
373 Prove the law  nat  =  0,..∞  from the other laws.

After trying the question, scroll down to a solution attempt.



§ I'll start by proving half of it.
nat: 0,..∞

In this half, I am trying to prove  nat  isn't too big, so I'll need  nat  induction
0, B+1: B  ⇒  nat: B

Here we go:

nat: 0,..∞ use induction with  0,..∞  for  B
⇐ 0, (0,..∞)+1:  0,..∞ addition distributes over bunch union
= 0, 0+1,..∞+1:  0,..∞ arithmetic;  ∞  absorbs additions
= 0, 1,..∞:  0,..∞
= 0,..∞:  0,..∞ reflexive
= ⊤

The other half is
0,..∞: nat

In this half, I am trying to prove that all of  0,..∞  is in  nat , so I should need  nat  
construction.

0, nat+1 : nat
So maybe I should prove

0,..∞: 0, nat+1
and then the result will follow by transitivity.  Also, these laws look like they might be 
useful:

x, y: xint  ∧  x≤y   ⇒   (i: x,..y   =   i: xint  ∧  x≤i<y) interval law
A: B   =   ∀x: A· x: B inclusion law
V: W   =   ∀v: V· ∃w: W·  v=w bunch-element conversion law
A: B  ∧  B: C   ⇒   A: C transitivity

But I am unable to find a proof.

Here's an attempt to prove both halves together.

⊤ identity
= ∀i: xint· ⊤ interval law
= ∀i: xint· x, y: xint  ∧  x≤y   ⇒   (i: x,..y   =   i: xint  ∧  x≤i<y) specialize
⇒ ∀i: xint· 0, ∞: xint  ∧  0≤∞   ⇒   (i: 0,..∞  =  i: xint  ∧  0≤i<∞) antecedent all  ⊤
= ∀i: xint· (i: 0,..∞  =  i: xint  ∧  0≤i<∞) context provided by quantification

(quantifier applies to a function;  function variable introduction is axiom in body)
= ∀i: xint· (i: 0,..∞  =  ⊤  ∧  0≤i<∞) identity
= ∀i: xint· (i: 0,..∞  =  0≤i<∞) I can't justify this step
= ∀i: xint· (i: 0,..∞  =  i: nat) I can't justify this step either
= ∀i: xint· 0,..∞  =  nat idempotent
= 0,..∞  =  nat

You might just say it's obvious that  nat = 0,..∞ , so why do we have to prove it?  We have 
an application for our math:  formal methods of software development.  For that 
application, we want some binary expressions to be theorems (for example,  nat = 0,..∞ ), 
and we want other binary expressions to be antitheorems (for example,  nat ⧧ 0,..∞ ), and 
there are other binary expressions that we don't care about (for example,  0/0 = 1 ).  If we 
say  nat = 0,..∞  is obvious, that just means it's obvious that we want it to be a theorem.  
If it cannot be proven, we need to add it to the theory.  I have added it, but it may be 
provable from the other laws.


