
260 (machine multiplication) Given two natural numbers, write a program to find their
product using only addition, subtraction, doubling, halving, test for even, and test for
zero, but not multiplication or division.

After trying the question, scroll down to the solution.

§ For a solution with linear time, use the identity
x×y = (x–1)×y + y

For a solution with logarithmic time, use the identities
x×y = x/2×y×2 (for even x)
x×y = (x–1)/2×y×2 + y (for odd x)

Let all variables be natural.
x:= x×y ⇐ if x=0 then ok

else if even x then x:= x/2. x:= x×y. x:= x×2
else x:= (x–1)/2. x:= x×y. x:= x×2. x:= x+y f f

Note that in the solution, the occurrences of x:= x×y are recursive calls. Note also that in
the usual binary representation of natural numbers, x:= x×2 is just shift left, and both
x:= x/2 (for even x) and x:= (x–1)/2 (for odd x) are just shift right. The execution
time is if x=0 then 0 else 1 + floor (log x) f.

Here is another solution in which the recursive calls can be implemented as branches.
Let nat variables a and b have the given numbers as their initial values, and let nat
variable c have their product as its final value.

cʹ = a×b ⇐ c:= 0. cʹ = c + a×b
cʹ = c + a×b ⇐ if a=0 then ok

else if even a then a:= a/2. b:= b×2. cʹ = c + a×b
else c:= c+b. a:= a–1. cʹ = c + a×b f f

with execution time if a=0 then 0 else 1 + floor (log a) f

Both of these solutions can be improved by testing for evenness before testing for
zeroness. If a is not even, then it's not zero, and we save a test each iteration. Here's the
second program with this improvement.

cʹ = a×b ⇐ c:= 0. cʹ = c + a×b
cʹ = c + a×b ⇐ if even a

then if a=0 then ok
else a:= a/2. b:= b×2. cʹ = c + a×b f

else c:= c+b. a:= a–1. cʹ = c + a×b f

