304 Prove

- (a) \top is an invariant for specification S.
- (b) \perp is an invariant for specification S.
- (c) Assertion A is an invariant for ok.
- (d) x+y=5 is an invariant for (x=x+1, y=y-1) where the variables are x and y.
- (e) $x \ge 0$ is an invariant for x := x+1 where the variable is x.
- (f) $\sqrt{y=x^2}$ is an invariant for (x=x+1, y=y+2x-1) where the variables are x and y.
- (g) $a \times x^2 + b \times x + c = 0$ is an invariant for $(x = a \times x + b, x = -x/a)$ where the variable is x.
- (h) f = n! is an invariant for $(n := n+1, f := f \times n)$ where f and n are natural variables and ! is factorial.

After trying the question, scroll down to the solution.

(a)	\top is an invariant for specification S.			
Ş		$\forall \sigma, \sigma' \colon (\top \Rightarrow \top) \Leftarrow S$	base or identity	
	=	$\forall \sigma, \sigma' \cdot \top \Leftarrow S$	base	
	=	$\forall \sigma, \sigma' \cdot \top$	identity	
	=	Т	-	
	I could have said that I'll work inside the quantifiers, like this:			
		$(\top \Rightarrow \top) \Leftarrow S$	base or identity	
	=	$\top \Leftarrow S$	base	
	=	Т		
	and t	and that's what I'll do for most of the other parts of this question.		
(b)	⊥ is	\perp is an invariant for specification S.		
§		$(\perp \Rightarrow \perp) \Leftarrow S$	base	
	=	T⇐S	base	
	=	Т		
(c)	Assertion A is an invariant for ok.			
Ş		$\forall \sigma, \sigma' \cdot (A \Rightarrow A') \Leftarrow ok$		
	=	$\forall \sigma, \sigma' \cdot (A \Rightarrow A') \Leftarrow \sigma' = \sigma$	one-point law	
	=	$\forall \sigma \cdot (A \Longrightarrow A)$	reflexive law	
	=	$\forall \sigma \cdot \top$	idempotent law	
	=	Т	1	
(d)	x+y=5 is an invariant for $(x=x+1, y=y-1)$ where the variables are x and y.			
Ş	9	$(x+y=5 \implies x'+y'=5) \iff (x=x+1, y=y-1)$	replace final assignment	
	=	$(x+y=5 \implies x'+y'=5) \Leftarrow (x=x+1, x'=x \land y'=y-1)$	substitution law	
	=	$(x+y=5 \Rightarrow x'+y'=5) \leftarrow (x'=x+1 \land y'=y-1)$	context	
	=	$(x+y=5 \Rightarrow x+1+y-1=5) \leftarrow (x'=x+1 \land y'=y-1)$	arithmetic	
	=	$(x+y=5 \implies x+y=5) \Leftarrow (x'=x+1 \land y'=y-1)$	reflexive	
	=	$\top \leftarrow (x' = x + 1 \land y' = y - 1)$	base	
	=	Т		
(e) §	$x \ge 0$ is an invariant for $x := x+1$ where the variable is x.			
		$(x \ge 0 \Rightarrow x' \ge 0) \Leftarrow (x := x + 1)$	replace assignment	
	=	$(x \ge 0 \Rightarrow x' \ge 0) \Leftarrow x' = x + 1$	context	
	=	$(x \ge 0 \Longrightarrow x + 1 \ge 0) \Leftarrow x' = x + 1$	connection (Galois)	
	=	$x \le x+1 \Leftarrow x'=x+1$	cancellation	
	=	$0 \le 1 \Leftarrow x' = x + 1$	order	
	=	$\top \Leftarrow x' = x + 1$	base	
	=	Т		

(f)
$$\sqrt{y=x^2}$$
 is an invariant for $(x:=x+1, y:=y+2xx-1)$ where the variables are x and y.
($y=x^2 \Rightarrow y'=x'^2$) $\leftarrow (x:=x+1, y:=y+2xx-1)$ replace last assignment
($y=x^2 \Rightarrow y'=x'^2$) $\leftarrow (x:=x+1, x'=x \land y'=y+2xx-1)$ substitution
($y=x^2 \Rightarrow y'=x'^2$) $\leftarrow x'=x+1 \land y'=y+2x(x+1)-1$ arithmetic
($y=x^2 \Rightarrow y'=x'^2$) $\leftarrow x'=x+1 \land y'=y+2xx+1$ context
($y=x^2 \Rightarrow (y+2xx+1)=(x+1)^2$) $\leftarrow x'=x+1 \land y'=y+2xx+1$ arithmetic
($y=x^2 \Rightarrow (y+2xx+1)=(x+1)^2$) $\leftarrow x'=x+1 \land y'=y+2xx+1$ arithmetic
($y=x^2 \Rightarrow (y+2xx+1)=(x+1)^2$) $\leftarrow x'=x+1 \land y'=y+2xx+1$
(g) $axx^2 + bxx + c = 0$ is an invariant for $(x:=axx+b, x:=-x/a)$ where the variable is x.
($axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x:=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x:=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow axx'^2 + bxx' + c = 0$) $\leftarrow (x:=axx+b, x'=-x/a)$
(g) $axx^2 + bxx + c = 0 \Rightarrow ax(-(axx+b)/a)^2 + bx(-(axx+b)/a) + c = 0$)

$$= (a \times x + b)/a$$
 arithmetic

$$= (a \times x^2 + b \times x + c = 0 \Rightarrow a \times x^2 + b \times x + c = 0) \Leftarrow x' = -(a \times x + b)/a$$
 reflexive, base

$$= \top$$

(h) f = n! is an invariant for $(n := n+1, f := f \times n)$ where f and n are natural variables and ! is factorial.

§

 $(f = n! \implies f' = n'!) \iff (n := n+1. f := f \times n)$ expand last assignment substitution law $(f = n! \implies f' = n'!) \iff (n := n+1, f' = f \times n \land n' = n)$ = = $(f = n! \Rightarrow f' = n'!) \leftarrow f' = f \times (n+1) \land n' = n+1$ context = $(f = n! \implies f \times (n+1) = (n+1)!) \iff f' = f \times (n+1) \land n' = n+1$ definition of ! $\begin{array}{l} (f=n! \Rightarrow f \times (n+1) = n! \times (n+1)) \leftarrow f' = f \times (n+1) \land n' = n+1 \\ (f=n! \Rightarrow f=n!) \leftarrow f' = f \times (n+1) \land n' = n+1 \end{array}$ = cancellation =reflexive, base =Т