
332 The specification wait w where w is a length of time, not an instant of time, describes a
delay in execution of time w . Formalize and implement it using

(a) the recursive time measure.
(b) the real time measure (assume any positive operation times you need).

After trying the question, scroll down to the solution.

(a)§ If t is an extended natural variable and w is an extended natural expression, then define
wait w = t:= t+w

and refine it this way:
wait w ⇐ frame t· new c: xnat := w· tʹ = t+c
tʹ = t+c ⇐ if c=0 then ok else c:= c–1. t:= t+1. tʹ = t+c f

Proof of first refinement:
frame t· new c: xnat := w· tʹ = t+c

= frame t· ∃c: w· ∃cʹ: xnat· tʹ = t+c cʹ is unused; ∃ law
= frame t· tʹ = t+w frame law
= t:= t+w
= wait w
Proof of last refinement, first case, assuming the nonlocal variables are x :

c=0 ∧ ok expand ok
= c=0 ∧ xʹ=x ∧ cʹ=c ∧ tʹ=t context and specialization
⇒ tʹ = t+c
Proof of last refinement, last case:

c>0 ∧ (c:= c–1. t:= t+1. tʹ = t+c) substitution law twice; specialization
⇒ tʹ = t+c

(b)§ This time t is a nonnegative extended real variable and w is a nonnegative extended
real expression. The solution can be like part (a), but in the real time measure, we have to
account for the time to make the test (which was c=0 in part (a)) and to make a
conditional branch, and the time for the assignment (which was c:= c–1 in part (a)), and
the time for the recursive call. I'll use time 1 for all three. As in part (a), we can
introduce a counter c initialized to w and count down. But w here is real, not
necessarily an integer, so either the test must be c≤0 , or the initial value of c must be
rounded up. I'll do the latter. Define

wait w = t:= t + 3×(ceil w) + 1
and refine it this way:

wait w ⇐ frame t· new c: xnat := ceil w· tʹ = t + 3×c + 1
tʹ = t + 3×c + 1 ⇐

t:= t+1. if c=0 then ok else t:= t+1. c:= c–1. t:= t+1. tʹ = t + 3×c + 1 f
Proof of first refinement:

frame t· new c: xnat := ceil w· tʹ = t + 3×c + 1
= frame t· ∃c: ceil w· ∃cʹ: xnat· tʹ = t + 3×c + 1 cʹ is unused; ∃ law
= frame t· tʹ = t + 3×(ceil w) + 1 frame law
= t:= t + 3×(ceil w) + 1
= wait w
Proof of last refinement, assuming the nonlocal variables are x :

t:= t+1. if c=0 then ok else t:= t+1. c:= c–1. t:= t+1. tʹ = t + 3×c + 1 f
substitution law 3 times

= t:= t+1. if c=0 then ok else tʹ = t + 3×c f expand ok
= t:= t+1. if c=0 then cʹ=c ∧ xʹ=x ∧ tʹ=t else tʹ = t + 3×c f substitution law
= if c=0 then cʹ=c ∧ xʹ=x ∧ tʹ=t+1 else tʹ = t + 3×c + 1 f use context c=0
= if c=0 then cʹ=c ∧ xʹ=x ∧ tʹ = t + 3×c + 1 else tʹ = t + 3×c + 1 f specialize
⇒ tʹ = t + 3×c + 1

