
2014-10-6 0

Epimenides, Gödel, Turing:
an Eternal Gölden Twist [0]

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Abstract: The Halting Problem is a version of the Liar's Paradox.

Epimenides

An ancient Cretan named Epimenides is reported to have said “All Cretans are liars.” [1].
This is supposed to be self-contradictory, but it misses the mark. If there is any other Cretan,
and that Cretan is a truth-teller, then Epimenides' sentence is simply false: Epimenides is a liar,
but not all Cretans are liars. Saint Paul missed the point completely, taking Epimenides'
statement at face value, and elaborating: “It was one of themselves, one of their own prophets,
who said, “Cretans were never anything but liars, dangerous animals, and lazy”: and that is a
true statement.” [5]. I will refer to the simpler sentence

This sentence is false.
as the Liar's Paradox. If that sentence is true, then, according to the sentence, it is false. If it is
false, then it is true. That simple sentence is self-contradictory.

I give the sentence a name, say L for Liar.
L: L is false.

 As a mathematical formula, it becomes
L = (L=false)

As an equation in unknown L , it has no solution, because the equation is false regardless of
whether L is true or false . As a definition or specification of L it is called “inconsistent”.
(I am using italic true and false for the binary values representing truth and falsity.)

A slightly more complicated version presents the inconsistency as two sentences.
The next sentence is true.
The previous sentence is false.

Naming the first sentence B and the second G , as mathematical formulas, they become
B = (G=true)
G = (B=false)

These two equations in the two unknowns B and G have no solution: there is no assignment
of binary values to B and G that satisfies the two equations. They are inconsistent. If you
look at either one of the sentences alone, there is no inconsistency. It may make sense to say
that the next sentence is true, and it may make sense to say that the previous sentence is false.
But together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so B can say whether any
sentence is true, not just sentence G . To reduce contention over truth and falsity, I will stick
with mathematical sentences, otherwise known as binary expressions (allowing subexpressions
of any type, including functions). To pass sentences as data, we need to encode them in some
way. The easiest encoding is as a character string. Now B becomes a function from strings to
binary values, and the pair of sentences become

B (s) = true if string s represents a binary expression with value true ;
 false otherwise

G = “ B (G) = false ” 

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

Eric Hehner 2014-10-61

I have made two definitions: B and G . Since G is just a character string, there cannot be
anything wrong with its definition; it represents the binary expression B (G) = false . But the
definition of B , no matter how carefully worded, no matter how clear it sounds, conceals an
inconsistency. I am not concerned with computing B ; I just want to define a mathematical
function. The parameter allows us to show a large number of examples, like B (“0=0”) = true
and B (“0=1”) = false , which are not problematic. They may fool us into believing that the
definition of B makes sense. But they are irrelevant. The inconsistency is revealed by applying
B to G . If B (G) = true , then G represents a false expression, so B (G) should be false .
If B (G) = false , then G represents a true expression, so B (G) should be true . The
inconsistency is the same as in the unparameterized, unencoded version of the Liar's Paradox.

Gödel

The Liar's Paradox is about truth. Gödel used the same self-contradictory construction to talk
about provability [2]. He used a numeric, rather than string, encoding of sentences, and he used
the name Bew (short for Beweisbar, which is German for provable) for a function similar to
B . The sentence encoded by G is popularly called “the Gödel sentence”. With our notations
and encoding, B and G become

B (s) = true if string s represents a provable binary expression;
 false otherwise

G = “ B (G) = false ”

What is the value of B (G) ? If we suppose B (G) is true , then G represents a false
sentence, and in a consistent logic, no false sentence is provable, so B (G) should be false .
If we suppose B (G) is false , then G represents a true sentence, and in a complete logic, all
true sentences are provable, so B (G) should be true . Gödel concluded that if a logic is
expressive enough to define B , then the logic is either inconsistent or incomplete.

Most of Gödel's paper [2] is devoted to showing how to define Bew . His definition was
equivalent to programming a prover, using a functional language, namely the logic of Principia
Mathematica [6] (hence the name of his paper). That was an amazing piece of work. But
Gödel needn't have gone to so much trouble. Bew is defined to apply to all sentence encodings.
But there is only one sentence encoding he wants to apply it to. For a single sentence, we don't
need a sentence encoding. Define

B = true if G is a provable binary expression;
 false otherwise
G = (B=false)

What is the value of B ? If we suppose B is true , then G is a false sentence, and in a
consistent logic, no false sentence is provable, so B should be false . If we suppose B is
false , then G is a true sentence, and in a complete logic, all true sentences are provable, so
B should be true . We can conclude from this simpler construction that if a logic is expressive
enough to define B , then the logic is either inconsistent or incomplete.

