Theory Design

data theory

program theory

1/43



Theory Design
data theory
push s x

program theory

2/43



Theory Design
data theory
s:= push s x

program theory

3/43



Theory Design
data theory
s:= push s x
program theory

push x

4/43



Theory Design
data theory
s:= push s x
program theory
push x

user's variables, implementer's variables

5/43



Program-Stack Theory
syntax
push a procedure with parameter of type X
pop a program

top expression of type X

6/43



Program-Stack Theory

syntax
push
pop

top

axioms
top'=x < pushx

ok < pushx. pop

a procedure with parameter of type X
a program

expression of type X

7/43



Program-Stack Theory

syntax

push
pop

top

axioms
top'=x < pushx

ok < pushx. pop

ok

<~ push x. pop

a procedure with parameter of type X
a program

expression of type X

8/43



Program-Stack Theory

syntax
push a procedure with parameter of type X
pop a program
top expression of type X

axioms

top'=x < pushx

ok < pushx. pop

ok

<~ push x. pop

= push x. ok. pop

9/43



Program-Stack Theory

syntax
push a procedure with parameter of type X
pop a program
top expression of type X

axioms

top'=x < pushx

ok < pushx. pop

ok
<~ push x. pop
= push x. ok. pop

< push x. pushy. pop. pop

10/43



Program-Stack Theory

syntax
push
pop

top

axioms
top'=x < pushx

ok < pushx. pop

a procedure with parameter of type X
a program

expression of type X

11/43



Program-Stack Theory

syntax
push
pop

top

axioms
top'=x < pushx

ok < pushx. pop

top'=x

<~ push x

a procedure with parameter of type X
a program

expression of type X

12/43



Program-Stack Theory

syntax
push
pop

top

axioms
top'=x < pushx

ok < pushx. pop

top'=x

< push x. ok

a procedure with parameter of type X
a program

expression of type X

13/43



Program-Stack Theory

syntax
push a procedure with parameter of type X
pop a program
top expression of type X

axioms

top'=x < pushx

ok < pushx. pop

top'=x
< push x. ok
< push x. pushy. push z. pop. pop

14/43



Program-Stack Implementation

var s: [*X] implementer's variable

15/43



Program-Stack Implementation

var s: [*X] implementer's variable

push = (x: X- s:=s35[x])

16/43



Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])

pop = s:=5[0;.#s—1]

17/43



Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

18/43



Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

Proof (first axiom):

(top'=x < pushx) definitions of push and fop
= (s'(#s'—1)=x <= s:=s5;;[x]) rewrite assignment with one variable
= (s'(#s'-D=x <= s =s3[x]) List Theory

= T

19/43



Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

Proof (first axiom):

(top'=x < pushx) definitions of push and fop
= (s'(#s'—1)=x <= s:=s5;;[x]) rewrite assignment with one variable
= (s'(#s'-)=x <= s =s;;[x]) List Theory
= T

consistent? yes, implemented.

20/43



Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

Proof (first axiom):

(top'=x < pushx) definitions of push and fop
= (s'(#s'—1)=x <= s:=s5;;[x]) rewrite assignment with one variable
= (s'(#s'-D=x < s =s;;[x]) List Theory
= T

consistent? yes, implemented.

complete? no, we can prove very little if we start with pop
21/43



Fancy Program-Stack Theory

top'=x A misempty’ < pushx
ok < pushx. pop

isempty’ <= mkempty

22/43



Fancy Program-Stack Theory
!

top'=x A misempty’ < pushx
ok < pushx. pop

isempty’ <= mkempty

23/43



Fancy Program-Stack Theory

top'=x A misempty’ < pushx
ok < pushx. pop

isempty’ <= mkempty

!

24/43



Fancy Program-Stack Theory

top'=x A misempty’ < pushx
ok < pushx. pop

isempty’ <= mkempty

!

25/43



Weak Program-Stack Theory

top'=x <= push x
top'=top <= balance
balance < ok

balance <= push x. balance. pop

26/43



Weak Program-Stack Theory

top'=x <= push x
top'=top <= balance
balance < ok

balance <= push x. balance. pop
count' =0 <= start

count' = count+1 <= push x

count' = count+1 < pop

27/43



Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. join x)

28/43



Program-Queue Theory

isemptyq <= mkemptyqg €—

isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. join x)

29/43



Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < joinx €—
—isemptyq => front'=front A misemptyq’ < join x
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. join x)

30/43



Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < join Xx

—isemptyq => front'=front A —isemptyq' <= joinx €—
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. join x)

31/43



Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
isemptyqg = (join x. leave = mkemptyq) <€—

—isemptyqg = (join x. leave = leave. join x)

32/43



Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. joinx) €—

33/43



Program-Tree Theory

34/43



Program-Tree Theory

Variable node tells the value of the item where you are.

35/43



Program-Tree Theory

Variable node tells the value of the item where you are.

node:= 3

36/43



Program-Tree Theory

Variable node tells the value of the item where you are.
node:=3

Variable aim tells what direction you are facing.

37/43



Program-Tree Theory

Variable node tells the value of the item where you are.
node:=3
Variable aim tells what direction you are facing.

aim:= up aim:= left aim:=right

38/43



Program-Tree Theory

Variable node tells the value of the item where you are.

node:=3
Variable aim tells what direction you are facing.

aim:= up aim:= left aim:= right
Program go moves you to the next node in the direction you are facing,

and turns you facing back the way you came.

39/43



Program-Tree Theory

Variable node tells the value of the item where you are.

node:=3
Variable aim tells what direction you are facing.

aim:= up aim:= left aim:= right
Program go moves you to the next node in the direction you are facing,

and turns you facing back the way you came.

Auxiliary specification work says do anything, but
do not go from this node (your location at the start of work )

in this direction (the value of variable aim at the start of work ).

End where you started, facing the way you were facing at the start.

40/43



Program-Tree Theory

(aim=up) = (aim'*¥up) <= go

node'=node A aim'=aim < go. work. go

work
work
work

work

<

LI

ok
node:= x
a=aim*b A (aim:=b. go. work. go. aim:= a)

work. work

41/43



Program-Tree Theory

(aim=up) = (aim'*¥up) <= go

node'=node A aim'=aim < go. work. go <—
work < ok

work < node:=x

work < a=aim*b A (aim:=b. go. work. go. aim:= a)
work < work. work

42/43



Program-Tree Theory

(aim=up) = (aim'*¥up) <= go

node'=node A aim'=aim < go. work. go

work
work
work

work

<

LI

ok
node:= x
a=aim*b A (aim:=b. go. work. go. aim:= a)

work. work

43/43



