
229 (longest sorted sublist)  Write a program to find the length of a longest sorted sublist of a 
given list, where

(a) the sublist must be consecutive items (a segment).
(b) the sublist consists of items in their order of appearance in the given list, but not 

necessarily consecutively.

After trying the question, scroll down to the solution.



(a) the sublist must be consecutive items (a segment).
§ Let  L  be the list, and let  j: nat  be an index variable, and let  m: nat  be a variable 

recording the length of the longest sorted segment ending at index  j , and let n: nat  be a 
variable recording the length of a longest sorted segment anywhere in the interval  0;..j .  
The result is the final value of  n .  Define  sorted  so that  sorted h k  tells whether the 
segment  h;..k  is sorted,

sorted  =  〈h, k: nat· ∀i, j: h,..k· i≤j ⇒ Li≤Lj〉
and define  llss  so that  llss j  is the length of a longest sorted segment ending at index  j

llss  =  〈j: 0,..#L+1· ⇑i: 0,..j+1· if sorted i j then j–i else –∞ f〉
Then the problem is  P , defined as

P   =   nʹ = ⇑i: 0,..#L+1· llss i
And one last definition:

Q   =   0<j<#L  ∧  m = llss j  ∧  n = (⇑i: 0,..j+1· llss i)  ⇒  P
which says that if  j  is an index (but not  0 ), and  m  is the length of a longest sorted 
segment ending at index  j , and  n  is the length of a longest sorted segment ending at or 
before index  j , then  nʹ  is the length of a longest sorted segment.  Now the solution is

P   ⇐ if #L≤1 then n:= #L else j:= 1.  m:= 1.  n:= 1.  Q f
Q   ⇐ if L(j–1) ≤ L j

then j:= j+1.  m:= m+1.  n:= n↑m.  if j=#L then ok else Q f
else j:= j+1.  m:= 1.  if #L–j<n then ok else Q f f

The timing is  tʹ ≤ t + #L  and  tʹ ≤ t + #L – j .

(b) the sublist consists of items in their order of appearance in the given list, but not 
necessarily consecutively.

§ This time let  llss n  be the length of a longest sorted sublist of list  L[0;..n] .  We can 
represent a sublist of  L  by a set  S  of indexes, which is a subset of  {0,..n} .  Formally,

llss n  =  ⇑S: (§S: (0,..n)· ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S
And this time I'll use a for-loop.  Define invariant

A n  =  s = llss n
Then

sʹ = llss (#L)  ⇐  s:= 0.  A 0 ⇒ Aʹ(#L)
A 0 ⇒ Aʹ(#L)  ⇐  for n:= 0;..#L do n: 0,..#L ∧ A n  ⇒  Aʹ(n+1) od

The first refinement is easy to prove, the second doesn't need proof, and we have yet to 
refine  n: 0,..#L ∧ A n  ⇒   Aʹ(n+1) .  As we go from  n  to  n + 1 , the new sublists are  
[L n]  whose length is  1 , and for each sorted sublist  S  in  L[0;..n]  whose last item is 
less than or equal to  L n , the list  S;;[L n]  whose length is  #S + 1 .  To calculate that, we 
will form a new list  M  such that  M k  is the length of the longest sorted sublist whose 
last item is  L k .  We strengthen  A .

A n
=     s = llss n

∧  ∀k:0,..n· M k = ⇑S: (§S: (0,..k+1)· k∈S ∧ ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S
Note that  s = ⇑(M[0;..n])  except when  n=0 .  The remaining refinement will also use a 
for-loop, for which we define invariant

B m
=     (∀k:0,..n· M k = ⇑S: (§S: (0,..k+1)· k∈S ∧ ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S)

∧  M n = 1↑(⇑k: (§k: 0,..m· L k ≤ L n)· M k + 1)
Now

(B 0 ⇒ Bʹn) ∧ sʹ=s  ⇐  for m:= 0;..n do (B m ⇒ Bʹ(m+1)) ∧ sʹ=s od
B n ⇒ Bʹ(n+1)  ⇐  M n:= 1.  (B 0 ⇒ Bʹn) ∧ sʹ=s.  s:= s↑(M n)
(B m ⇒ Bʹ(m+1)) ∧ sʹ=s  ⇐  if L m ≤ L n then M n:= (M n)↑(M m+1) else ok f

If you object that the for-loop specification  (B 0 ⇒ Bʹn) ∧ sʹ=s  is not exactly in the right 
form, I could use  frame  to put it in the right form, or use the more general for-loop rule.  



The solution just given has running time  (#L)2/2 .  For a solution with running time 
bounded by  (#L) ×  log (#L) , instead of maintaining the list  M  of lengths of longest 
sorted sublists, maintain the list of minimum last items for each length, and replace the 
inner loop with a binary search.