Even this simpler construction includes one more definition than necessary. We could define

B = true if B=false is a provable binary expression;
 false otherwise

What is the value of B ? If we suppose B is true , then B=false is a false sentence, and in a
consistent logic, no false sentence is provable, so B should be false . If we suppose B is
false , then B=false is a true sentence, and in a complete logic, all true sentences are

2014-10-6 Epimenides, Gödel, Turing: an Eternal Gölden Twist 2

provable, so B should be true . If a logic is expressive enough to define B , then the logic is
either inconsistent or incomplete.

Turing

Epimenides talked about truth; Gödel talked about provability; Turing talked about
computability using the same sort of arguments [4]. For my examples, I will use the Pascal
programming language, but the choice of language is irrelevant; any other programming
language would do just as well. I'll start with a procedure named twist that is closely
analogous to the Liar's Paradox.

procedure twist;
begin

if (execution of twist terminates) then twist
end

I have not finished writing procedure twist ; what remains is to replace the informal binary
expression (execution of twist terminates) with either true or false , whichever one is correct.
The problem in doing so is that the informal binary expression refers to itself in a self-
contradictory manner: if the execution of procedure twist terminates, it should be replaced
with true , creating a procedure whose execution does not terminate; if the execution of twist
does not terminate, it should be replaced with false , creating a procedure whose execution
does terminate. This is not a programming problem, not a computability problem, not a lack of
expressiveness of Pascal. The problem is that the informal binary expression is an inconsistent
specification. One might protest:

Either execution of twist terminates, or it doesn't. If it terminates, use true ; if it
doesn't, use false . How can there possibly be an inconsistency?

But I hope the inconsistency is clear enough that no-one will protest.

As we did with the Liar's Paradox, let's present the same inconsistency as two declarations.

const halts = { true if execution of twist terminates, false otherwise };

procedure twist;
begin

if halts then twist
end

The value of constant halts is missing. In place of the value there is a comment to specify
what the value should be. If execution of procedure twist terminates, then the value should be
true . If execution of procedure twist does not terminate, then the value should be false . So
there is no problem in programming the value of halts after we determine whether the
execution of twist terminates. If we suppose it does, then halts=true , and so we see that
execution of twist does not terminate. If we suppose it does not, then halts=false , and so we
see that execution of twist does terminate.

Procedure twist has been written in its entirety. To determine that halts is being used
correctly within twist , we need only the type of halts , not the value, and we have the type. To
determine the meaning of twist we need only the specification of halts , not its
implementation, and we have the specification.

Note. That important programming principle enables a programmer to use pieces of
programs written by other people, knowing only their specifications, not their
implementations. It also enables a programmer to change the implementation of part of
a program, but still satisfying the specification, without knowing where and why the part

Eric Hehner 2014-10-63

is being used. End of Note.
So there is nothing wrong with the definition of twist . The problem is that we cannot write the
value of halts to satisfy its specification. This is not a programming problem, not a
computability problem, not a lack of expressiveness of Pascal. The problem is that the
specification of halts is inconsistent. One might protest:

Either execution of twist terminates, or it doesn't. If it terminates, use true ; if it
doesn't, use false . How can there possibly be an inconsistency?

The inconsistency cannot be seen by looking only at halts or only at twist . Each refers to the
other, and together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so halts can say whether
execution of any parameterless Pascal procedure terminates, not just twist . To pass procedures
as data, we need to encode them in some way, and the easiest encoding is as a character string.
(Whenever programs are presented as input data to a compiler or interpreter, they are presented
as character strings.) We could pass the whole procedure as text, but it is simpler to pass just
the procedure name as text, and to assume there is a dictionary of function and procedure
definitions that is accessible to halts , so that the call halts ('twist') allows halts to look up
'twist' and 'halts' in the dictionary, and retrieve their texts for analysis.

function halts (p: string): boolean;
{ return true if p represents a parameterless Pascal procedure whose execution terminates; }
{ return false otherwise }

procedure twist;
begin

if halts ('twist') then twist
end

To determine that twist is syntactically a Pascal procedure, we need only the header for halts ,
not the body, and we have the header. To determine the semantics of twist , we need only the
specification of halts , not its implementation, and we have the specification.

