
2014-11-17 0

Programs, Specifications, and Halting

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Question and Answers

What is the meaning of a procedure? This question is not so simple to answer, and its answer
has far-reaching consequences throughout computer science. By “procedure” I mean any
named, callable piece of program; depending on the programming language, it may be a
procedure, or function, or method, or something else. To illustrate my points, I will use the
Pascal programming language, but the points I make apply to any modern programming
language.

Here is a little piece of Pascal programming.

function binexp (n: integer): integer; { for 0≤n<31 , binexp (n) = 2n }

procedure toobig; { if 220 > 20000 , print 'too big' ; otherwise do nothing }
begin

if binexp (20) > 20000 then print ('too big')
end

Only the header and specification of function binexp appear; the body is missing. But toobig
is there in its entirety. Now I ask: Is toobig a Pascal procedure? And I offer two answers.

Program Answer: No. We cannot compile and execute toobig until we have the body of
binexp , or at least a link to the body of binexp . toobig is not a procedure until it can be
compiled and executed. (We may not have the body of print either, and it may not even be
written in Pascal, but the compiler does have a link to it, so it can be executed.) Since toobig
calls binexp , whose body is missing, we cannot say what is the meaning of toobig . The
specification of binexp , which is just a comment, is helpful documentation expressing the
intention of the programmer, but intentions are irrelevant. We need the body of binexp before
it is a Pascal function, and when we have the body of binexp , then toobig will be a Pascal
procedure.

Specification Answer: Yes. toobig conforms to the Pascal syntax for procedures. It type-
checks correctly. To determine whether binexp is being called correctly within toobig , we
need to know the number and types of its parameters, and the type of result returned; this
information is found in the header for binexp . To determine whether print is being called
correctly, we need to know about its parameters, and this information is found in the list of
built-in functions and procedures. To understand toobig , to reason about it, to know what its
execution will be, we need to know what the result of binexp (20) will be, and what effect
print ('too big') will have. The result of binexp (20) is specified in the comment, and the effect
of print ('too big') is specified in the list of built-in functions and procedures. We do not have
the body of binexp , and we probably cannot look at the body of print , but we do not need
them for the purpose of understanding toobig . Even if we could look at the bodies of binexp
and print , we should not use them for understanding and reasoning about toobig . That's an
important programming principle; it allows programmers to work on different parts of a
program independently. It enables a programmer to call functions and procedures written by

http://www.cs.utoronto.ca/~hehner

Eric Hehner 2014-11-171

other people, knowing only the specification, not the implementation. There are many ways
that binary exponentiation can be computed, but our understanding of toobig does not depend
on which way is chosen. Likewise for print . This important principle also enables a
programmer to change the implementation of a function or procedure, such as binexp and
print , but still satisfying the specification, without knowing where and why the function or
procedure is being called. If there is an error in implementing binexp or print , that error
should not affect the understanding of and reasoning about toobig . So, even without the
bodies of binexp and print , toobig is a procedure.

The semantics community has decided on the Program Answer. For them, the meaning of a
function or procedure is its body, not its specification. They do not assign a meaning to toobig
until the bodies of binexp and print are provided.

Most of the verification community has decided on the Program Answer. To verify a program
that contains a call, they insist on seeing the body of the procedure/function being called. They
do not verify that 'too big' is printed until the bodies of binexp and print are provided.

I would like the Software Engineering community to embrace the Specification Answer. That
answer scales up to large software; the Program Answer doesn't. The Specification Answer
allows us to isolate an error within a procedure (or other unit of program); the Program Answer
doesn't. The Specification Answer insists on having specifications, which are the very best form
of documentation; the Program Answer doesn't.

Halting Problem

The Halting Problem is widely considered to be a foundational result in computer science.
Here is a modern presentation of it. We have the header and specification of function halts ,
but not its body. Then we have procedure twist in its entirety, and twist calls halts . This is
exactly the situation we had with function binexp and procedure toobig . Usually, halts
gives two possible answers: 'yes' or 'no' ; for the purpose of this essay, I have added a third:
'not applicable' .

function halts (p, i: string): string;
{ return 'yes' if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i ; }
{ return 'no' if p represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i ; }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }

procedure twist (s: string); { execution terminates if and only if halts (s, s) ≠ 'yes' }
begin

if halts (s, s) = 'yes' then twist (s)
end

We assume there is a dictionary of function and procedure definitions that is accessible to
halts , so that the call halts ('twist', 'twist') allows halts to look up 'twist' , and subsequently
'halts' , in the dictionary, and retrieve their texts for analysis. Here is a standard proof,
appearing in many textbooks, that halts is incomputable.

