- 23 Let p and q be binary expressions. Suppose p is both a theorem and an antitheorem (the theory is inconsistent).
- (a) Prove, using the rules of proof presented, that q is both a theorem and an antitheorem.
- (b) Is q=q a theorem or an antitheorem?

After trying the question, scroll down to the solution.

(a)	Prove,	using the rules of proof presented, that	q is both a theorem and an antitheorem.
§		<i>q</i>	identity law
	=	$q \vee \perp$	since p is an antitheorem, replace \perp by p
	=	$q \lor p$	since p is a theorem, replace p by \top
	=	$q \lor \top$	base law
	=	Т	
	so q i	is a theorem.	
		q	identity law
	=	$q \land \top$	since p is a theorem, replace \top by p
	=	$q \wedge p$	since p is an antitheorem, replace p by \perp
	=	$q \land \bot$	base law
	=	\perp	
	so q i	is an antitheorem.	

- (b) Is q=q a theorem or an antitheorem?
- § In part (a), q was any binary expression. So it could be q=q. So q=q is both a theorem and an antitheorem. Or, if you prefer, in part (a) q is a binary variable, so by the Instance Rule, every binary expression is both a theorem and an antitheorem, and in particular, q=q is both a theorem and an antitheorem.