
260 (machine multiplication)  Given two natural numbers, write a program to find their 
product using only addition, subtraction, doubling, halving, test for even, and test for 
zero, but not multiplication or division.

After trying the question, scroll down to the solution.



§ For a solution with linear time, use the identity
x×y = (x–1)×y + y

For a solution with logarithmic time, use the identities
x×y = x/2×y×2  (for even  x )
x×y = (x–1)/2×y×2 + y  (for odd  x )

Let all variables be natural.
x:= x×y   ⇐ if x=0 then ok

else if even x then x:= x/2.  x:= x×y.  x:= x×2
else x:= (x–1)/2.  x:= x×y.  x:= x×2.  x:= x+y f f

Note that in the solution, the occurrences of  x:= x×y  are recursive calls.  Note also that in 
the usual binary representation of natural numbers,  x:= x×2  is just shift left, and both  
x:= x/2  (for even  x ) and  x:= (x–1)/2  (for odd  x ) are just shift right.  The execution 
time is  if x=0 then 0 else 1 + floor (log x) f.

Here is another solution in which the recursive calls can be implemented as branches.  
Let  nat  variables  a  and  b  have the given numbers as their initial values, and let  nat  
variable  c  have their product as its final value.

cʹ = a×b   ⇐   c:= 0.  cʹ = c + a×b
cʹ = c + a×b   ⇐ if a=0 then ok

else if even a then a:= a/2.  b:= b×2.  cʹ = c + a×b
else c:= c+b.  a:= a–1.  cʹ = c + a×b f f

with execution time  if a=0 then 0 else 1 + floor (log a) f

Both of these solutions can be improved by testing for evenness before testing for 
zeroness.  If  a  is not even, then it's not zero, and we save a test each iteration.  Here's the 
second program with this improvement.

cʹ = a×b   ⇐   c:= 0.  cʹ = c + a×b
cʹ = c + a×b   ⇐ if even a

then if a=0 then ok
else a:= a/2.  b:= b×2.  cʹ = c + a×b f

else c:= c+b.  a:= a–1.  cʹ = c + a×b f