As before, we cannot write the body of halts to satisfy the specification. No matter how
carefully worded it is, no matter how clear it sounds, the specification conceals an
inconsistency. The inconsistency is revealed by applying halts to 'twist' . If
halts ('twist') = true , then execution of twist is nonterminating, so halts ('twist') should be
false . If halts ('twist') = false , then execution of twist is terminating, so halts ('twist') should
be true . This is still not a programming problem, not a computability problem, not a lack of
expressiveness of Pascal. It is still the same inconsistency that was present in the
unparameterized, unencoded version, and the same inconsistency that was present in the twist
procedure. One might protest:

Either execution of a procedure represented by p terminates, or it doesn't. If it
terminates, halts (p) should return true ; if it doesn't, halts (p) should return false .
How can there possibly be an inconsistency?

Now the protest starts to sound more plausible because the parameter allows us to show a large
number of examples which are not problematic. For example, if we define stop and go as

procedure stop; begin end
procedure go; begin go end

then
halts ('stop') = true
halts ('go') = false

These nonproblematic examples may fool us into believing that the specification of halts
makes sense. But they are irrelevant. Procedure twist shows us the inconsistency.

2014-10-6 Epimenides, Gödel, Turing: an Eternal Gölden Twist 4

There is one last complication: a second parameter so halts can say whether execution of any
Pascal procedure with an input parameter terminates.

function halts (p, i: string): boolean;
{ return true if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i ; return false otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

This is now a modern version of Turing's Halting Problem. Turing's argument is as follows.

Assume that halts is computable, and that it has been programmed according to its
specification. Does execution of twist ('twist') terminate? If it terminates, then
halts ('twist', 'twist') returns true , and so we see from the body of twist that execution
of twist ('twist') does not terminate. If it does not terminate, then halts ('twist', 'twist')
returns false , and so we see from the body of twist that execution of twist ('twist')
terminates. This is inconsistent. Therefore function halts cannot have been
programmed according to its specification; halts is incomputable.

The two parameters (p, i) make a two-dimensional space, and point ('twist', 'twist') is on its
diagonal, which is why the argument is sometimes called a “diagonal argument”. But any
string would do equally well as a value for the second parameter, and the second parameter
adds nothing to Turing's argument.

The surprise, and the main point of this paper, is that the computability assumption is
unnecessary to the argument. Without assuming that halts is computable, I ask what the
specification of halts says the result of halts ('twist', 'twist') should be. If the specification
says the result should be true , then the semantics of twist ('twist') is nontermination, so
halts ('twist', 'twist') should be false . If the specification says the result should be false , then
the semantics of twist ('twist') is termination, so halts ('twist', 'twist') should be true . This is
inconsistent. Therefore halts cannot be programmed according to its specification. But the
problem is not incomputability; it is inconsistency of specification. It is the same inconsistency
that was present in all previous versions, before I added the complications of parameters and
encodings. It is just the Liar's Paradox in fancy clothing. In fact, Turing's argument could have
been applied to the simplest version of twist with equal (in)validity.

procedure twist;
begin

if (execution of twist terminates) then twist
end

Assume that the expression (execution of twist terminates) is computable, and that it
has been programmed according to its specification. Does execution of twist terminate?
If it terminates, then (execution of twist terminates) is true , and so we see from the
body of twist that its execution does not terminate. If it does not terminate, then
(execution of twist terminates) is false , and so we see from the body of twist that its
execution terminates. This is inconsistent. Therefore the expression (execution of twist
terminates) cannot have been programmed according to its specification; it is
incomputable.

But there are only two possibilities for programming (execution of twist terminates) ; they are

Eric Hehner 2014-10-65

true and false . Calling this choice incomputable says that one of them is correct but we
cannot determine which one. In fact, neither of them is correct, and that is called inconsistent.

