
2016-10-20 0

a Tale of Two Turing Machines

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Abstract: Two Turing Machines can answer questions about each other that they cannot
answer about themselves.

Red Machine

In a corner of a room, there is a Turing Machine [0], or TM. The wall beside it is red, and for
that reason, the TM is affectionately known as “Red”, although it is not actually red. Being old,
it has no electronic communication ability. For input, a human has to do something (maybe
push buttons); for output, a human must look at its paper tape. There is one aspect of Red that
is not realistic: it has an infinitely long tape, fully loaded with every TM program. Each
program is a finite sequence of TM instructions, and there are infinitely many programs, and
they are all on the tape.

Is one of the programs a function that, given input p , computes the answer to the question
“Does execution of program p on Red's tape terminate?”? Let's suppose one of the programs
is such a function, and let's call it halts . Since all programs are on Red's tape, there is also a
program on Red's tape, let's call it twist , whose execution is as follows:

twist calls halts to determine if its own (twist 's) execution will terminate;
if halts reports that twist 's execution will terminate,

then twist 's execution becomes a nonterminating loop,
otherwise twist 's execution terminates.

So whatever halts reports, it is wrong. And we have our answer: none of the programs on
Red's tape determines halting for all programs on the tape. As far as I know, that answer is
universally accepted.

It is almost universally accepted that the reason there is no halts program is that a TM is not
computationally powerful enough to perform the task; that's the definition of “incomputable”.
But the previous paragraph says nothing about the limitations of the computational power of a
TM. I believe that the reason there is no halts program is that the task is self-contradictory.
Nothing can perform a self-contradictory task, no matter how powerful it is.

Blue Machine

In the opposite corner of the same room there is another TM. The wall beside it is blue, and for
that reason, this TM is affectionately known as “Blue”, although it is not actually blue. The two
machines are actually the same color. In fact, the two machines are identical in every respect
except identity: they are identically built, and their tapes have identical contents, but they are in
different locations, and they have different names. Where a machine sits, and what its name is,
do not in any way affect its operation: the two machines behave identically.

For exactly the same reason that there is no halts program on Red, there is also no halts
program on Blue: none of the programs on Blue's tape determines halting for all programs on
Blue's tape, because that task is self-contradictory.

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

Eric Hehner 2016-10-201

Red and Blue Machines Thinking about Each Other

Is there a program on Red that answers the question “Am I the Red machine?”? Of course there
is: its execution just prints “yes”. And since the Red and Blue machines are identical, the very
same program exists on Blue: it also prints “yes”. But this program on Blue does not correctly
answer the question “Am I the Red machine?”. Although the programs are identical, they do
not answer the same question. But there is a program on Blue that answers the question “Am I
the Red machine?”. It just prints “no”. To answer the same question, we need a different
program, due to the self-reference.

Is there a program on Red that answers the question “Can the Red machine correctly answer
“no” to this question?”? On Red, there is a program that prints “yes”, but that answer says that
“no” is the correct answer. There is another program that prints “no”, but that answer says that
Red cannot do what it is doing (printing “no” in answer to the question). The only acceptable
answers are “yes” and “no”, so there is no program on Red that answers the question correctly.
That is not because the task requires more computing power than a TM can offer, and is
therefore “incomputable”; it is because the task is self-contradictory. But there is a program on
Blue that answers that same question correctly: it prints “no”. Blue correctly says that Red
cannot correctly answer “no” to the question. Due to the twisted self-reference, the task was
impossible for Red, but possible for Blue.

Symmetrically, there is no program on Blue that can answer the question “Can the Blue
machine correctly answer “no” to this question?”. But Red can answer it: “no”. Obviously, we
cannot conclude that each of these identical TMs is more powerful than the other.

How to Compute Halting

In some ways, the halting problem is like the problem in the previous two paragraphs. On Red,
the halts program must report the halting status of programs that call halts , thus creating a
self-reference. By placing a twist in that self-reference loop, it is a self-contradictory,
impossible task for Red to perform. But maybe there is a program on Blue's tape that, given
input p , computes the answer to the question “Does execution of program p on Red's tape
terminate?”. Let me suppose there is, and call it Redhalts . Programs on one machine have no
way to call programs on the other machine, so there is no program on Red that calls Redhalts
and then does the opposite.

