  twist  that its execution does not terminate.  If it does not terminate, then 
(execution of  twist  terminates) is  false , and so we see from the body of  twist  that its 
execution terminates.  This is inconsistent. Therefore the expression (execution of  twist  
terminates) cannot have been programmed according to its specification;  it is 
incomputable.

But there are only two possibilities for programming  (execution of  twist  terminates) ;  they are  
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true  and  false .  Calling this choice incomputable says that one of them is correct but we 
cannot determine which one.  In fact, neither of them is correct, and that is called inconsistent.

Turing's argument can be applied to any property of program execution.  For example,

procedure twist1;
begin

if (execution of  twist1  prints  'A' ) then print ('B') else print ('A')
end

Termination of execution of  twist1  is not in question:  when  (execution of  twist1  prints  'A' )  
is replaced with either  true  or  false , whichever is appropriate, execution of  twist1  
terminates.  The question is whether  'A'  or  'B'  is printed.  Turing's argument says that the 
property “prints 'A' ” is incomputable, and so is every property of program execution (except 
for the trivial “always  true ” and “always  false ” properties) [3].  But the problem is not 
incomputability;  the problem is inconsistency of specification.

Underdetermination

The Liar's Paradox, the Gödel sentence, and Halting Problem are all examples of inconsistency, 
which is also known as overdetermination.  Here, “determination” means determining a 
solution.  If there is no solution, we have overdetermination;  if there is more than one solution, 
we have underdetermination.  An example is the sentence

This sentence is true.
Whereas the Liar's Paradox can be neither true nor false, the sentence just written can be either 
true or false.  Giving the sentence the name  U  for underdetermined, it becomes the formula

U = (U=true)
As an equation in unknown  U , it has two solutions:  both  true  and  false .  As a specification 
of  U , it is consistent, but does not determine  U .

Here is an example of the underdetermination of Gödel's provability specification.
B (s)   =   true  if string  s  represents a provable binary expression;

     false  otherwise
H        =   “ B (H) = true ”

That is the same specification of  B  as before.  Now we ask:  What is the value of  B (H) ?  If 
we suppose  B (H) = true , then  H  represents the sentence  true=true , which is provable, so   
B (H)  should be  true , as supposed.  If we suppose  B (H) = false , then  H  represents the 
sentence  false=true , which is not provable, so  B (H)  should be  false , as supposed.  The 
specification of  B  is both overdetermined (for  G ) and underdetermined (for  H ).

Here is an example of the underdetermination of Turing's halting specification.

function halts (p, i: string): boolean;
{ return  true  if  p  represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input  i ;  return  false  otherwise }

procedure straight (s: string);
begin

if not halts (s, s) then straight (s)
end 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That is the same  halts  specification as before;  it says that the  halts  function will tell us 
whether the execution of a procedure terminates.  What does it say about  straight ?  If we 
suppose that  halts ('straight', 'straight') = true , we see from the body of  straight  that its 
execution terminates, as supposed, so that is a solution.  If we suppose that  
halts ('straight', 'straight') = false , we see from the body of  straight  that its execution does not 
terminate, as supposed, so that is also a solution.  That is another inadequacy of the  halts  
specification.  The specification sounds just right:  neither overdetermined nor underdetermined.  
But we are forced by the examples to admit that the specification is not as it sounds.  In at least 
one instance ( twist ), the  halts  specification is overdetermined, and in at least one instance 
( straight ), the halts specification is underdetermined.

Conclusion

Epimenides' construction shows us:
Asking for a function whose result is  true  for all and only those strings representing 
true sentences in a sufficiently expressive language is both overdetermined (inconsistent) 
and underdetermined.

Gödel's construction shows us:
Asking for a function whose result is  true  for all and only those strings representing 
provable sentences in a sufficiently expressive language is both overdetermined 
(inconsistent) and underdetermined.

Turing's construction shows us:
Asking for a function, written in a programming language, whose result is  true  for all 
and only those strings representing procedures, written in that same language, whose 
execution terminates, is both overdetermined (inconsistent) and underdetermined.

If “incomputable” meant having an inconsistent specification, then  halts  would be 
incomputable.  But “incomputable” does not mean “inconsistent”.  It means that a well-defined 
mathematical function, one with a consistent specification, cannot be computed.  That has not 
been proven.

Conjecture

I conjecture that every consistent first-order specification is satisfied by a computable function.  
This conjecture is a bit like the Löwenheim-Skolem theorem that every consistent first-order 
theory has a countable model.
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