Assume the body of function halts has been written according to its specification. Does
execution of twist ('twist') terminate? If it terminates, then halts ('twist', 'twist') returns
'yes' according to its specification, and so we see from the body of twist that execution
of twist ('twist') does not terminate. If it does not terminate, then halts ('twist', 'twist')
returns 'no' , and so execution of twist ('twist') terminates. This is a contradiction

2014-11-17 Programs, Specifications, and Halting 2

(inconsistency). Therefore the body of function halts cannot have been written
according to its specification; halts is incomputable.

This “textbook proof” begins with the computability assumption: that the body of halts can be
written, and has been written. The assumption is necessary for advocates of the Program
Answer to say that twist is a Pascal procedure, and so rule out 'not applicable' as the result of
halts ('twist', 'twist') . If we suppose the result is 'yes' , then we see from the body of twist that
execution of twist ('twist') is nonterminating, so the result should be 'no' . If we suppose the
result is 'no' , then we see from the body of twist that execution of twist ('twist') is
terminating, so the result should be 'yes' . Thus all three results are eliminated, we have an
inconsistency, and advocates of the Program Answer blame the computability assumption for
the inconsistency.

Advocates of the Program Answer must begin by assuming the existence of the body of halts ,
but since the body is unavailable, they are compelled to base their reasoning on the specification
of halts as advocated in the Specification Answer.

Advocates of the Specification Answer do not need the computability assumption. According to
them, twist is a Pascal procedure even though the body of halts has not been written. What
does the specification of halts say the result of halts ('twist', 'twist') should be? The
Specification Answer eliminates 'not applicable' . As before, if we suppose the result is 'yes' ,
then we see from the body of twist that execution of twist ('twist') is nonterminating, so the
result should be 'no' ; if we suppose the result is 'no' , then we see from the body of twist that
execution of twist ('twist') is terminating, so the result should be 'yes' . Thus all three results
are eliminated. But this time there is no computability assumption to blame. This time, the
conclusion is that the body of halts cannot be written due to inconsistency of its specification.

Both advocates of the Program Answer and advocates of the Specification Answer conclude that
the body of halts cannot be written, but for different reasons. According to advocates of the
Program Answer, halts is incomputable, which means that it has a consistent specification that
cannot be implemented in a Turing-Machine-equivalent programming language like Pascal.
According to advocates of the Specification Answer, halts has an inconsistent specification,
and the question of computability does not arise.

Simplified Halting Problem

The distinction between these two positions can be seen better by trimming away some
irrelevant parts of the argument. The second parameter of halts and the parameter of twist
play no role in the “textbook proof” of incomputability; any string value could be supplied, or
the parameter could be eliminated, without changing the “textbook proof”. The first parameter
of halts allows halts to be applied to any string, but there is only one string we apply it to in
the “textbook proof”; so we can also eliminate it by redefining halts to apply specifically to
'twist' . Here is the result.

function halts: string;
{ return 'yes' if twist is a Pascal procedure whose execution terminates; }
{ return 'no' if twist is a Pascal procedure whose execution does not terminate; }
{ return 'not applicable' if twist is not a Pascal procedure }

Eric Hehner 2014-11-173

procedure twist; { execution terminates if and only if halts ≠ 'yes' }
begin

if halts = 'yes' then twist
end

The “textbook proof” that halts is incomputable is unchanged.
Assume the body of function halts has been written according to its specification. Does
execution of twist terminate? If it terminates, then halts returns 'yes' according to its
specification, and so we see from the body of twist that execution of twist does not
terminate. If it does not terminate, then halts returns 'no' , and so execution of twist
terminates. This is a contradiction (inconsistency). Therefore the body of function halts
cannot have been written according to its specification; halts is incomputable.

Function halts is now a constant, not depending on the value of any parameter or variable.
There is no programming difficulty in completing the body of halts . It is one of three simple
statements: either begin halts:= 'yes' end or begin halts:= 'no' end or begin halts:= 'not
applicable' end . The problem is to decide which of those three it is. If the body of halts is
begin halts:= 'yes' end , we see from the body of twist that it should be begin halts:= 'no'
end . If the body of halts is begin halts:= 'no' end , we see from the body of twist that it
should be begin halts:='yes' end . If the body of halts is begin halts:= 'not applicable' end ,
advocates of both the Program Answer and the Specification Answer agree that twist is a
Pascal procedure, so again that's the wrong way to complete the body of halts . The
specification of halts is clearly inconsistent; it is not possible to conclude that halts is well-
defined and incomputable. The two parameters of halts served only to complicate and
obscure.

