- 345 (drunk) A drunkard is trying to walk home. At each time unit, the drunkard may go forward one distance unit, stay in the same position, or go back one distance unit. After *n* time units, where is the drunkard?
- (a) At each time unit, there is 2/3 probability of going forward, and 1/3 probability of staying in the same position. The drunkard does not go back.
- (b) At each time unit, there is 1/4 probability of going forward, 1/2 probability of staying in the same position, and 1/4 probability of going back.
- (c) At each time unit, there is 1/2 probability of going forward, 1/4 probability of staying in the same position, and 1/4 probability of going back.

After trying the question, scroll down to the solution.

- (a) At each time unit, there is a 2/3 probability of going forward, and a 1/3 probability of staying in the same position. The drunkard does not go back.
- § The drunkard's walk can be described by the following program: Let x and n be natural variables; x describes the drunkard's position, and n the remaining time.

$$\begin{array}{rcl} x' \leq n & \Leftarrow & x:= 0. \ 0 \leq x' - x \leq n \\ 0 \leq x' - x \leq n & \Leftarrow & \text{if } n=0 \text{ then } ok \\ \text{else} & \text{if } rand \ 3 < 2 \text{ then } x:= x+1 \text{ else } ok \text{ fi.} \\ n:= n-1. \ 0 \leq x' - x \leq n \text{ fi} \end{array}$$

The first occurrence of ok can be weakened to x'=x, and we do so in what follows. We replace rand 3 with $r: nat \rightarrow (0,..3)$ with r n having probability 1/3.

 $\begin{array}{rcl} x' \leq n & \Leftarrow & x \coloneqq 0. \ 0 \leq x' - x \leq n \\ 0 \leq x' - x \leq n & \Leftarrow & \text{if } n \equiv 0 \text{ then } x' \equiv x \\ \text{else} & \text{if } r \ n < 2 \text{ then } x \coloneqq x + 1 \text{ else } ok \text{ fi.} \\ n \coloneqq n = n - 1. \ 0 \leq x' - x \leq n \text{ fi} \end{array}$

The first implication is proven by replacing x with 0 in $0 \le x' - x \le n$. For the second implication, in its antecedent (right side), we distribute the last line over the previous **then** and **else** parts, and write the **if**s as a disjunction of conjunctions. Thus we have three cases to prove:

 $\begin{array}{rcl} 0 \leq x' - x \leq n & \longleftarrow & n = 0 \land x' = x \\ 0 \leq x' - x \leq n & \longleftarrow & n \neq 0 \land r \ n < 2 \land (x := x + 1. \ n := n - 1. \ 0 \leq x' - x \leq n) \\ 0 \leq x' - x \leq n & \longleftarrow & n \neq 0 \land r \ n \geq 2 \land (ok. \ n := n - 1. \ 0 \leq x' - x \leq n) \end{array}$

The first case is easy. In the middle case, start with the antecedent:

 $\begin{array}{ll} n \neq 0 \land r \ n < 2 \land (x = x + 1. \ n = n - 1. \ 0 \le x' - x \le n) \\ = & n \neq 0 \land r \ n < 2 \land 0 \le x' - (x + 1) \le n - 1 \\ = & n \neq 0 \land r \ n < 2 \land 0 \le x' - (x + 1) \le n - 1 \\ \Rightarrow & 0 < x' - x < n \end{array}$ two uses of substitution simplify specialize, weaken

In the last case, start with the antecedent:

 $n \neq 0 \land r n \ge 2 \land (ok. n := n-1. \ 0 \le x' - x \le n)$ substitution and identity $= n \neq 0 \land r n \ge 2 \land 0 \le x' - x \le n-1$ substitution and identity specialize, weaken $\Rightarrow 0 \le x' - x \le n$

So far we have proven that the computation satisfies $x' \le n$. A much better answer is the probability distribution of x', which will depend on n. Let n! (n factorial) be defined in the usual way:

 $n! = \Pi i: 0, ..n \cdot i+1 = 1 \times 2 \times 3 \times ... \times n$

Of the *n* attempts to step forward, the drunkard succeeds x' times. Out of *n* attempts there are $n!/(x'!\times(n-x')!)$ ways to choose x' attempts that succeed, each way having probability $(2/3)^{x'}\times(1/3)^{n-x'}$. So we hypothesize that after *n* attempts, the drunkard walks x' steps forward with probability $n!/(x'!\times(n-x')!) \times 2^{x'}/3^n$. That is the probability for specification $x' \le n$; the probability for the other specification $0 \le x' - x \le n$ is

 $n!/((x'-x)!\times(n-x'+x)!)\times 2^{x'-x/3^n}$

Here's the proof: start with the implementation (right side) of the first refinement.

$$x:=0. \ (0 \le x' - x \le n) \times n! / ((x' - x)! \times (n - x' + x)!) \times 2^{x' - x} / 3^n$$
 substitution
$$(x' \le n) \times n! / (x'! \times (n - x')!) \times 2^{x'} / 3^n$$

which is the specification (left side) of the first refinement. Now the last refinement, starting with its implementation, replacing rand 3 < 2 with 2/3.

if *n*=0 **then** *x*′=*x*

else if 2/3 then x := x+1 else ok fi.

