208 (n sort) Given alist L suchthat L (OL) = OL , write a program to sort L in linear
time and constant space. The only change permitted to L is to swap two items.

After trying the question, scroll down to the solution.



The problem is P , defined as

P = L(OL=0L = L' =][0;.#L]
The only change permitted to L is swap , defined as

swapij = L=i—Lj|j—=Li|L
Execution time has to be linear, so that suggests starting an index variable k at O , and
moving up by k:=k+1 until k=#L , so that the part of the list before k is in order, and
therefore the part of the list from k onward has the right items but maybe not yet in the
right order.

P < k=0.0
Q <= if k=#L then ok
else if L k = k then k:= k+1. Q
else swap (Lk) k. Qfifi

To define Q , we can look at P for inspiration. Perhaps

QO = Lk, #L)=k, #L = L =L[0;.k];; [k;.#L]
I think that will work. But I think it will be easier to prove the Q refinement if we
weaken Q by strengthening its antecedent. I'm going to try

QO = L[0;.k]=[0;.k] A Lk, #L)=k, #L = L' =L[0;.k];; [k;.#L]

This says: 1if the first part of L is done, and the last part has the right items (but not
necessarily in the right order), then we complete the job by leaving the first part of L
alone and putting the last part in order.

Proof of P refinement:

k=0. Q replace Q

k:=0. L[0;..k] =[0;..k] A L(k,.#L) =k, #L = L' =L[0;.k];; [k;.#L]
Substitution Law

L[0;.0]1=[0;.0] A L(OL)=0OL = L' =L1J0;.0];;[0;.#L] simplify

P

Proof of first case of Q refinement:
k=#L A ok = QO replace ok and Q
k=#L A k'=k A L'=L
= (L[0;..k] =[0;.k] A L(k,.#L) =k, #L = L' =L[0;.k];; [k;.#L]) context
= k=#L A k'=k A L'=L
= (L[0;.#L) =10;.#L) A L#L, #L)=#L,. #L = L=L[0;.#L];; [#L;.#L])

simplify
- T
Proof of middle case of Q refinement:
k*+#L A Lk=k A (k:=k+1. Q) replace Q

= k+#L A Lk=k
A (ki=k+1. L[0;.k] =[0;.k] A Lk, #L)=k, #L = L' =L[0;.k];; [k;.#L)])
substitution law

k¥#L AN Lk=k
A (L[0;..k+1] = [05. k+1] A L(k+1,.#L) = k+1,.#L = L' = L[0;..k+1] ;; [k+1;.#L])
use context Lk=k to simplify the implication
=  k¥#LANLk=kn (L[0;.k] =[0;.k] A L(k,.#L) =k, #L = L' =L[0;..k];;[k;.#L])
= k+#L A Lk=k A Q specialize



= 0

Proof of last case of Q refinement:
ks#L N Lk+k A (swap (Lk) k. Q) = QO replace last Q
= k¥#L N Lk+k A (swap (Lk) k. Q)
= (L[0;..k] =[0;.k] A L(k,.#L)=k, #L = L' =L[0;.k];;[k;.#L]) portation
= k¥#L A Lk # k A (swap (Lk) k. Q) A L[0;.k] =1[0;..k] A L(k,.#L) = k,.#L
= L' =L[0;.k];; [k;.#L]
To prove this implication, I'll go from the antecedent on the top line to the consequent on
the bottom line.
k¥#L A Lk * k A (swap (Lk) k. Q) A L[0;..k] =[0;.k] A L(k,.#L) =k,.#L
replace swap and Q
= k+#L N Lk+kn L[O;..k]=[0;..k] A L(k,.#L) =k, #L
A ( L:=Lk—Lk|k—L(Lk) | L.
L[0;..k] =[0;.k] A L(k,.#L) =k, #L = L' =L[0;..k];; [k;.#L] )
substitution law

