373 Prove the law $nat = 0, ..\infty$ from the other laws.

After trying the question, scroll down to a solution attempt.

I'll start by proving half of it. *nat*: 0,..∞
In this half, I am trying to prove *nat* isn't too big, so I'll need *nat* induction 0, B+1: B ⇒ *nat*: B

Here we go:

 $nat: 0, ..\infty$ use induction with $0, ..\infty$ for B \leftarrow $0, (0, ..\infty) + 1: 0, ..\infty$ addition distributes over bunch union= $0, 0+1, ..\infty + 1: 0, ..\infty$ arithmetic; ∞ absorbs additions= $0, 1, ..\infty: 0, ..\infty$ reflexive=T

The other half is

0,..∞: *nat*

In this half, I am trying to prove that all of $0, ..\infty$ is in *nat*, so I should need *nat* construction.

0, *nat*+1 : *nat*

So maybe I should prove

0,..∞: 0, *nat*+1

and then the result will follow by transitivity. Also, these laws look like they might be useful:

$x, y: xint \land x \le y \implies (i: x, y = i: xint \land x \le i < y)$	interval law
$A:B = \forall x: A \cdot x:B$	inclusion law
$V: W = \forall v: V \exists w: W v=w$	bunch-element conversion law
$A: B \land B: C \implies A: C$	transitivity
an unable to find a proof	

But I am unable to find a proof.

Here's an attempt to prove both halves together.

	Т		identity
=	$\forall i: xint \top$		interval law
=	$\forall i: xint x, y: xint \land x \le y \implies (i: x, y)$	$=$ i: xint \land x \le i < y)	specialize
\Rightarrow	$\forall i: xint \cdot 0, \infty: xint \land 0 \leq \infty \implies (i: 0, \infty)$	$a = i: xint \land 0 \le i < \infty$	antecedent all \top
=	$\forall i: xint \ (i: 0,\infty = i: xint \land 0 \le i < \infty)$	context provide	ed by quantification
	(quantifier applies to a function; fun	ction variable introductio	n is axiom in body)
=	$\forall i: xint \ (i: 0,\infty = \top \land 0 \le i < \infty)$		identity
=	$\forall i: xint \ (i: 0,\infty = 0 \le i < \infty)$	I c	an't justify this step
=	$\forall i: xint \ (i: 0,\infty = i: nat)$	I can't jus	stify this step either
=	$\forall i: xint 0,\infty = nat$		idempotent
=	$0, \dots \infty = nat$		

You might just say it's obvious that $nat = 0, ..\infty$, so why do we have to prove it? We have an application for our math: formal methods of software development. For that application, we want some binary expressions to be theorems (for example, $nat = 0, ..\infty$), and we want other binary expressions to be antitheorems (for example, $nat \neq 0, ..\infty$), and there are other binary expressions that we don't care about (for example, 0/0 = 1). If we say $nat = 0, ..\infty$ is obvious, that just means it's obvious that we want it to be a theorem. If it cannot be proven, we need to add it to the theory. I have added it, but it may be provable from the other laws.

§