 $n := n-1. \ (0 \le x' - x \le n) \times n! / ((x' - x)! \times (n - x' + x)!) \times 2^{x' - x} / 3^n$ fi

distribute the line beginning n := n-1 into the **then** and **else** parts of the previous line = if n=0 then x'=x

else if 2/3 then $(x:=x+1. n:=n-1. (0 \le x'-x \le n) \times n!/((x'-x)!\times(n-x'+x)!) \times 2^{x'-x/3^n})$ else $ok. n:=n-1. (0 \le x'-x \le n) \times n!/((x'-x)!\times(n-x'+x)!) \times 2^{x'-x/3^n}$ fi fi

=	if <i>n</i> =0 then <i>x</i> ′= <i>x</i>
	else if 2/3 then $(0 \le x' - x - 1 \le n - 1) \times (n - 1)!/((x' - x - 1)! \times (n - 1 - x' + x + 1)!) \times 2^{x' - x - 1/3^{n-1}}$
	else $(0 \le x' - x \le n - 1) \times (n - 1)!/((x' - x)! \times (n - 1 - x' + x)!) \times 2^{x' - x/3^{n-1}}$ fi fi
	let $m = x' - x$
=	if <i>n</i> =0 then <i>m</i> =0
	else if 2/3 then $(0 \le m-1 \le n-1) \times (n-1)!/((m-1)! \times (n-1-m+1)!) \times 2^{m-1}/3^{n-1}$
	else $(0 \le m \le n-1) \times (n-1)!/(m! \times (n-1-m)!) \times 2^{m/3n-1}$ fi fi
	On top line use context $n=m=0$; on other lines do a numeric rearrangement.
=	if $n=0$ then $(0 \le m \le n) \times n!/(m! \times (n-m)!) \times 2^{m/3^n}$
	else if 2/3 then $(0 < m) \times 3/2 \times m/n \times (0 \le m \le n) \times n!/(m! \times (n-m)!) \times 2^m/3^n$
	else $(m < n) \times 3 \times (n-m)/n \times (0 \le m \le n) \times n!/(m! \times (n-m)!) \times 2^m/3^n$ fi fi
	factor out common part
=	(if <i>n</i> =0 then 1
	else if $2/3$ then $(0 < m) \times 3/2 \times m/n$ $0 < m$ is unnecessary due to m/n
	else $(m < n) \times 3 \times (n - m)/n$ fi fi) $m < n$ is unnecessary due to $(n - m)/n$
	× $(0 \le m \le n) \times n!/(m! \times (n-m)!) \times 2^m/3^n$
=	(if <i>n</i> =0 then 1
	else if $2/3$ then $3/2 \times m/n$
	else $3 \times (n-m)/n$ fi fi)
	× $(0 \le m \le n) \times n!/(m! \times (n-m)!) \times 2^m/3^n$ use numeric definition of if
=	$((n=0) \times 1)$
	$+(n>0) \times (2/3 \times 3/2 \times m/n)$
	$+ 1/3 \times 3 \times (n-m)/n$))
	$\times n!/(m!\times(n-m)!) \times 2^m/3^n$
=	$((n=0) \times 1 + (n>0) \times 1)$
	$\times (0 \le m \le n) \times n! / (m! \times (n-m)!) \times 2^m / 3^n$
=	$(0 \le m \le n) \times n! / (m! \times (n-m)!) \times 2^m / 3^n$
=	$(0 \le x' - x \le n) \times n! / ((x' - x)! \times (n - x' + x)!) \times 2^{x' - x/3n}$
which	is the specification of the second refinement. That concludes the proof. The
average value of x' is	
	$(x' < n) \times n! / (x'! \times (n - x')!) \times 2^{x'} / 3^n x$

$$= \sum_{x'' \in (x'' \le n) \times n!/(x'' ! \times (n - x')!) \times 2^{x'/3^n} \times x''}$$

= $\sum_{x'' \in (x'' \le n) \times n!/(x'' ! \times (n - x'')!) \times 2^{x''/3^n} \times x''}$
= $2/3 \times n$

(b) At each time unit, there is a 1/4 probability of going forward, a 1/2 probability of staying in the same position, and a 1/4 probability of going back.
no solution given

(c) At each time unit, there is a 1/2 probability of going forward, a 1/4 probability of staying in the same position, and a 1/4 probability of going back.
no solution given