
373 Prove the law nat = 0,..∞ from the other laws.

After trying the question, scroll down to a solution attempt.

§ I'll start by proving half of it.
nat: 0,..∞

In this half, I am trying to prove nat isn't too big, so I'll need nat induction
0, B+1: B ⇒ nat: B

Here we go:

nat: 0,..∞ use induction with 0,..∞ for B
⇐ 0, (0,..∞)+1: 0,..∞ addition distributes over bunch union
= 0, 0+1,..∞+1: 0,..∞ arithmetic; ∞ absorbs additions
= 0, 1,..∞: 0,..∞
= 0,..∞: 0,..∞ reflexive
= ⊤

The other half is
0,..∞: nat

In this half, I am trying to prove that all of 0,..∞ is in nat , so I should need nat
construction.

0, nat+1 : nat
So maybe I should prove

0,..∞: 0, nat+1
and then the result will follow by transitivity. Also, these laws look like they might be
useful:

x, y: xint ∧ x≤y ⇒ (i: x,..y = i: xint ∧ x≤i<y) interval law
A: B = ∀x: A· x: B inclusion law
V: W = ∀v: V· ∃w: W· v=w bunch-element conversion law
A: B ∧ B: C ⇒ A: C transitivity

But I am unable to find a proof.

Here's an attempt to prove both halves together.

⊤ identity
= ∀i: xint· ⊤ interval law
= ∀i: xint· x, y: xint ∧ x≤y ⇒ (i: x,..y = i: xint ∧ x≤i<y) specialize
⇒ ∀i: xint· 0, ∞: xint ∧ 0≤∞ ⇒ (i: 0,..∞ = i: xint ∧ 0≤i<∞) antecedent all ⊤
= ∀i: xint· (i: 0,..∞ = i: xint ∧ 0≤i<∞) context provided by quantification

(quantifier applies to a function; function variable introduction is axiom in body)
= ∀i: xint· (i: 0,..∞ = ⊤ ∧ 0≤i<∞) identity
= ∀i: xint· (i: 0,..∞ = 0≤i<∞) I can't justify this step
= ∀i: xint· (i: 0,..∞ = i: nat) I can't justify this step either
= ∀i: xint· 0,..∞ = nat idempotent
= 0,..∞ = nat

You might just say it's obvious that nat = 0,..∞ , so why do we have to prove it? We have
an application for our math: formal methods of software development. For that
application, we want some binary expressions to be theorems (for example, nat = 0,..∞),
and we want other binary expressions to be antitheorems (for example, nat ⧧ 0,..∞), and
there are other binary expressions that we don't care about (for example, 0/0 = 1). If we
say nat = 0,..∞ is obvious, that just means it's obvious that we want it to be a theorem.
If it cannot be proven, we need to add it to the theory. I have added it, but it may be
provable from the other laws.