Turing's argument can be applied to any property of program execution. For example,

procedure twist1;
begin

if (execution of twist1 prints 'A') then print ('B') else print ('A')
end

Termination of execution of twist1 is not in question: when (execution of twist1 prints 'A')
is replaced with either true or false , whichever is appropriate, execution of twist1
terminates. The question is whether 'A' or 'B' is printed. Turing's argument says that the
property “prints 'A' ” is incomputable, and so is every property of program execution (except
for the trivial “always true ” and “always false ” properties) [3]. But the problem is not
incomputability; the problem is inconsistency of specification.

Underdetermination

The Liar's Paradox, the Gödel sentence, and Halting Problem are all examples of inconsistency,
which is also known as overdetermination. Here, “determination” means determining a
solution. If there is no solution, we have overdetermination; if there is more than one solution,
we have underdetermination. An example is the sentence

This sentence is true.
Whereas the Liar's Paradox can be neither true nor false, the sentence just written can be either
true or false. Giving the sentence the name U for underdetermined, it becomes the formula

U = (U=true)
As an equation in unknown U , it has two solutions: both true and false . As a specification
of U , it is consistent, but does not determine U .

Here is an example of the underdetermination of Gödel's provability specification.
B (s) = true if string s represents a provable binary expression;

 false otherwise
H = “ B (H) = true ”

That is the same specification of B as before. Now we ask: What is the value of B (H) ? If
we suppose B (H) = true , then H represents the sentence true=true , which is provable, so
B (H) should be true , as supposed. If we suppose B (H) = false , then H represents the
sentence false=true , which is not provable, so B (H) should be false , as supposed. The
specification of B is both overdetermined (for G) and underdetermined (for H).

Here is an example of the underdetermination of Turing's halting specification.

function halts (p, i: string): boolean;
{ return true if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i ; return false otherwise }

procedure straight (s: string);
begin

if not halts (s, s) then straight (s)
end 

2014-10-6 Epimenides, Gödel, Turing: an Eternal Gölden Twist 6

That is the same halts specification as before; it says that the halts function will tell us
whether the execution of a procedure terminates. What does it say about straight ? If we
suppose that halts ('straight', 'straight') = true , we see from the body of straight that its
execution terminates, as supposed, so that is a solution. If we suppose that
halts ('straight', 'straight') = false , we see from the body of straight that its execution does not
terminate, as supposed, so that is also a solution. That is another inadequacy of the halts
specification. The specification sounds just right: neither overdetermined nor underdetermined.
But we are forced by the examples to admit that the specification is not as it sounds. In at least
one instance (twist), the halts specification is overdetermined, and in at least one instance
(straight), the halts specification is underdetermined.

Conclusion

Epimenides' construction shows us:
Asking for a function whose result is true for all and only those strings representing
true sentences in a sufficiently expressive language is both overdetermined (inconsistent)
and underdetermined.

Gödel's construction shows us:
Asking for a function whose result is true for all and only those strings representing
provable sentences in a sufficiently expressive language is both overdetermined
(inconsistent) and underdetermined.

Turing's construction shows us:
Asking for a function, written in a programming language, whose result is true for all
and only those strings representing procedures, written in that same language, whose
execution terminates, is both overdetermined (inconsistent) and underdetermined.

If “incomputable” meant having an inconsistent specification, then halts would be
incomputable. But “incomputable” does not mean “inconsistent”. It means that a well-defined
mathematical function, one with a consistent specification, cannot be computed. That has not
been proven.

Conjecture

I conjecture that every consistent first-order specification is satisfied by a computable function.
This conjecture is a bit like the Löwenheim-Skolem theorem that every consistent first-order
theory has a countable model.

References

[0] The title of this paper pays homage to the wonderful book by Douglas R. Hofstadter:
Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, 1979

[1] Epimenides Paradox, Wikipedia, http://en.wikipedia.org/wiki/Epimenides_paradox
[2] K.Gödel: über Formal Unentscheidbare Sätze de Principia Mathematica und Verwandter

Systeme I, Monatshefte für Mathematik und Physik v.38 p.173-198, Leipzig, 1931
[3] H.G.Rice: Classes of Recursively Enumerable Sets and their Decision Problems,

Transactions of the American Mathematical Society v.74 p.358-366, 1953
[4] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

[5] The Jerusalem Bible, Reader's Edition, Titus, chapter 1 verse 12
[6] A.N.Whitehead, B.Russell: Principia Mathematica, Cambridge University Press, 1910

other papers on halting

http://www.cs.utoronto.ca/~hehner/halting.html

