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push a procedure with parameter of type X
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Program-Stack Theory

syntax
push a procedure with parameter of type X
pop a program
top expression of type X

axioms

top'=x < pushx

ok < pushx. pop

top'=x
< push x. ok
< push x. pushy. push z. pop. pop
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Program-Stack Implementation

var s: [*X] implementer's variable
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Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

Proof (first axiom):

(top'=x < pushx) definitions of push and fop
= (s'(#s'—1)=x <= s:=s5;;[x]) rewrite assignment with one variable
= (s'(#s'-D=x <= s =s3[x]) List Theory

= T
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Program-Stack Implementation

var s: [*X] implementer's variable
push = (x: X- s:=s35[x])
pop = s:=5[0;.#s—1]

top = s (#s—1)

Proof (first axiom):

(top'=x < pushx) definitions of push and fop
= (s'(#s'—1)=x <= s:=s5;;[x]) rewrite assignment with one variable
= (s'(#s'-D=x < s =s;;[x]) List Theory
= T

consistent? yes, implemented.

complete? no, we can prove very little if we start with pop
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Fancy Program-Stack Theory

top'=x A misempty’ < pushx
ok < pushx. pop

isempty’ <= mkempty
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Weak Program-Stack Theory

top'=x <= push x
top'=top <= balance
balance < ok

balance <= push x. balance. pop
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Weak Program-Stack Theory

top'=x <= push x
top'=top <= balance
balance < ok

balance <= push x. balance. pop
count' =0 <= start

count' = count+1 <= push x

count' = count+1 < pop
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Program-Queue Theory

isemptyq' <= mkemptyq

isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
isemptyq = (join x. leave = mkemptyq)

—isemptyqg = (join x. leave = leave. join x)
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isemptyqg = front'=x A nisemptyq’ < join Xx
—isemptyq => front'=front A misemptyq’ < join x
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Program-Tree Theory
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Variable node tells the value of the item where you are.
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Variable aim tells what direction you are facing.

aim:= up aim:= left aim:= right
Program go moves you to the next node in the direction you are facing,

and turns you facing back the way you came.
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Program-Tree Theory

Variable node tells the value of the item where you are.

node:=3
Variable aim tells what direction you are facing.

aim:= up aim:= left aim:= right
Program go moves you to the next node in the direction you are facing,

and turns you facing back the way you came.

Auxiliary specification work says do anything, but
do not go from this node (your location at the start of work )

in this direction (the value of variable aim at the start of work ).

End where you started, facing the way you were facing at the start.
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Program-Tree Theory

(aim=up) = (aim'*¥up) <= go

node'=node A aim'=aim < go. work. go

work
work
work

work

<

LI

ok
node:= x
a=aim*b A (aim:=b. go. work. go. aim:= a)

work. work
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node'=node A aim'=aim < go. work. go <—
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