There is a program on Red that is identical to Redhalts ; let me call it Redhalts . But we know
that there is no program on Red to determine halting on Red. The resolution of the apparent
inconsistency comes from the preceding section: identical programs on the two machines do
not necessarily answer the same question. It is possible that Redhalts , residing on Blue,
determines halting on Red, but the identical program Redhalts , residing on Red, does not.

Vacuum Cleaners

Consider the problem of building a vacuum cleaner that can clean everything in your house.
This vacuum cleaner will be an object in your house, so it is required to be able to clean out its
own bag. But that's impossible, because vacuuming out the bag fills the bag. So Turing would
conclude that vacuum cleaners are unbuildable. A sensible person would conclude that a
vacuum cleaner can be built so long as we don't use it to clean out its own bag. And I would
point out that an identical vacuum cleaner from next door can clean everything in your house,
including your vacuum cleaner's bag.

2016-10-20 a Tale of Two Turing Machines 2

Conclusion

The usual textbook proof that halting is incomputable does not prove that halting is
incomputable. It proves that the specification “Write a program in a TM-equivalent language to
determine whether programs in that same language halt.” is self-contradictory. It may be
possible to write a program in TM-equivalent language A to determine if programs in TM-
equivalent language B halt, if B programs cannot call A programs. If so, halting is computable.

References

[0] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

Addendum added 2016-10-25 in reply to a question

I was asked “How does the computer know what question to answer?”.

Does a computer “think” or “know” anything? The question does not call for experimentation
or observation; it's simply a linguistic question. We have collectively decided to say that
airplanes fly, like birds do, even though airplanes are not alive and do not flap their wings. We
have collectively decided not to say submarines swim, even though they move through the
water. I know what computers do from the level of atoms right up to the level of programs.
But that doesn't tell me what to call that activity. We, the English speakers of the world, have
apparently decided to say that computers think and know, and I have decided to go along with
that decision. (The word “compute” comes from the Latin word “putare” which means “to
think”.)

I can write a computer program that answers the question “What is the first letter of the Roman
alphabet?”. It just prints the letter “A”. Whenever I want to know the first letter of the
alphabet, I can run this program, and it tells me. How do I know to run this particular program?
In a modern programming language, I might give this program the name FirstLetterOfAlphabet,
which is mnemonic. But TM programs don't have meaningful names. So I, a human, keep a
piece of paper on which I have written various questions, and for each, the address of the
program to run to answer it. Another of my questions is “What letter of the Roman alphabet
comes before “B”?”. And my piece of paper tells me the same address as before. Whenever I
run the program that just prints “A”, you might say, if you are inclined to use language this way,
that the computer knows that I have asked a question whose answer is “A”, but not which one.

On my piece of paper, I also have the question “Are you Red?”, and the address of the program
to invoke on Red. When I invoke this program on Red, I get the correct answer: “yes”.
Whenever I run the program that just prints “yes”, you might say, if you are inclined to use
language this way, that the computer knows that I have asked one of the questions whose
answer is “yes”, but not which one. Although Red does not know exactly what question it is
answering, it answers anyway. When I invoke the same program on Blue, which is identical to
Red, I get an incorrect answer. To get the correct answer on Blue, I have to invoke a different
program.

Suppose there is a halts program that works on all programs except those that (directly or
indirectly) call halts . I invoke it, and feed in program gcc . The computer knows which
program I am asking about because I told it: gcc . But does the computer know that it is
determining the halting status of gcc ? The name halts is a clue to me, but not to the
computer, and I could have called the program fred .

Eric Hehner 2016-10-203

Should the halts program start with the question “What is the halting status of the given
program?”. Well, yes, but as a comment for humans. It doesn't help the computer to know
anything. It's still the halting program even without that comment. And TM programs don't
have comments.

I know that right now I am thinking about computers. To know that, I not only need to be
thinking about computers, I also need to have, and use, a self-reflective ability. I need to think:
“I am thinking about computers.”. A TM executes just the program that a human invokes, so I
would say no, the TM does not know it is computing the halting status of gcc , but it computes
the halting status of gcc anyway. My modern computer executes many programs in parallel.
One of them is the operating system, whose job is to keep track of all programs being executed,
and where each program resides in memory. When the operating system decides which
program gets the next slice of processor time, it is asking “What should I be doing now?”.
Maybe that is self-reflective enough so that when one of the programs is halts with input gcc ,
we can say yes, the computer knows it is computing the halting status of gcc .

other papers on halting

http://www.cs.utoronto.ca/~hehner/halting.html

