
229 (longest sorted sublist) Write a program to find the length of a longest sorted sublist of a
given list, where

(a) the sublist must be consecutive items (a segment).
(b) the sublist consists of items in their order of appearance in the given list, but not

necessarily consecutively.

After trying the question, scroll down to the solution.

(a) the sublist must be consecutive items (a segment).
§ Let L be the list, and let j: nat be an index variable, and let m: nat be a variable

recording the length of the longest sorted segment ending at index j , and let n: nat be a
variable recording the length of a longest sorted segment anywhere in the interval 0;..j .
The result is the final value of n . Define sorted so that sorted h k tells whether the
segment h;..k is sorted,

sorted = 〈h, k: nat· ∀i, j: h,..k· i≤j ⇒ Li≤Lj〉
and define llss so that llss j is the length of a longest sorted segment ending at index j

llss = 〈j: 0,..#L+1· ⇑i: 0,..j+1· if sorted i j then j–i else –∞ f〉
Then the problem is P , defined as

P = nʹ = ⇑i: 0,..#L+1· llss i
And one last definition:

Q = 0<j<#L ∧ m = llss j ∧ n = (⇑i: 0,..j+1· llss i) ⇒ P
which says that if j is an index (but not 0), and m is the length of a longest sorted
segment ending at index j , and n is the length of a longest sorted segment ending at or
before index j , then nʹ is the length of a longest sorted segment. Now the solution is

P ⇐ if #L≤1 then n:= #L else j:= 1. m:= 1. n:= 1. Q f
Q ⇐ if L(j–1) ≤ L j

then j:= j+1. m:= m+1. n:= n↑m. if j=#L then ok else Q f
else j:= j+1. m:= 1. if #L–j<n then ok else Q f f

The timing is tʹ ≤ t + #L and tʹ ≤ t + #L – j .

(b) the sublist consists of items in their order of appearance in the given list, but not
necessarily consecutively.

§ This time let llss n be the length of a longest sorted sublist of list L[0;..n] . We can
represent a sublist of L by a set S of indexes, which is a subset of {0,..n} . Formally,

llss n = ⇑S: (§S: (0,..n)· ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S
And this time I'll use a for-loop. Define invariant

A n = s = llss n
Then

sʹ = llss (#L) ⇐ s:= 0. A 0 ⇒ Aʹ(#L)
A 0 ⇒ Aʹ(#L) ⇐ for n:= 0;..#L do n: 0,..#L ∧ A n ⇒ Aʹ(n+1) od

The first refinement is easy to prove, the second doesn't need proof, and we have yet to
refine n: 0,..#L ∧ A n ⇒ Aʹ(n+1) . As we go from n to n + 1 , the new sublists are
[L n] whose length is 1 , and for each sorted sublist S in L[0;..n] whose last item is
less than or equal to L n , the list S;;[L n] whose length is #S + 1 . To calculate that, we
will form a new list M such that M k is the length of the longest sorted sublist whose
last item is L k . We strengthen A .

A n
= s = llss n

∧ ∀k:0,..n· M k = ⇑S: (§S: (0,..k+1)· k∈S ∧ ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S
Note that s = ⇑(M[0;..n]) except when n=0 . The remaining refinement will also use a
for-loop, for which we define invariant

B m
= (∀k:0,..n· M k = ⇑S: (§S: (0,..k+1)· k∈S ∧ ∀i, j: ~S· i≤j ⇒ L i ≤ L j)· $S)

∧ M n = 1↑(⇑k: (§k: 0,..m· L k ≤ L n)· M k + 1)
Now

(B 0 ⇒ Bʹn) ∧ sʹ=s ⇐ for m:= 0;..n do (B m ⇒ Bʹ(m+1)) ∧ sʹ=s od
B n ⇒ Bʹ(n+1) ⇐ M n:= 1. (B 0 ⇒ Bʹn) ∧ sʹ=s. s:= s↑(M n)
(B m ⇒ Bʹ(m+1)) ∧ sʹ=s ⇐ if L m ≤ L n then M n:= (M n)↑(M m+1) else ok f

If you object that the for-loop specification (B 0 ⇒ Bʹn) ∧ sʹ=s is not exactly in the right
form, I could use frame to put it in the right form, or use the more general for-loop rule.

The solution just given has running time (#L)2/2 . For a solution with running time
bounded by (#L) × log (#L) , instead of maintaining the list M of lengths of longest
sorted sublists, maintain the list of minimum last items for each length, and replace the
inner loop with a binary search.

