- 300 Let all variables be integer except L is a list of integers. What is the exact precondition
- (a) for x'+y' > 8 to be refined by x := 1
- (b) for x'=1 to be refined by x:=1
- (c) for x'=2 to be refined by x:=1
- (d) for x'=y to be refined by y:=1
- (e) for $x' \ge y'$ to be refined by x := y + z
- (f) for $y'+z' \ge 0$ to be refined by x := y+z
- (g) for $x' \le 1 \lor x' \ge 5$ to be refined by x := x+1
- (h) for $x' < y' \land \exists x \cdot L x < y'$ to be refined by x := 1
- (i) for $\exists y \cdot L y < x'$ to be refined by x := y+1
- (j) for L' = 4 to be refined by $L := i \rightarrow 4 | L$
- (k) for x'=a to be refined by if a > b then x:=a else ok fi
- (1) for $x'=y \land y'=x$ to be refined by (z:=x, x:=y, y:=z)
- (m) for $a \times x'^2 + b \times x' + c = 0$ to be refined by $(x := a \times x + b, x := -x/a)$
- (n) for f' = n'! to be refined by $(n := n+1, f := f \times n)$ where *n* is natural and ! is factorial.
- (o) for $7 \le c' < 28 \land odd c'$ to be refined by (a := b-1, b := a+3, c := a+b)
- (p) for $s' = \Sigma L[0;..i']$ to be refined by (s:=s+Li. i:=i+1)
- (q) for x'>5 to be refined by x': x+(1,2)
- (r) for x'>0 to be refined by x': x+(-1, 1)

After trying the question, scroll down to the solution.

(a) §	for $x'+y' > 8$ to be refined by $x := 1$ $\forall x', y' \cdot x'+y' > 8 \iff (x := 1)$ $\equiv \forall x', y' \cdot x'+y' > 8 \iff x'=1 \land y'=y$ $\equiv 1+y > 8$ $\equiv y > 7$	one-point twice
(b) §	for $x'=1$ to be refined by $x:=1$ $\forall x', y' \cdot x'=1 \iff (x:=1)$ $\equiv \forall x', y' \cdot x'=1 \iff x'=1$ $\equiv 1=1$ $\equiv \top$	one-point
(c) §	for $x'=2$ to be refined by $x:=1$ $\forall x', y' \cdot x'=2 \iff (x:=1)$ $\equiv \forall x', y' \cdot x'=2 \iff x'=1$ $\equiv 1=2$ $\equiv \bot$	one-point
(d) §	for $x'=y$ to be refined by $y:= 1$ $\forall x', y' \cdot x'=y \iff (y:= 1)$ $\equiv \forall x', y' \cdot x'=y \iff x'=x \land y'=1$ $\equiv x=y$	one-point twice
(e) §	for $x' \ge y'$ to be refined by $x := y+z$ $\forall x', y', z' \cdot x' \ge y' \iff (x := y+z)$ $\equiv \forall x', y', z' \cdot x' \ge y' \iff x' = y+z \land y' = y \land z' = z$ $\equiv y+z \ge y$ $\equiv z \ge 0$	expand assignment one-point, three times arithmetic
(f) §	for $y'+z' \ge 0$ to be refined by $x:=y+z$ $\forall x', y', z' \cdot y'+z' \ge 0 \iff (x:=y+z)$ $\equiv \forall x', y', z' \cdot y'+z' \ge 0 \iff x'=y+z \land y'=y \land z'=z$ $\equiv y+z \ge 0$	One-point, 3 times
(g) §	for $x' \le 1 \lor x' \ge 5$ to be refined by $x := x+1$ $\forall x' \cdot (x' \le 1 \lor x' \ge 5 \iff x := x+1)$ $\equiv \forall x' \cdot (x' \le 1 \lor x' \ge 5 \iff x' = x+1)$ $\equiv x+1 \le 1 \lor x+1 \ge 5$ $\equiv x \le 0 \lor x \ge 4$ $\equiv \neg x: 1,4$	one-point
(h) §	for $x' < y' \land \exists x \cdot L x < y'$ to be refined by $x := 1$ $\forall x', y', L' \cdot x' < y' \land (\exists x \cdot L x < y') \Leftarrow (x := 1)$ $\equiv \forall x', y', L' \cdot x' < y' \land (\exists x \cdot L x < y') \Leftarrow x' = 1 \land y' = y \land L' = L$ $\equiv 1 < y \land \exists x \cdot L x < y$	one-point three times
(i) §	for $\exists y \cdot L y < x'$ to be refined by $x:=y+1$ $\forall x', y', L' \cdot (\exists y \cdot L y < x') \Leftarrow (x:=y+1)$ $\equiv \forall x', y', L' \cdot (\exists y \cdot L y < x') \Leftarrow x'=y+1 \land y'=y \land L'=L$ $\equiv \forall x', y', L' \cdot (\exists z \cdot L z < x') \Leftarrow x'=y+1 \land y'=y \land L'=L$ $\equiv \exists z \cdot L z < y+1$	expand assignment rename one-point three times

= *s* + *L i* = ΣL [0;..*i*+1] = $s = \Sigma L [0;..i]$

for x'>5 to be refined by x': x+(1,2)(q) § $\forall x' \cdot x' > 5 \iff x' \colon x + (1,2)$ + distributes over , $\forall x' \cdot x' > 5 \iff x' \colon x+1, x+2$ compound axiom = = $\forall x' \cdot x' > 5 \iff x' \colon x+1 \lor x' \colon x+2$ elementary axiom twice $\forall x' \cdot x' > 5 \iff x' = x+1 \lor x' = x+2$ antidistribution = distribution = $\forall x' \cdot (x' > 5 \iff x' = x+1) \land (x' > 5 \iff x' = x+2)$ $(\forall x' \cdot x' > 5 \iff x' = x+1) \land (\forall x' \cdot x' > 5 \iff x' = x+2)$ = one-point twice = $x+1 > 5 \land x+2 > 5$ arithmetic, inclusion because $x>4 \Rightarrow x>3$ =*x*>4 for x' > 0 to be refined by x': x+(-1, 1)(r)

§

101 $x > 0$ to be refined by $x \cdot x + (-1, 1)$				
	$\forall x' \cdot x' > 0 \iff x' \colon x + (-1, 1)$	+ distributes over ,		
=	$\forall x' \cdot x' > 0 \iff x' \colon x - 1, x + 1$	compound axiom		
=	$\forall x' \cdot x' > 0 \iff x' \colon x - 1 \lor x' \colon x + 1$	elementary axiom twice		
=	$\forall x' \cdot x' > 0 \iff x' = x - 1 \lor x' = x + 1$	antidistribution		
=	$\forall x' \cdot (x' > 0 \iff x' = x - 1) \land (x' > 0 \iff x' = x + 1)$	distribution		
=	$(\forall x' \cdot x' > 0 \iff x' = x - 1) \land (\forall x' \cdot x' > 0 \iff x' = x + 1)$	1) one-point twice		
=	$x - 1 > 0 \land x + 1 > 0$	arithmetic		
=	x>1 ^ x>-1	inclusion because $x > 1 \Rightarrow x > -1$		
=	x>1			