= k¥#L N Lk #* kA L[0;..k] =[0;.k] A L(k,.#L) =k, #L
A ( (Lk— Lk|k— L(Lk)|L)0;..k] = [0;..k]
A (Lk—Lk|k—L(Lk)|L)(k,#Lk—Lk|k— L(Lk)|L))
= k. #(Lk—=Lk|k— L(Lk)|L)
= L'=(Lk—Lk|k— LLK)[0;.k] ;; [k;.#(Lk— Lk | k— L(Lk)|L)] )
swap does not affect length
= k¥#L N Lk #*kn L[0;.k] =[0;.k] A L(k,.#L)=k, #L
A ( (Lk— Lk|k— L(Lk)|L)0;.k] =[0;.k]
A (Lk— Lk|k—=L({Lk)|L)(k,#L) =k, #L
= L'=(Lk—Lk|k— LLk)[O0;.k] ;; [k;.#L] )
This next step is more complicated and less formal than I would like.
In the top line it says L[0;..k] = [0;..k] , and since each item in the list
occurs once, the items less than k are used up at indexes less than & .
The top line also says Lk+k ,therefore L k> k. So the swap is swapping
the item at k with an item at an index greater than k. The swap does not
affect the first part of the list L[0;..k] . The swap affects the last part of the
list, but it does not change the bunch of items in the last part of the
list L(0,..k) . So the top line, used as context, allows us to simplify the
bottom three lines.

= k¥#L N Lk=+kn L[O;.k] =[0;..k] A L(k,.#L)=k,.#L
A ( L[0;..k] =[0;..k]
AN Lk, #L)=k, #L

= L' =L[0;.k];;[k;.#L] ) discharge
= ke#L A Lk+kn L[0:.k]=[0:.k] A Lk, #L) =k, #L
A L'=L[0;.k] ;; [k;. #L] specialize

= L'=L[0;.k];; [k;. #L]
And that completes the last case of the O refinement.

Recursive time is bounded by 2x#L . Counting just swaps, the time is bounded by #L .
To prove time bounds, it is helpful to define
fi=¢§: i, . #L-Lj*j
Then the timing specifications are A and B, defined as
= {<t+#L+f0
B = t'<t+#L-k+fk

With time, the refinements are



A < k=0.B
B < if k=#L then ok
else if Lk=k then k:= k+1. t:=t+1. B
else swap (Lk) k. t=t+1. Bfifi

Proof of A refinement:

k=0. B replace B
k=0. ' <t+#L—-k+fk Substitution Law
! <t+#L-0+f0

A

Proof of first case of B refinement:

k=#L A ok = B replace ok and B
k=#L ANk'=k A L'=L At'=t = ' <t+#L—-k+fk context
k=#L A k'=k N L'=sL A =t = t<t+#L—#L+f#L) simplify and apply
k=#L A k'=k A L'=L A =t = 0<¢§j: #L, #L- Lj*+j simplify
k=#L AN k'=k A L'=L A f'=t = 0=<0 simplify and base
T

Proof of middle case of B refinement:

UII (i

k=#L A Lk=k A (kk=k+1. t:=1t+1. B) replace B
k¥#L A Lk=k A (k=k+1. t:=t+1.  <t+#L—-k+[k) substitution law
k¥#L AN Lk=knt <t+1 +#L—-k—1+f(k+1) simplify
k¥#L AN Lk=k At <t+#L—k+f(k+1) context L k=k implies fk =f(k+1)
k¥#L AN Lk=knt <t+#L—-k+fk specialize
B

Proof of last case of B refinement:

=

=

k¥#L AN Lk # k A (swap (Lk) k. t.=t+1. B) replace swap and B
k+#L A Lk+kn(Li=Lk—Lk|k— LILk)|L. t=r+1. { <t+#L—k+fk)
The next step looks like it should be the Substitution Law.
But f is defined in terms of L. So we have to apply f first.
k+#L N Lk¥k
AN L=Lk—Lk|k—= LWLk |L t:=t+1. ¢ <t +#L—-k+¢§j: k. #L- Lj+j )
Now use the Substitution Law
k¥#L A Lk + k
AN<t+1+#Lk—Lk|k—L(Lk) |L) -k
+¢§j k, #Lk—Lk|k—LULk)|Ly (Lk—Lk|k— L(Lk)|L)j*j
swap does not affect length
k¥#L ALk+knt <t+1+#L—k+¢§j: k. #L- (Lk— Lk|k— L(Lk)|L)j*j
swap reduces the number of out-of-place items by 1 or 2
kF#LANLk+hknNt <t+1+#L—k+¢(§j: k. #L- Lj+))—1
k¥#L AN Lk+knNt <t+#L—-k+fk specialize
B

And that completes the last case of the B refinement.