Printing Problems

The “textbook proof” that halting is incomputable does not prove incomputability; it proves
that the specification of halts is inconsistent. But it really has nothing to do with halting; any
property of programs can be treated the same way. Here is an example.

function WhatTwistPrints: string;
{ return 'yes' if twist is a Pascal procedure whose execution prints 'yes' ; }
{ return 'no' if twist is a Pascal procedure whose execution does not print 'yes' ; }
{ return 'not applicable' if twist is not a Pascal procedure }

procedure twist; { if WhatTwistPrints = 'yes' then print 'no' ; otherwise print 'yes' }
begin

if WhatTwistPrints = 'yes' then print ('no') else print ('yes')
end

Here is the “textbook proof” of incomputability, adapted to function WhatTwistPrints .
Assume the body of function WhatTwistPrints has been written according to its
specification. Does execution of twist print 'yes' or 'no' ? If it prints 'yes' , then
WhatTwistPrints returns 'yes' according to its specification, and so we see from the
body of twist that execution of twist prints 'no' . If it prints 'no' , then
WhatTwistPrints returns 'no' according to its specification, and so we see from the
body of twist that execution of twist prints 'yes' . This is a contradiction
(inconsistency). Therefore the body of function WhatTwistPrints cannot have been
written according to its specification; WhatTwistPrints is incomputable.

The body of function WhatTwistPrints is one of begin WhatTwistPrints:= 'yes' end or
begin WhatTwistPrints:= 'no' end or begin WhatTwistPrints:= 'not applicable' end so we

2014-11-17 Programs, Specifications, and Halting 4

cannot call WhatTwistPrints an incomputable function. But we can rule out all three
possibilities, so the specification of WhatTwistPrints is inconsistent. No matter how simple
and clear the specification may seem to be, it refers to itself (indirectly, by referring to twist ,
which calls WhatTwistPrints) in a self-contradictory manner. That's exactly what the halts
specification does: it refers to itself (indirectly by saying that halts applies to all procedures
including twist , which calls halts) in a self-contradictory manner.

The following example is similar to the previous example.

function WhatStraightPrints: string;
{ return 'yes' if straight is a Pascal procedure whose execution prints 'yes' ; }
{ return 'no' if straight is a Pascal procedure whose execution does not print 'yes' ; }
{ return 'not applicable' if straight is not a Pascal procedure }

procedure straight; { if WhatStraightPrints = 'yes' then print 'yes' ; otherwise print 'no' }
begin

if WhatStraightPrints = 'yes' then print ('yes') else print ('no')
end

To advocates of the Program Answer, straight is not a Pascal procedure because the body of
WhatStraightPrints has not been written. Therefore WhatStraightPrints should return
'not applicable' , and its body is easily written: begin WhatStraightPrints:= 'not applicable'
end . As soon as it is written, it is wrong. Advocates of the Specification Answer do not have
that problem, but they have a different problem: it is equally correct for WhatStraightPrints to
return 'yes' or to return 'no' .

The halting function halts has a similar dilemma when applied to

procedure straight (s: string); { execution terminates if and only if halts (s, s) = 'yes' }
begin

if halts (s, s) not= 'yes' then straight (s)
end

We can say, without inconsistency, that halts ('straight', 'straight') is 'yes' , and we can say,
without inconsistency, that halts ('straight', 'straight') is 'no' .

Conclusion

The question “What is the meaning of a procedure?” has at least two defensible answers. If we
adopt the answer that a procedure must be executable, then the “textbook proof” of the
incomputability of halting cannot be made. That is because the assumption that halts is
computable and has been programmed does not give us the program; so we have no meaning
for halts , and cannot say whether execution of twist terminates. On the other hand, if we
adopt the answer that we have a procedure when we know its intention, and know its execution
from the specifications of the functions and procedures that it calls, then the specification of
halts is inconsistent. Either way, the “textbook proof” does not show us a (consistently
specified) mathematical function that is incomputable.

other papers on halting

http://www.cs.utoronto.ca/~hehner/halting.html

